fine_tuned_model_17 / README.md
srikarvar's picture
Add new SentenceTransformer model.
29715ae verified
metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2752
  - loss:OnlineContrastiveLoss
widget:
  - source_sentence: Would you want to be President?
    sentences:
      - Can you help me with my homework?
      - How to bake cookies?
      - Why do you want to be to president?
  - source_sentence: Velocity of sound waves in the atmosphere
    sentences:
      - What is the speed of sound in air?
      - What is the best/most memorable thing you've ever eaten and why?
      - >-
        The `safe` option in the `to_spreadsheet` method controls whether a safe
        conversion or not is needed for certain plant attributes to store the
        data in a SpreadsheetTable or Row.
  - source_sentence: Number of countries in the European Union
    sentences:
      - How many countries are in the European Union?
      - Who painted the Sistine Chapel ceiling?
      - >-
        The RecipeManager class is used to manage the downloading and extraction
        of recipes.
  - source_sentence: Official currency of the USA
    sentences:
      - What is purpose of life?
      - >-
        Files inside ZIP archives are accessed and yielded sequentially using
        iter_zip().
      - What is the currency of the United States?
  - source_sentence: Who wrote the book "1984"?
    sentences:
      - What is the speed of light?
      - How to set up a home gym?
      - Who wrote the book "To Kill a Mockingbird"?
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class dev
          type: pair-class-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9456521739130435
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8053532838821411
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9554896142433236
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.8053532838821411
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.92
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9938271604938271
            name: Cosine Recall
          - type: cosine_ap
            value: 0.970102365862799
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9456521739130435
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.8053532838821411
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9554896142433236
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.8053532838821411
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.92
            name: Dot Precision
          - type: dot_recall
            value: 0.9938271604938271
            name: Dot Recall
          - type: dot_ap
            value: 0.970102365862799
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9456521739130435
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.787351608276367
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9554896142433236
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 9.787351608276367
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.92
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9938271604938271
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9698493258522533
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9456521739130435
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6239285469055176
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9554896142433236
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6239285469055176
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.92
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9938271604938271
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.970102365862799
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9456521739130435
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.787351608276367
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9554896142433236
            name: Max F1
          - type: max_f1_threshold
            value: 9.787351608276367
            name: Max F1 Threshold
          - type: max_precision
            value: 0.92
            name: Max Precision
          - type: max_recall
            value: 0.9938271604938271
            name: Max Recall
          - type: max_ap
            value: 0.970102365862799
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class test
          type: pair-class-test
        metrics:
          - type: cosine_accuracy
            value: 0.9456521739130435
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8053532838821411
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9554896142433236
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.8053532838821411
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.92
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9938271604938271
            name: Cosine Recall
          - type: cosine_ap
            value: 0.970102365862799
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9456521739130435
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.8053532838821411
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9554896142433236
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.8053532838821411
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.92
            name: Dot Precision
          - type: dot_recall
            value: 0.9938271604938271
            name: Dot Recall
          - type: dot_ap
            value: 0.970102365862799
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9456521739130435
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.787351608276367
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9554896142433236
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 9.787351608276367
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.92
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9938271604938271
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9698493258522533
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9456521739130435
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6239285469055176
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9554896142433236
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6239285469055176
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.92
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9938271604938271
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.970102365862799
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9456521739130435
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.787351608276367
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9554896142433236
            name: Max F1
          - type: max_f1_threshold
            value: 9.787351608276367
            name: Max F1 Threshold
          - type: max_precision
            value: 0.92
            name: Max Precision
          - type: max_recall
            value: 0.9938271604938271
            name: Max Recall
          - type: max_ap
            value: 0.970102365862799
            name: Max Ap

