metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2752
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Would you want to be President?
sentences:
- Can you help me with my homework?
- How to bake cookies?
- Why do you want to be to president?
- source_sentence: Velocity of sound waves in the atmosphere
sentences:
- What is the speed of sound in air?
- What is the best/most memorable thing you've ever eaten and why?
- >-
The `safe` option in the `to_spreadsheet` method controls whether a safe
conversion or not is needed for certain plant attributes to store the
data in a SpreadsheetTable or Row.
- source_sentence: Number of countries in the European Union
sentences:
- How many countries are in the European Union?
- Who painted the Sistine Chapel ceiling?
- >-
The RecipeManager class is used to manage the downloading and extraction
of recipes.
- source_sentence: Official currency of the USA
sentences:
- What is purpose of life?
- >-
Files inside ZIP archives are accessed and yielded sequentially using
iter_zip().
- What is the currency of the United States?
- source_sentence: Who wrote the book "1984"?
sentences:
- What is the speed of light?
- How to set up a home gym?
- Who wrote the book "To Kill a Mockingbird"?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9456521739130435
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8053532838821411
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9554896142433236
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8053532838821411
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.92
name: Cosine Precision
- type: cosine_recall
value: 0.9938271604938271
name: Cosine Recall
- type: cosine_ap
value: 0.970102365862799
name: Cosine Ap
- type: dot_accuracy
value: 0.9456521739130435
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8053532838821411
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9554896142433236
name: Dot F1
- type: dot_f1_threshold
value: 0.8053532838821411
name: Dot F1 Threshold
- type: dot_precision
value: 0.92
name: Dot Precision
- type: dot_recall
value: 0.9938271604938271
name: Dot Recall
- type: dot_ap
value: 0.970102365862799
name: Dot Ap
- type: manhattan_accuracy
value: 0.9456521739130435
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.787351608276367
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9554896142433236
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.787351608276367
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.92
name: Manhattan Precision
- type: manhattan_recall
value: 0.9938271604938271
name: Manhattan Recall
- type: manhattan_ap
value: 0.9698493258522533
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9456521739130435
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6239285469055176
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9554896142433236
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6239285469055176
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.92
name: Euclidean Precision
- type: euclidean_recall
value: 0.9938271604938271
name: Euclidean Recall
- type: euclidean_ap
value: 0.970102365862799
name: Euclidean Ap
- type: max_accuracy
value: 0.9456521739130435
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.787351608276367
name: Max Accuracy Threshold
- type: max_f1
value: 0.9554896142433236
name: Max F1
- type: max_f1_threshold
value: 9.787351608276367
name: Max F1 Threshold
- type: max_precision
value: 0.92
name: Max Precision
- type: max_recall
value: 0.9938271604938271
name: Max Recall
- type: max_ap
value: 0.970102365862799
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9456521739130435
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8053532838821411
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9554896142433236
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8053532838821411
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.92
name: Cosine Precision
- type: cosine_recall
value: 0.9938271604938271
name: Cosine Recall
- type: cosine_ap
value: 0.970102365862799
name: Cosine Ap
- type: dot_accuracy
value: 0.9456521739130435
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8053532838821411
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9554896142433236
name: Dot F1
- type: dot_f1_threshold
value: 0.8053532838821411
name: Dot F1 Threshold
- type: dot_precision
value: 0.92
name: Dot Precision
- type: dot_recall
value: 0.9938271604938271
name: Dot Recall
- type: dot_ap
value: 0.970102365862799
name: Dot Ap
- type: manhattan_accuracy
value: 0.9456521739130435
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.787351608276367
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9554896142433236
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.787351608276367
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.92
name: Manhattan Precision
- type: manhattan_recall
value: 0.9938271604938271
name: Manhattan Recall
- type: manhattan_ap
value: 0.9698493258522533
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9456521739130435
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6239285469055176
