File size: 11,459 Bytes
c78ecd5
 
952c4f4
 
 
0ea619a
952c4f4
 
 
 
 
b63a7bd
952c4f4
c78ecd5
 
 
 
 
952c4f4
 
 
 
c78ecd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac855
c78ecd5
 
a03de21
0ea619a
a03de21
0ea619a
 
b63a7bd
 
 
 
a03de21
b63a7bd
 
 
 
0ea619a
b63a7bd
 
 
 
 
 
88dde12
b63a7bd
 
 
 
 
 
 
 
 
0ea619a
c78ecd5
952c4f4
 
 
c78ecd5
 
 
 
 
 
 
 
952c4f4
 
46bec0c
952c4f4
b63a7bd
bd81d17
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
cc5c681
c78ecd5
46bec0c
952c4f4
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
46bec0c
c78ecd5
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
46bec0c
c78ecd5
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
46bec0c
c78ecd5
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
46bec0c
c78ecd5
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
46bec0c
c78ecd5
b63a7bd
cc5c681
0ea619a
1926ca7
06fad3c
0ea619a
b63a7bd
c78ecd5
ebf96a7
c78ecd5
ebf96a7
cc5c681
0ea619a
59f8d7c
06fad3c
0ea619a
b63a7bd
c78ecd5
ebf96a7
c78ecd5
ebf96a7
 
 
 
 
 
 
 
 
 
 
a03de21
 
1926ca7
06fad3c
a03de21
 
c78ecd5
952c4f4
 
 
c78ecd5
952c4f4
 
 
c78ecd5
952c4f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os 
import base64
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import numpy as np
from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
)
from src.display.css_html_js import custom_css
import copy 

from src.envs import API, REPO_ID
current_dir = os.path.dirname(os.path.realpath(__file__))

with open(os.path.join(current_dir, "images/pb_logo.png"), "rb") as image_file:
    main_logo = base64.b64encode(image_file.read()).decode('utf-8')

def restart_space():
    API.restart_space(repo_id=REPO_ID)

TITLE="""
# ProteinBench: A Holistic Evaluation of Protein Foundation Models"""

INTRO_TEXT="""
Recent years have witnessed a surge in the development of protein foundation models, 
significantly improving performance in protein prediction and generative tasks 
ranging from 3D structure prediction and protein design to conformational dynamics. 
However, the capabilities and limitations associated with these models remain poorly understood due to the absence of a unified evaluation framework.
To fill this gap, we introduce <b>ProteinBench</b>, 
a holistic evaluation framework designed to enhance the transparency of protein foundation models. 
Our approach consists of three key components: 
(i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, 
based on the relationships between different protein modalities; 
(ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; 
and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance. 
Our comprehensive evaluation of protein foundation models reveals several key findings that shed light on their current capabilities and limitations. 
To promote transparency and facilitate further research, we release the evaluation dataset, code, and a public leaderboard publicly for further analysis 
and a general modular toolkit. We intend for ProteinBench to be a living benchmark for establishing a standardized, 
in-depth evaluation framework for protein foundation models, driving their development and application while fostering collaboration within the field.

## [Paper](https://www.arxiv.org/pdf/2409.06744) | [Website](https://proteinbench.github.io/) 
"""

def convert_to_float(df, start_col_idx=2):
    columns = df.columns
    for col in columns[start_col_idx:]:
        df[col] = df[col].astype('float')
    return df


def assign_rank_and_get_sorted_csv(src_csv_path, tag_csv_path, ignore_num=0):
    src_csv = pd.read_csv(src_csv_path)
    float_csv = convert_to_float(copy.deepcopy(src_csv), start_col_idx=1)
    tag_csv = pd.read_csv(tag_csv_path)
    rank_csv = pd.DataFrame()
    
    float_csv = float_csv[ignore_num:]
    
    for col in tag_csv.columns:
        tag = int(tag_csv[col].iloc[0])
        if tag == 0:
            continue
        float_csv[col] *= tag
        float_csv[col] = float_csv[col].fillna(value=1e12)
        rank_csv[col] = float_csv[col].rank(method='min') * abs(tag)
    rank_csv['__sum_of_ranks'] = rank_csv.sum(axis=1)
    src_csv.insert(loc=0, column='Rank', value=-1 * np.ones(len(src_csv)))
    src_csv.loc[list(range(ignore_num, len(src_csv))), 'Rank'] = rank_csv['__sum_of_ranks'].rank(method='min')
    sorted_csv = src_csv.sort_values(by=["Rank"])
    if ignore_num >0 :
        sorted_csv.loc[list(range(ignore_num)),'Rank'] = [np.nan] * ignore_num
    return sorted_csv



# ### Space initialisation

demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Row():
        with gr.Column(scale=6):
            gr.Markdown(TITLE)
    with gr.Row():
        with gr.Column(scale=6):
            gr.Markdown(INTRO_TEXT)
        with gr.Column(scale=1):
            gr.HTML(f'<img src="data:image/jpeg;base64,{main_logo}" style="width:16em;vertical-align: middle"/>')

