Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import numpy as np | |
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN | |
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from ola_vlm.conversation import conv_templates, SeparatorStyle | |
from ola_vlm.model.builder import load_pretrained_model | |
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images | |
from diffusers import StableUnCLIPImg2ImgPipeline, DPMSolverMultistepScheduler | |
from transformers import OneFormerProcessor | |
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead | |
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction | |
import matplotlib | |
from PIL import Image, ImageDraw, ImageFont | |
import argparse | |
import math | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
import subprocess | |
# Install flash attention, skipping CUDA build if necessary | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
def make_grid(pil_images, layer_indices=None): | |
new_images = [] | |
new_captions = [] | |
# Resize images and prepare captions | |
for i, pil_image in enumerate(pil_images): | |
pil_image = pil_image.resize((256, 256)) | |
new_images.append(pil_image) | |
if layer_indices is not None: | |
new_captions.append(f"Layer: {layer_indices[i]}") | |
else: | |
new_captions.append(f"Layer: {i+1}") | |
images = new_images | |
captions = new_captions | |
width, height = images[0].size | |
font_size = 18 | |
# Calculate the number of rows and columns for the grid | |
images_per_row = min(len(images), 4) # Max 4 images per row | |
row_count = math.ceil(len(images) / images_per_row) | |
total_width = width * images_per_row | |
total_height = height * row_count | |
# Create a new blank image | |
new_image = Image.new("RGB", (total_width, total_height), "white") | |
draw = ImageDraw.Draw(new_image) | |
# Load a default font | |
try: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size) | |
except: | |
font = ImageFont.load_default() | |
# Place images and captions in the grid | |
for i, (image, caption) in enumerate(zip(images, captions)): | |
row = i // images_per_row | |
col = i % images_per_row | |
x_offset = col * width | |
y_offset = row * height | |
# Paste the image | |
new_image.paste(image, (x_offset, y_offset)) | |
# Calculate text and background positions | |
text_width, text_height = draw.textsize(caption, font=font) | |
text_position = (x_offset + 10, y_offset + height - text_height - 10) | |
background_position = ( | |
text_position[0] - 5, | |
text_position[1] - 5, | |
text_position[0] + text_width + 5, | |
text_position[1] + text_height + 5, | |
) | |
# Draw background rectangle and text | |
draw.rectangle(background_position, fill="white", outline="black") | |
draw.text(text_position, caption, fill="black", font=font) | |
return new_image | |
def reload_from_ckpt(model_path, model, cache_dir=None): | |
import os | |
from safetensors import safe_open | |
from huggingface_hub import hf_hub_download, list_repo_files | |
state_dict = {} | |
# Check if the path is a local directory or HF Hub model | |
if os.path.isdir(model_path): | |
# Local directory: Load safetensors files | |
safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')] | |
else: | |
# HF Hub: Get list of safetensors files and download them | |
repo_files = list_repo_files(model_path) | |
safetensors_paths = [ | |
hf_hub_download(model_path, file_name, cache_dir=cache_dir) | |
for file_name in repo_files if file_name.endswith('.safetensors') | |
] | |
# Load safetensors files into the state_dict | |
for path in safetensors_paths: | |
with safe_open(path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
# Load the state dict into the model | |
model.load_state_dict(state_dict, strict=False) | |
return model | |
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp' | |
no_change_btn = gr.Button() | |
enable_btn = gr.Button(interactive=True) | |
disable_btn = gr.Button(interactive=False) | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument("--server_name", default="0.0.0.0", type=str) | |
argparser.add_argument("--port", default="6324", type=str) | |
argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str) | |
argparser.add_argument("--model-base", type=str, default=None) | |
argparser.add_argument("--num-gpus", type=int, default=1) | |
argparser.add_argument("--conv-mode", type=str, default="llava_llama_3") | |
argparser.add_argument("--temperature", type=float, default=0.2) | |
argparser.add_argument("--max-new-tokens", type=int, default=512) | |
argparser.add_argument("--num_frames", type=int, default=16) | |
argparser.add_argument("--load-8bit", action="store_true") | |
argparser.add_argument("--load-4bit", action="store_true") | |
argparser.add_argument("--debug", action="store_true") | |
args = argparser.parse_args() | |
model_path = args.model_path | |
conv_mode = args.conv_mode | |
filt_invalid="cut" | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit) | |
model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model) | |
our_chatbot = None | |
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16") | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large") | |
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large") | |
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-") | |
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-") | |
depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-") | |
