|
# AutoAssign: Differentiable Label Assignment for Dense Object Detection |
|
|
|
## Introduction |
|
|
|
<!-- [ALGORITHM] --> |
|
|
|
``` |
|
@article{zhu2020autoassign, |
|
title={AutoAssign: Differentiable Label Assignment for Dense Object Detection}, |
|
author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian}, |
|
journal={arXiv preprint arXiv:2007.03496}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
## Results and Models |
|
|
|
| Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download | |
|
|:---------:|:-------:|:-------:|:--------:|:------:|:------:|:--------:| |
|
| R-50 | pytorch | 1x | 4.08 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.log.json) | |
|
|
|
**Note**: |
|
|
|
1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation. |
|
2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch. |
|
|