Spaces:
Running
Running
metadata
title: ML.ENERGY Leaderboard
python_version: '3.9'
app_file: app.py
sdk: gradio
sdk_version: 3.35.2
pinned: true
tags:
- energy
- leaderboard
ML.ENERGY Leaderboard
How much energy do LLMs consume?
This README focuses on explaining how to run the benchmark yourself. The actual leaderboard is here: https://ml.energy/leaderboard.
Setup
Model weights
- For models that are directly accessible in Hugging Face Hub, you don't need to do anything.
- For other models, convert them to Hugging Face format and put them in
/data/leaderboard/weights/lmsys/vicuna-13B
, for example. The last two path components (e.g.,lmsys/vicuna-13B
) are taken as the name of the model.
Docker container
$ git clone https://github.com/ml-energy/leaderboard.git
$ cd leaderboard
$ docker build -t ml-energy:latest .
# Replace /data/leaderboard with your data directory.
$ docker run -it \
--name leaderboard \
--gpus all \
-v /data/leaderboard:/data/leaderboard \
-v $(pwd):/workspace/leaderboard \
ml-energy:latest bash
Running the benchmark
We run benchmarks using multiple nodes and GPUs using Pegasus. Take a look at pegasus/
for details.
You can still run benchmarks without Pegasus like this:
# Inside the container
$ cd /workspace/leaderboard
$ python scripts/benchmark.py --model-path /data/leaderboard/weights/lmsys/vicuna-13B --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json
$ python scripts/benchmark.py --model-path databricks/dolly-v2-12b --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json