def clear_history(): | |
state =conv_templates[conv_mode].copy() | |
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5 | |
def add_text(state, imagebox, textbox, image_process_mode): | |
if state is None: | |
state = conv_templates[conv_mode].copy() | |
if imagebox is not None: | |
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox | |
image = Image.open(imagebox).convert('RGB') | |
if imagebox is not None: | |
textbox = (textbox, image, image_process_mode) | |
state.append_message(state.roles[0], textbox) | |
state.append_message(state.roles[1], None) | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
def get_gen_images(out, pipe): | |
pipe = pipe.to("cuda") | |
img_embeds = out.image_embs | |
if len(img_embeds) == 0: | |
return None | |
images = [] | |
for img_embed in img_embeds: | |
gen_image = pipe(image_embeds=img_embed.squeeze(1), | |
num_inference_steps=25, | |
).images[0] | |
images.append(gen_image) | |
grid_image = make_grid(images, gen_layer_indices) | |
return grid_image | |
def get_depth_images(out, org_size): | |
depth_preds = out.depth_preds | |
if len(depth_preds) == 0: | |
return None | |
depths = [] | |
for i, depth_pred in enumerate(depth_preds): | |
depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0 | |
depth = depth.squeeze(0).cpu().numpy() | |
depth = depth.astype(np.uint8) | |
cmap = matplotlib.colormaps.get_cmap('Spectral_r') | |
depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) | |
depth = Image.fromarray(depth) | |
depth = depth.resize(org_size) | |
depths.append(depth) | |
grid_image = make_grid(depths, depth_layer_indices) | |
return grid_image | |
def get_seg_images(out, image, oneformer): | |
oneformer = oneformer.to("cuda") | |
seg_embs = out.seg_embs | |
if len(seg_embs) == 0: | |
return None | |
seg_preds = [] | |
inputs = oneformer_processor(image, ["semantic"], return_tensors="pt") | |
inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype) | |
inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype) | |
backbone_features = oneformer.get_backbone_feats(**inputs) | |
for i, seg_emb in enumerate(seg_embs): | |
pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features) | |
pred = oneformer_processor.post_process_panoptic_segmentation( | |
pred, target_sizes=[image.size[::-1]] | |
)[0] | |
pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer) | |
pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls) | |
seg_preds.append(pred) | |
grid_image = make_grid(seg_preds, seg_layer_indices) | |
return grid_image | |
def delete_text(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
def regenerate(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 | |
def get_interm_outs(state): | |
prompt = state.get_prompt() | |
images = state.get_images(return_pil=True) | |
#prompt, image_args = process_image(prompt, images) | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
raise ValueError("Number of images does not match number of <image> tokens in prompt") | |
#images = [load_image_from_base64(image) for image in images] | |
image_sizes = [image.size for image in images] | |
inp_images = process_images(images, image_processor, model.config) | |
if type(inp_images) is list: | |
inp_images = [image.to(model.device, dtype=torch.float16) for image in images] | |
else: | |
inp_images = inp_images.to(model.device, dtype=torch.float16) | |
else: | |
inp_images = None | |
image_sizes = None | |
image_args = {"images": inp_images, "image_sizes": image_sizes} | |
else: | |
inp_images = None | |
image_args = {} | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
interm_outs = model.get_visual_interpretations( | |
input_ids, | |
**image_args | |
) | |
depth_outs = get_depth_images(interm_outs, image_sizes[0]) | |
seg_outs = get_seg_images(interm_outs, images[0], oneformer) | |
gen_outs = get_gen_images(interm_outs, pipe) | |
return depth_outs, seg_outs, gen_outs | |
def generate(state, temperature, top_p, max_output_tokens): | |
prompt = state.get_prompt() | |
images = state.get_images(return_pil=True) | |
#prompt, image_args = process_image(prompt, images) | |
ori_prompt = prompt | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
raise ValueError("Number of images does not match number of <image> tokens in prompt") | |
#images = [load_image_from_base64(image) for image in images] | |
image_sizes = [image.size for image in images] | |
images = process_images(images, image_processor, model.config) | |
if type(images) is list: | |
images = [image.to(model.device, dtype=torch.float16) for image in images] | |
else: | |
images = images.to(model.device, dtype=torch.float16) | |
else: | |
images = None | |
image_sizes = None | |
image_args = {"images": images, "image_sizes": image_sizes} | |
else: | |
images = None | |
image_args = {} | |
max_context_length = getattr(model.config, 'max_position_embeddings', 2048) | |
max_new_tokens = max_output_tokens | |
do_sample = True if temperature > 0.001 else False | |
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2 | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | |
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) | |
if max_new_tokens < 1: | |
return | |
thread = Thread(target=model.generate, kwargs=dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
pad_token_id=tokenizer.eos_token_id, | |
**image_args | |
)) | |
thread.start() | |