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_17")
# Run inference
sentences = [
    'Who wrote the book "1984"?',
    'Who wrote the book "To Kill a Mockingbird"?',
    'What is the speed of light?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9457
cosine_accuracy_threshold 0.8054
cosine_f1 0.9555
cosine_f1_threshold 0.8054
cosine_precision 0.92
cosine_recall 0.9938
cosine_ap 0.9701
dot_accuracy 0.9457
dot_accuracy_threshold 0.8054
dot_f1 0.9555
dot_f1_threshold 0.8054
dot_precision 0.92
dot_recall 0.9938
dot_ap 0.9701
manhattan_accuracy 0.9457
manhattan_accuracy_threshold 9.7874
manhattan_f1 0.9555
manhattan_f1_threshold 9.7874
manhattan_precision 0.92
manhattan_recall 0.9938
manhattan_ap 0.9698
euclidean_accuracy 0.9457
euclidean_accuracy_threshold 0.6239
euclidean_f1 0.9555
euclidean_f1_threshold 0.6239
euclidean_precision 0.92
euclidean_recall 0.9938
euclidean_ap 0.9701
max_accuracy 0.9457
max_accuracy_threshold 9.7874
max_f1 0.9555
max_f1_threshold 9.7874
max_precision 0.92
max_recall 0.9938
max_ap 0.9701

Binary Classification

Metric Value
cosine_accuracy 0.9457
cosine_accuracy_threshold 0.8054
cosine_f1 0.9555
cosine_f1_threshold 0.8054
cosine_precision 0.92
cosine_recall 0.9938
cosine_ap 0.9701
dot_accuracy 0.9457
dot_accuracy_threshold 0.8054
dot_f1 0.9555
dot_f1_threshold 0.8054
dot_precision 0.92
dot_recall 0.9938
dot_ap 0.9701
manhattan_accuracy 0.9457
manhattan_accuracy_threshold 9.7874
manhattan_f1 0.9555
manhattan_f1_threshold 9.7874
manhattan_precision 0.92
manhattan_recall 0.9938
manhattan_ap 0.9698
euclidean_accuracy 0.9457
euclidean_accuracy_threshold 0.6239
euclidean_f1 0.9555
euclidean_f1_threshold 0.6239
euclidean_precision 0.92
euclidean_recall 0.9938
euclidean_ap 0.9701
max_accuracy 0.9457
max_accuracy_threshold 9.7874
max_f1 0.9555
max_f1_threshold 9.7874
max_precision 0.92
max_recall 0.9938
max_ap 0.9701

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,752 training samples
  • Columns: sentence2, label, and sentence1
  • Approximate statistics based on the first 1000 samples:
    sentence2 label sentence1
    type string int string
    details
    • min: 4 tokens
    • mean: 10.14 tokens
    • max: 22 tokens
    • 0: ~49.00%
    • 1: ~51.00%
    • min: 6 tokens
    • mean: 10.77 tokens
    • max: 22 tokens
  • Samples:
    sentence2 label sentence1
    What are the ingredients of pizza? 1 What are the ingredients of a pizza?
    What are the ingredients of a burger? 0 What are the ingredients of a pizza?
    How is photosynthesis carried out? 1 How does photosynthesis work?
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 276 evaluation samples
  • Columns: sentence2, label, and sentence1
  • Approximate statistics based on the first 276 samples:
    sentence2 label sentence1
    type string int string
    details
    • min: 5 tokens
    • mean: 15.34 tokens
    • max: 86 tokens
    • 0: ~41.30%
    • 1: ~58.70%
    • min: 6 tokens
    • mean: 15.56 tokens
    • max: 87 tokens
  • Samples:
    sentence2 label sentence1
    How is AI used to enhance cybersecurity? 0 What are the challenges of AI in cybersecurity?
    The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version. 1 You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.
    Name the capital city of Italy 1 What is the capital of Italy?
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.7876 -
0.2326 10 1.5405 - - -
0.4651 20 1.0389 - - -
0.6977 30 1.2755 - - -
0.9302 40 0.7024 - - -
1.0 43 - 0.9673 0.9133 -
1.1512 50 0.7527 - - -
1.3837 60 0.6684 - - -
1.6163 70 0.7612 - - -
1.8488 80 0.7265 - - -
2.0116 87 - 0.4647 0.9534 -
2.0698 90 0.2986 - - -
2.3023 100 0.1964 - - -
2.5349 110 0.5834 - - -
2.7674 120 0.4893 - - -
3.0 130 0.1254 0.3544 0.9670 -
3.2209 140 0.278 - - -
3.4535 150 0.1805 - - -
3.6860 160 0.4525 - - -
3.9186 170 0.1885 - - -
3.9651 172 - 0.3396 0.9701 0.9701
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}