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ† Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
            with gr.Row():
                inverse_folding_csv = assign_rank_and_get_sorted_csv('data_link/inverse_folding.csv', 'data_rank/inverse_folding.csv')
                inverse_folding_table = gr.components.DataFrame(
                    value=convert_to_float(inverse_folding_csv).values,
                    height=99999,
                    interactive=False,
                    headers=inverse_folding_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(inverse_folding_csv.columns)-1) * ['number'],
                    
                )
        with gr.TabItem("πŸ† Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
            with gr.Row():
                structure_design_csv = assign_rank_and_get_sorted_csv('data_link/structure_design.csv','data_rank/structure_design.csv', ignore_num=1)
                structure_design_table = gr.components.DataFrame(
                    value=convert_to_float(structure_design_csv).values,
                    height=99999,
                    interactive=False,
                    headers=structure_design_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(structure_design_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ† Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
            with gr.Row():
                sequence_design_csv = assign_rank_and_get_sorted_csv('data_link/sequence_design.csv', 'data_rank/sequence_design.csv', ignore_num=1)
                sequence_design_table = gr.components.DataFrame(
                    value=convert_to_float(sequence_design_csv).values,
                    height=99999,
                    interactive=False,
                    headers=sequence_design_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(sequence_design_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ† Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
            with gr.Row():
                co_design_csv = assign_rank_and_get_sorted_csv('data_link/co_design.csv', 'data_rank/co_design.csv', ignore_num=1)
                co_design_table = gr.components.DataFrame(
                    value=convert_to_float(co_design_csv).values,
                    height=99999,
                    interactive=False,
                    headers=co_design_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(co_design_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ† Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
            with gr.Row():
                motif_scaffolding_csv = assign_rank_and_get_sorted_csv('data_link/motif_scaffolding.csv', 'data_rank/motif_scaffolding.csv')
                motif_scaffolding_table = gr.components.DataFrame(
                    value=convert_to_float(motif_scaffolding_csv).values,
                    height=99999,
                    interactive=False,
                    headers=motif_scaffolding_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(motif_scaffolding_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ† Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
            with gr.Row():
                antibody_design_csv = assign_rank_and_get_sorted_csv('data_link/antibody_design.csv', 'data_rank/antibody_design.csv', ignore_num=1)
                antibody_design_table = gr.components.DataFrame(
                    value=convert_to_float(antibody_design_csv).values,
                    height=99999,
                    interactive=False,
                    headers=antibody_design_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(antibody_design_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ… Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
            with gr.Row():
                protein_folding_csv = assign_rank_and_get_sorted_csv('data_link/protein_folding.csv', 'data_rank/protein_folding.csv')
                protein_folding_table = gr.components.DataFrame(
                    value=convert_to_float(protein_folding_csv).values,
                    height=99999,
                    interactive=False,
                    headers=protein_folding_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(protein_folding_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ… Multi-State Prediction (BPTI) Leaderboard", elem_id='multi-state-prediction-bpti-table', id=7,):
            with gr.Row():
                multi_state_prediction_csv = assign_rank_and_get_sorted_csv('data_link/multi_state_prediction_bpti.csv', 'data_rank/multi_state_prediction_bpti.csv')
                multi_state_prediction_table = gr.components.DataFrame(
                    value=convert_to_float(multi_state_prediction_csv).values,
                    height=99999,
                    interactive=False,
                    headers=multi_state_prediction_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(multi_state_prediction_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ… Multi-State Prediction (apo-holo) Leaderboard", elem_id='multi-state-prediction-apo-table', id=8,):
            with gr.Row():
                conformation_prediction_csv = assign_rank_and_get_sorted_csv('data_link/multi_state_prediction_apo.csv', 'data_rank/multi_state_prediction_apo.csv', ignore_num=1)
                conformation_prediction_table = gr.components.DataFrame(
                    value=convert_to_float(conformation_prediction_csv).values,
                    height=99999,
                    interactive=False,
                    headers=conformation_prediction_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(conformation_prediction_csv.columns)-1) * ['number'],
                )
        with gr.TabItem("πŸ… Distribution Prediction Leaderboard", elem_id='distribution-prediction-table', id=9,):
            with gr.Row():
                distribution_prediction_csv = assign_rank_and_get_sorted_csv('data_link/distribution_prediction.csv', 'data_rank/distribution_prediction.csv', ignore_num=2)
                distribution_prediction_table = gr.components.DataFrame(
                    value=convert_to_float(distribution_prediction_csv).values,
                    height=99999,
                    interactive=False,
                    headers=distribution_prediction_csv.columns.to_list(),
                    datatype=['number', 'markdown'] + (len(distribution_prediction_csv.columns)-1) * ['number'],
                )


    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=True):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=9,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()