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9554896142433236
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6239285469055176
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.92
name: Euclidean Precision
- type: euclidean_recall
value: 0.9938271604938271
name: Euclidean Recall
- type: euclidean_ap
value: 0.970102365862799
name: Euclidean Ap
- type: max_accuracy
value: 0.9456521739130435
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.787351608276367
name: Max Accuracy Threshold
- type: max_f1
value: 0.9554896142433236
name: Max F1
- type: max_f1_threshold
value: 9.787351608276367
name: Max F1 Threshold
- type: max_precision
value: 0.92
name: Max Precision
- type: max_recall
value: 0.9938271604938271
name: Max Recall
- type: max_ap
value: 0.970102365862799
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_17")
# Run inference
sentences = [
'Who wrote the book "1984"?',
'Who wrote the book "To Kill a Mockingbird"?',
'What is the speed of light?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9457 |
cosine_accuracy_threshold | 0.8054 |
cosine_f1 | 0.9555 |
cosine_f1_threshold | 0.8054 |
cosine_precision | 0.92 |
cosine_recall | 0.9938 |
cosine_ap | 0.9701 |
dot_accuracy | 0.9457 |
dot_accuracy_threshold | 0.8054 |
dot_f1 | 0.9555 |
dot_f1_threshold | 0.8054 |
dot_precision | 0.92 |
dot_recall | 0.9938 |
dot_ap | 0.9701 |
manhattan_accuracy | 0.9457 |
manhattan_accuracy_threshold | 9.7874 |
manhattan_f1 | 0.9555 |
manhattan_f1_threshold | 9.7874 |
manhattan_precision | 0.92 |
manhattan_recall | 0.9938 |
manhattan_ap | 0.9698 |
euclidean_accuracy | 0.9457 |
euclidean_accuracy_threshold | 0.6239 |
euclidean_f1 | 0.9555 |
euclidean_f1_threshold | 0.6239 |
euclidean_precision | 0.92 |
euclidean_recall | 0.9938 |
euclidean_ap | 0.9701 |
max_accuracy | 0.9457 |
max_accuracy_threshold | 9.7874 |
max_f1 | 0.9555 |
max_f1_threshold | 9.7874 |
max_precision | 0.92 |
max_recall | 0.9938 |
max_ap | 0.9701 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9457 |
cosine_accuracy_threshold | 0.8054 |
cosine_f1 | 0.9555 |
cosine_f1_threshold | 0.8054 |
cosine_precision | 0.92 |
cosine_recall | 0.9938 |
cosine_ap | 0.9701 |
dot_accuracy | 0.9457 |
dot_accuracy_threshold | 0.8054 |
dot_f1 | 0.9555 |
dot_f1_threshold | 0.8054 |
dot_precision | 0.92 |
dot_recall | 0.9938 |
dot_ap | 0.9701 |
manhattan_accuracy | 0.9457 |
manhattan_accuracy_threshold | 9.7874 |
manhattan_f1 | 0.9555 |
manhattan_f1_threshold | 9.7874 |
manhattan_precision | 0.92 |
manhattan_recall | 0.9938 |
manhattan_ap | 0.9698 |
euclidean_accuracy | 0.9457 |
euclidean_accuracy_threshold | 0.6239 |
euclidean_f1 | 0.9555 |
euclidean_f1_threshold | 0.6239 |
euclidean_precision | 0.92 |
euclidean_recall | 0.9938 |
euclidean_ap | 0.9701 |
max_accuracy | 0.9457 |
max_accuracy_threshold | 9.7874 |
max_f1 | 0.9555 |
max_f1_threshold | 9.7874 |
max_precision | 0.92 |
max_recall | 0.9938 |
max_ap | 0.9701 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,752 training samples
- Columns:
sentence2
,label
, andsentence1
- Approximate statistics based on the first 1000 samples:
sentence2 label sentence1 type string int string details - min: 4 tokens
- mean: 10.14 tokens
- max: 22 tokens
- 0: ~49.00%
- 1: ~51.00%
- min: 6 tokens
- mean: 10.77 tokens
- max: 22 tokens
- Samples:
sentence2 label sentence1 What are the ingredients of pizza?
1
What are the ingredients of a pizza?
What are the ingredients of a burger?
0
What are the ingredients of a pizza?
How is photosynthesis carried out?
1
How does photosynthesis work?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 276 evaluation samples
- Columns:
sentence2
,label
, andsentence1
- Approximate statistics based on the first 276 samples:
sentence2 label sentence1 type string int string details - min: 5 tokens
- mean: 15.34 tokens
- max: 86 tokens
- 0: ~41.30%
- 1: ~58.70%
- min: 6 tokens
- mean: 15.56 tokens
- max: 87 tokens
- Samples:
sentence2 label sentence1 How is AI used to enhance cybersecurity?
0
What are the challenges of AI in cybersecurity?
The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version.
1
You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.
Name the capital city of Italy
1
What is the capital of Italy?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7876 | - |
0.2326 | 10 | 1.5405 | - | - | - |
0.4651 | 20 | 1.0389 | - | - | - |
0.6977 | 30 | 1.2755 | - | - | - |
0.9302 | 40 | 0.7024 | - | - | - |
1.0 | 43 | - | 0.9673 | 0.9133 | - |
1.1512 | 50 | 0.7527 | - | - | - |
1.3837 | 60 | 0.6684 | - | - | - |
1.6163 | 70 | 0.7612 | - | - | - |
1.8488 | 80 | 0.7265 | - | - | - |
2.0116 | 87 | - | 0.4647 | 0.9534 | - |
2.0698 | 90 | 0.2986 | - | - | - |
2.3023 | 100 | 0.1964 | - | - | - |
2.5349 | 110 | 0.5834 | - | - | - |
2.7674 | 120 | 0.4893 | - | - | - |
3.0 | 130 | 0.1254 | 0.3544 | 0.9670 | - |
3.2209 | 140 | 0.278 | - | - | - |
3.4535 | 150 | 0.1805 | - | - | - |
3.6860 | 160 | 0.4525 | - | - | - |
3.9186 | 170 | 0.1885 | - | - | - |
3.9651 | 172 | - | 0.3396 | 0.9701 | 0.9701 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}