generated_text = '' | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[:-len(stop_str)] | |
state.messages[-1][-1] = generated_text | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5 | |
torch.cuda.empty_cache() | |
txt = gr.Textbox( | |
scale=4, | |
show_label=False, | |
placeholder="Enter text and press enter.", | |
container=False, | |
) | |
title = "<h1 style='margin-bottom: -10px; text-align: center'>OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation</h1>" | |
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain</a>   <a href='https://zyang-ur.github.io/' style='text-decoration:none' target='_blank'>Zhengyuan Yang</a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi<sup>*</sup></a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Jianfeng Gao<sup>*</sup></a>   <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang<sup>*</sup></a></p>" \ | |
+ "<p style='font-size: 12px; margin: 5px; font-weight: w300; text-align: center'><sup>*</sup>Equal Advising</p>" \ | |
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/ola_vlm/' target='_blank'>Project Page</a> | <a href='https://youtu.be/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2412.09585' target='_blank'>ArXiv</a> | <a href='https://github.com/SHI-Labs/OLA-VLM' target='_blank'>Github</a></p>" \ | |
+ "<p style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300;'>OLA-VLM introduces a new approach to distilling vision knowledge into the hidden representations of LLMs, utilizing target visual representations to advance visual perception in multimodal LLMs. In the demo, along with the standard VQA setting, you can also visualize the intermediate representations from selected layers in OLA-VLM by clicking on the <code>β¨ Visualize Intermediate Representations</code> button! Note that our demo only supports single image input currently.</p>" \ | |
+ "<ul style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300; padding: 0;'> \ | |
<li><b>depth</b>: Visualizes the depth information in the representations using the decoder from the <a href='https://github.com/DepthAnything/Depth-Anything-V2' target='_blank'>Depth-Anything-v2 model</a>.</li> \ | |
<li><b>seg</b>: Visualizes the segmentation information in the representations using the decoder from the <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>OneFormer model</a>.</li> \ | |
<li><b>gen</b>: Visualizes the general information of the representations using the <a href='https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip' target='_blank'>SD-2.1-unCLIP</a>. Note that we use representations as a condition to the model, resulting in an image variation output due to the nature of unCLIP.</li> \ | |
</ul>" | |
tos_markdown = (""" | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
""") | |
learn_more_markdown = (""" | |
### License | |
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
""") | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) | |
with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
imagebox = gr.Image(label="Input Image", type="filepath") | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", visible=False) | |
# with gr.Accordion("Parameters", open=False) as parameter_row: | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) | |
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
label="OLA-VLM", | |
height=300, | |
layout="panel", | |
) | |
textbox.render() | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="π Upvote", interactive=False, visible=False) | |
downvote_btn = gr.Button(value="π Downvote", interactive=False, visible=False) | |
flag_btn = gr.Button(value="β οΈ Flag", interactive=False, visible=False) | |
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False) | |
regenerate_btn = gr.Button(value="π Regenerate", interactive=False) | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=False) | |
submit_btn = gr.Button(value="Send", variant="primary") | |
# with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out: | |
inter_vis_btn = gr.Button(value="β¨ Visualize Intermediate Representations") | |
with gr.Row(): | |
depth_box = gr.Image(label="depth", type="pil", visible=True) | |
seg_box = gr.Image(label="seg", type="pil", visible=True) | |
gen_box = gr.Image(label="gen", type="pil", visible=True) | |
gr.Examples(examples=[ | |
[f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"], | |
[f"assets/pb.jpg", "Where is the bulding located with respect to the man?"], | |
], inputs=[imagebox, textbox], cache_examples=False) | |
# gr.Markdown(tos_markdown) | |
# gr.Markdown(learn_more_markdown) | |
# url_params = gr.JSON(visible=False) | |
# Register listeners | |
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] | |
inter_vis_btn.click( | |
get_interm_outs, | |
[state], | |
[depth_box, seg_box, gen_box], | |
) | |
clear_btn.click( | |
clear_history, | |
None, | |
[state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list, | |
queue=False | |
) | |
regenerate_btn.click( | |
delete_text, | |
[state, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
textbox.submit( | |
add_text, | |
[state, imagebox, textbox, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
submit_btn.click( | |
add_text, | |
[state, imagebox, textbox, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
demo.queue( | |
status_update_rate=10, | |
api_open=False | |
).launch(share=False) | |
demo.queue() |