File size: 6,603 Bytes
2ff0eb9
 
ebf2c1b
 
 
 
 
 
 
 
5ddd792
2ff0eb9
98f45a0
ebf2c1b
98f45a0
 
ebf2c1b
 
 
 
 
5ddd792
 
fa0c3bc
5ddd792
fa0c3bc
5ddd792
 
 
fa0c3bc
5ddd792
 
 
fa0c3bc
5ddd792
 
 
 
 
 
ebf2c1b
a8e7030
5ddd792
2ff0eb9
 
a6d1bca
5ddd792
 
 
2ff0eb9
 
 
5ddd792
 
ebf2c1b
5ddd792
 
 
 
 
ebf2c1b
 
 
5ddd792
 
 
 
 
 
 
 
 
 
ebf2c1b
5ddd792
 
 
 
 
 
a895164
 
ebf2c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a895164
25d0cb0
98f45a0
2840d3f
20e0c60
089299b
415fe71
b464b4e
d8d68aa
53a8189
1a97bfa
804125a
6fc6073
f2e7370
a2e71cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import sys
import openai
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter

__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

from langchain.vectorstores import Chroma
import gradio as gr

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")

docs = []

for f in os.listdir("multiple_docs"):
    if f.endswith(".pdf"):
        pdf_path = "./multiple_docs/" + f
        loader = PyPDFLoader(pdf_path)
        docs.extend(loader.load())
    elif f.endswith('.docx') or f.endswith('.doc'):
        doc_path = "./multiple_docs/" + f
        loader = Docx2txtLoader(doc_path)
        docs.extend(loader.load())
    elif f.endswith('.txt'):
        text_path = "./multiple_docs/" + f
        loader = TextLoader(text_path)
        docs.extend(loader.load())

splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)

# Convert the document chunks to embedding and save them to the vector store
vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./db")
vectorstore.persist()

chain = ConversationalRetrievalChain.from_llm(
    ChatOpenAI(temperature=0.1, model_name='gpt-3.5-turbo'),
    retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
    return_source_documents=True,
    verbose=False
)

chat_history = []

with gr.Blocks() as demo:
    chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    chat_history = []

    def user(query, chat_history):
        # print("User query:", query)
        # print("Chat history:", chat_history)

        # Convert chat history to list of tuples
        chat_history_tuples = []
        for message in chat_history:
            chat_history_tuples.append((message[0], message[1]))

        # Get result from QA chain
        result = chain({"question": query, "chat_history": chat_history_tuples})

        # Append user message and response to chat history
        chat_history.append((query, result["answer"]))
        # print("Updated chat history:", chat_history)

        return gr.update(value=""), chat_history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch(debug=True)

# import os
# import sys
# from langchain.chains import ConversationalRetrievalChain
# from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores import Chroma
# import gradio as gr
# from transformers import pipeline
# from sentence_transformers import SentenceTransformer

# __import__('pysqlite3')
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

# docs = []

# for f in os.listdir("multiple_docs"):
#     if f.endswith(".pdf"):
#         pdf_path = "./multiple_docs/" + f
#         loader = PyPDFLoader(pdf_path)
#         docs.extend(loader.load())
#     elif f.endswith('.docx') or f.endswith('.doc'):
#         doc_path = "./multiple_docs/" + f
#         loader = Docx2txtLoader(doc_path)
#         docs.extend(loader.load())
#     elif f.endswith('.txt'):
#         text_path = "./multiple_docs/" + f
#         loader = TextLoader(text_path)
#         docs.extend(loader.load())

# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
# docs = splitter.split_documents(docs)

# # Extract the content from documents and create embeddings
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# texts = [doc.page_content for doc in docs]
# embeddings = embedding_model.encode(texts).tolist()  # Convert numpy arrays to lists

# # Create a Chroma vector store and add documents and their embeddings
# vectorstore = Chroma(persist_directory="./db", embedding_function=embedding_model.encode)
# vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
# vectorstore.persist()

# # Load the Hugging Face model for text generation
# generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")

# class HuggingFaceLLMWrapper:
#     def __init__(self, generator):
#         self.generator = generator
    
#     def __call__(self, prompt, max_length=512):
#         result = self.generator(prompt, max_length=max_length, num_return_sequences=1)
#         return result[0]['generated_text']

# llm = HuggingFaceLLMWrapper(generator)

# chain = ConversationalRetrievalChain.from_llm(
#     llm,
#     retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
#     return_source_documents=True,
#     verbose=False
# )

# chat_history = []

# with gr.Blocks() as demo:
#     chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")], avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
#     msg = gr.Textbox()
#     clear = gr.Button("Clear")
#     chat_history = []

#     def user(query, chat_history):
#         # Convert chat history to list of tuples
#         chat_history_tuples = []
#         for message in chat_history:
#             chat_history_tuples.append((message[0], message[1]))

#         # Get result from QA chain
#         result = chain({"question": query, "chat_history": chat_history_tuples})

#         # Append user message and response to chat history
#         chat_history.append((query, result["answer"]))

#         return gr.update(value=""), chat_history

#     msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.launch(debug=True)