RockeyCoss
add code files”
51f6859
raw
history blame
5.73 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import BaseModule, ModuleList
from mmdet.models.backbones.resnet import Bottleneck
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead
class BasicResBlock(BaseModule):
"""Basic residual block.
This block is a little different from the block in the ResNet backbone.
The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock.
Args:
in_channels (int): Channels of the input feature map.
out_channels (int): Channels of the output feature map.
conv_cfg (dict): The config dict for convolution layers.
norm_cfg (dict): The config dict for normalization layers.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN'),
init_cfg=None):
super(BasicResBlock, self).__init__(init_cfg)
# main path
self.conv1 = ConvModule(
in_channels,
in_channels,
kernel_size=3,
padding=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.conv2 = ConvModule(
in_channels,
out_channels,
kernel_size=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
# identity path
self.conv_identity = ConvModule(
in_channels,
out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
identity = self.conv_identity(identity)
out = x + identity
out = self.relu(out)
return out
@HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
r"""Bbox head used in Double-Head R-CNN
.. code-block:: none
/-> cls
/-> shared convs ->
\-> reg
roi features
/-> cls
\-> shared fc ->
\-> reg
""" # noqa: W605
def __init__(self,
num_convs=0,
num_fcs=0,
conv_out_channels=1024,
fc_out_channels=1024,
conv_cfg=None,
norm_cfg=dict(type='BN'),
init_cfg=dict(
type='Normal',
override=[
dict(type='Normal', name='fc_cls', std=0.01),
dict(type='Normal', name='fc_reg', std=0.001),
dict(
type='Xavier',
name='fc_branch',
distribution='uniform')
]),
**kwargs):
kwargs.setdefault('with_avg_pool', True)
super(DoubleConvFCBBoxHead, self).__init__(init_cfg=init_cfg, **kwargs)
assert self.with_avg_pool
assert num_convs > 0
assert num_fcs > 0
self.num_convs = num_convs
self.num_fcs = num_fcs
self.conv_out_channels = conv_out_channels
self.fc_out_channels = fc_out_channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
# increase the channel of input features
self.res_block = BasicResBlock(self.in_channels,
self.conv_out_channels)
# add conv heads
self.conv_branch = self._add_conv_branch()
# add fc heads
self.fc_branch = self._add_fc_branch()
out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes
self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg)
self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes + 1)
self.relu = nn.ReLU(inplace=True)
def _add_conv_branch(self):
"""Add the fc branch which consists of a sequential of conv layers."""
branch_convs = ModuleList()
for i in range(self.num_convs):
branch_convs.append(
Bottleneck(
inplanes=self.conv_out_channels,
planes=self.conv_out_channels // 4,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
return branch_convs
def _add_fc_branch(self):
"""Add the fc branch which consists of a sequential of fc layers."""
branch_fcs = ModuleList()
for i in range(self.num_fcs):
fc_in_channels = (
self.in_channels *
self.roi_feat_area if i == 0 else self.fc_out_channels)
branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels))
return branch_fcs
def forward(self, x_cls, x_reg):
# conv head
x_conv = self.res_block(x_reg)
for conv in self.conv_branch:
x_conv = conv(x_conv)
if self.with_avg_pool:
x_conv = self.avg_pool(x_conv)
x_conv = x_conv.view(x_conv.size(0), -1)
bbox_pred = self.fc_reg(x_conv)
# fc head
x_fc = x_cls.view(x_cls.size(0), -1)
for fc in self.fc_branch:
x_fc = self.relu(fc(x_fc))
cls_score = self.fc_cls(x_fc)
return cls_score, bbox_pred