OLA-VLM / app.py
praeclarumjj3's picture
Update app.py
2621850 verified
raw
history blame
22.4 kB
import spaces
import gradio as gr
import torch
import numpy as np
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from ola_vlm.conversation import conv_templates, SeparatorStyle
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
from diffusers import StableUnCLIPImg2ImgPipeline, DPMSolverMultistepScheduler
from transformers import OneFormerProcessor
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction
import matplotlib
from PIL import Image, ImageDraw, ImageFont
import argparse
import math
from transformers import TextIteratorStreamer
from threading import Thread
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
def make_grid(pil_images, layer_indices=None):
new_images = []
new_captions = []
# Resize images and prepare captions
for i, pil_image in enumerate(pil_images):
pil_image = pil_image.resize((256, 256))
new_images.append(pil_image)
if layer_indices is not None:
new_captions.append(f"Layer: {layer_indices[i]}")
else:
new_captions.append(f"Layer: {i+1}")
images = new_images
captions = new_captions
width, height = images[0].size
font_size = 18
# Calculate the number of rows and columns for the grid
images_per_row = min(len(images), 4) # Max 4 images per row
row_count = math.ceil(len(images) / images_per_row)
total_width = width * images_per_row
total_height = height * row_count
# Create a new blank image
new_image = Image.new("RGB", (total_width, total_height), "white")
draw = ImageDraw.Draw(new_image)
# Load a default font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
font = ImageFont.load_default()
# Place images and captions in the grid
for i, (image, caption) in enumerate(zip(images, captions)):
row = i // images_per_row
col = i % images_per_row
x_offset = col * width
y_offset = row * height
# Paste the image
new_image.paste(image, (x_offset, y_offset))
# Calculate text and background positions
text_width, text_height = draw.textsize(caption, font=font)
text_position = (x_offset + 10, y_offset + height - text_height - 10)
background_position = (
text_position[0] - 5,
text_position[1] - 5,
text_position[0] + text_width + 5,
text_position[1] + text_height + 5,
)
# Draw background rectangle and text
draw.rectangle(background_position, fill="white", outline="black")
draw.text(text_position, caption, fill="black", font=font)
return new_image
def reload_from_ckpt(model_path, model, cache_dir=None):
import os
from safetensors import safe_open
from huggingface_hub import hf_hub_download, list_repo_files
state_dict = {}
# Check if the path is a local directory or HF Hub model
if os.path.isdir(model_path):
# Local directory: Load safetensors files
safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')]
else:
# HF Hub: Get list of safetensors files and download them
repo_files = list_repo_files(model_path)
safetensors_paths = [
hf_hub_download(model_path, file_name, cache_dir=cache_dir)
for file_name in repo_files if file_name.endswith('.safetensors')
]
# Load safetensors files into the state_dict
for path in safetensors_paths:
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
# Load the state dict into the model
model.load_state_dict(state_dict, strict=False)
return model
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6324", type=str)
argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str)
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default="llava_llama_3")
argparser.add_argument("--temperature", type=float, default=0.2)
argparser.add_argument("--max-new-tokens", type=int, default=512)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
conv_mode = args.conv_mode
filt_invalid="cut"
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model)
our_chatbot = None
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large")
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-")
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-")
depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-")
def clear_history():
state =conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def get_gen_images(out, pipe):
pipe = pipe.to("cuda")
img_embeds = out.image_embs
if len(img_embeds) == 0:
return None
images = []
for img_embed in img_embeds:
gen_image = pipe(image_embeds=img_embed.squeeze(1),
num_inference_steps=25,
).images[0]
images.append(gen_image)
grid_image = make_grid(images, gen_layer_indices)
return grid_image
def get_depth_images(out, org_size):
depth_preds = out.depth_preds
if len(depth_preds) == 0:
return None
depths = []
for i, depth_pred in enumerate(depth_preds):
depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
depth = depth.squeeze(0).cpu().numpy()
depth = depth.astype(np.uint8)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
depth = Image.fromarray(depth)
depth = depth.resize(org_size)
depths.append(depth)
grid_image = make_grid(depths, depth_layer_indices)
return grid_image
def get_seg_images(out, image, oneformer):
oneformer = oneformer.to("cuda")
seg_embs = out.seg_embs
if len(seg_embs) == 0:
return None
seg_preds = []
inputs = oneformer_processor(image, ["semantic"], return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype)
inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype)
backbone_features = oneformer.get_backbone_feats(**inputs)
for i, seg_emb in enumerate(seg_embs):
pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features)
pred = oneformer_processor.post_process_panoptic_segmentation(
pred, target_sizes=[image.size[::-1]]
)[0]
pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer)
pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls)
seg_preds.append(pred)
grid_image = make_grid(seg_preds, seg_layer_indices)
return grid_image
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def get_interm_outs(state):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
inp_images = process_images(images, image_processor, model.config)
if type(inp_images) is list:
inp_images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
inp_images = inp_images.to(model.device, dtype=torch.float16)
else:
inp_images = None
image_sizes = None
image_args = {"images": inp_images, "image_sizes": image_sizes}
else:
inp_images = None
image_args = {}
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
interm_outs = model.get_visual_interpretations(
input_ids,
**image_args
)
depth_outs = get_depth_images(interm_outs, image_sizes[0])
seg_outs = get_seg_images(interm_outs, images[0], oneformer)
gen_outs = get_gen_images(interm_outs, pipe)
return depth_outs, seg_outs, gen_outs
@spaces.GPU
def generate(state, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = max_output_tokens
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter.",
container=False,
)
title = "<h1 style='margin-bottom: -10px; text-align: center'>OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation</h1>"
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain</a> &nbsp;&nbsp <a href='https://zyang-ur.github.io/' style='text-decoration:none' target='_blank'>Zhengyuan Yang</a> &nbsp;&nbsp <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi<sup>*</sup></a> &nbsp;&nbsp <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Jianfeng Gao<sup>*</sup></a> &nbsp;&nbsp <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang<sup>*</sup></a></p>" \
+ "<p style='font-size: 12px; margin: 5px; font-weight: w300; text-align: center'><sup>*</sup>Equal Advising</p>" \
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/ola_vlm/' target='_blank'>Project Page</a> | <a href='https://youtu.be/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2412.09585' target='_blank'>ArXiv</a> | <a href='https://github.com/SHI-Labs/OLA-VLM' target='_blank'>Github</a></p>" \
+ "<p style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300;'>OLA-VLM introduces a new approach to distilling vision knowledge into the hidden representations of LLMs, utilizing target visual representations to advance visual perception in multimodal LLMs. In the demo, along with the standard VQA setting, you can also visualize the intermediate representations from selected layers in OLA-VLM by clicking on the <code>✨ Visualize Intermediate Representations</code> button! Note that our demo only supports single image input currently.</p>" \
+ "<ul style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300; padding: 0;'> \
<li><b>depth</b>: Visualizes the depth information in the representations using the decoder from the <a href='https://github.com/DepthAnything/Depth-Anything-V2' target='_blank'>Depth-Anything-v2 model</a>.</li> \
<li><b>seg</b>: Visualizes the segmentation information in the representations using the decoder from the <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>OneFormer model</a>.</li> \
<li><b>gen</b>: Visualizes the general information of the representations using the <a href='https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip' target='_blank'>SD-2.1-unCLIP</a>. Note that we use representations as a condition to the model, resulting in an image variation output due to the nature of unCLIP.</li> \
</ul>"
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=4):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
# with gr.Accordion("Parameters", open=False) as parameter_row:
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="OLA-VLM",
height=300,
layout="panel",
)
textbox.render()
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=False, visible=False)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=False, visible=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False, visible=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=False)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear", interactive=False)
submit_btn = gr.Button(value="Send", variant="primary")
# with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out:
inter_vis_btn = gr.Button(value="✨ Visualize Intermediate Representations")
with gr.Row():
depth_box = gr.Image(label="depth", type="pil", visible=True)
seg_box = gr.Image(label="seg", type="pil", visible=True)
gen_box = gr.Image(label="gen", type="pil", visible=True)
gr.Examples(examples=[
[f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"],
[f"assets/pb.jpg", "Where is the bulding located with respect to the man?"],
], inputs=[imagebox, textbox], cache_examples=False)
# gr.Markdown(tos_markdown)
# gr.Markdown(learn_more_markdown)
# url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
inter_vis_btn.click(
get_interm_outs,
[state],
[depth_box, seg_box, gen_box],
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch(share=False)
demo.queue()