|
2023-10-17 11:52:54,786 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,787 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 11:52:54,787 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,787 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences |
|
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator |
|
2023-10-17 11:52:54,787 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,787 Train: 14465 sentences |
|
2023-10-17 11:52:54,788 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 11:52:54,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,788 Training Params: |
|
2023-10-17 11:52:54,788 - learning_rate: "5e-05" |
|
2023-10-17 11:52:54,788 - mini_batch_size: "4" |
|
2023-10-17 11:52:54,788 - max_epochs: "10" |
|
2023-10-17 11:52:54,788 - shuffle: "True" |
|
2023-10-17 11:52:54,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,788 Plugins: |
|
2023-10-17 11:52:54,788 - TensorboardLogger |
|
2023-10-17 11:52:54,788 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 11:52:54,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,788 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 11:52:54,788 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 11:52:54,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,788 Computation: |
|
2023-10-17 11:52:54,789 - compute on device: cuda:0 |
|
2023-10-17 11:52:54,789 - embedding storage: none |
|
2023-10-17 11:52:54,789 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,789 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" |
|
2023-10-17 11:52:54,789 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,789 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:52:54,789 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 11:53:17,101 epoch 1 - iter 361/3617 - loss 1.45041553 - time (sec): 22.31 - samples/sec: 1698.14 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 11:53:38,886 epoch 1 - iter 722/3617 - loss 0.83716082 - time (sec): 44.10 - samples/sec: 1686.06 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 11:54:02,640 epoch 1 - iter 1083/3617 - loss 0.59781487 - time (sec): 67.85 - samples/sec: 1681.62 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 11:54:24,936 epoch 1 - iter 1444/3617 - loss 0.48149327 - time (sec): 90.15 - samples/sec: 1694.00 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 11:54:47,775 epoch 1 - iter 1805/3617 - loss 0.41319463 - time (sec): 112.98 - samples/sec: 1690.70 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 11:55:11,378 epoch 1 - iter 2166/3617 - loss 0.36558875 - time (sec): 136.59 - samples/sec: 1672.75 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 11:55:35,040 epoch 1 - iter 2527/3617 - loss 0.32938220 - time (sec): 160.25 - samples/sec: 1663.32 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 11:55:59,195 epoch 1 - iter 2888/3617 - loss 0.30249835 - time (sec): 184.40 - samples/sec: 1658.74 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 11:56:22,092 epoch 1 - iter 3249/3617 - loss 0.28225761 - time (sec): 207.30 - samples/sec: 1657.19 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 11:56:45,459 epoch 1 - iter 3610/3617 - loss 0.26717410 - time (sec): 230.67 - samples/sec: 1644.02 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-17 11:56:45,909 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:56:45,909 EPOCH 1 done: loss 0.2669 - lr: 0.000050 |
|
2023-10-17 11:56:51,334 DEV : loss 0.11786916851997375 - f1-score (micro avg) 0.5019 |
|
2023-10-17 11:56:51,374 saving best model |
|
2023-10-17 11:56:51,877 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 11:57:15,292 epoch 2 - iter 361/3617 - loss 0.10557221 - time (sec): 23.41 - samples/sec: 1662.15 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 11:57:37,011 epoch 2 - iter 722/3617 - loss 0.10278944 - time (sec): 45.13 - samples/sec: 1710.38 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 11:57:58,661 epoch 2 - iter 1083/3617 - loss 0.10655278 - time (sec): 66.78 - samples/sec: 1709.09 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 11:58:21,263 epoch 2 - iter 1444/3617 - loss 0.10643025 - time (sec): 89.38 - samples/sec: 1696.68 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 11:58:44,442 epoch 2 - iter 1805/3617 - loss 0.10457147 - time (sec): 112.56 - samples/sec: 1674.98 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 11:59:07,714 epoch 2 - iter 2166/3617 - loss 0.10556253 - time (sec): 135.84 - samples/sec: 1671.06 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 11:59:30,682 epoch 2 - iter 2527/3617 - loss 0.10440273 - time (sec): 158.80 - samples/sec: 1673.80 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 11:59:51,173 epoch 2 - iter 2888/3617 - loss 0.10398260 - time (sec): 179.29 - samples/sec: 1692.95 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 12:00:09,116 epoch 2 - iter 3249/3617 - loss 0.10460700 - time (sec): 197.24 - samples/sec: 1736.35 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 12:00:30,262 epoch 2 - iter 3610/3617 - loss 0.10618003 - time (sec): 218.38 - samples/sec: 1736.86 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 12:00:30,682 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:00:30,682 EPOCH 2 done: loss 0.1063 - lr: 0.000044 |
|
2023-10-17 12:00:37,743 DEV : loss 0.15698249638080597 - f1-score (micro avg) 0.6292 |
|
2023-10-17 12:00:37,792 saving best model |
|
2023-10-17 12:00:38,379 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:01:00,850 epoch 3 - iter 361/3617 - loss 0.08022559 - time (sec): 22.47 - samples/sec: 1636.31 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 12:01:23,625 epoch 3 - iter 722/3617 - loss 0.08069320 - time (sec): 45.24 - samples/sec: 1663.23 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 12:01:46,101 epoch 3 - iter 1083/3617 - loss 0.08181083 - time (sec): 67.72 - samples/sec: 1672.77 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 12:02:09,383 epoch 3 - iter 1444/3617 - loss 0.08325852 - time (sec): 91.00 - samples/sec: 1661.25 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 12:02:27,763 epoch 3 - iter 1805/3617 - loss 0.08237466 - time (sec): 109.38 - samples/sec: 1726.56 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 12:02:49,091 epoch 3 - iter 2166/3617 - loss 0.08389650 - time (sec): 130.71 - samples/sec: 1745.30 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 12:03:11,251 epoch 3 - iter 2527/3617 - loss 0.08517465 - time (sec): 152.87 - samples/sec: 1731.56 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 12:03:33,655 epoch 3 - iter 2888/3617 - loss 0.08551924 - time (sec): 175.27 - samples/sec: 1728.77 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 12:03:56,927 epoch 3 - iter 3249/3617 - loss 0.08551615 - time (sec): 198.55 - samples/sec: 1722.72 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 12:04:19,219 epoch 3 - iter 3610/3617 - loss 0.08533098 - time (sec): 220.84 - samples/sec: 1717.15 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 12:04:19,653 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:04:19,654 EPOCH 3 done: loss 0.0853 - lr: 0.000039 |
|
2023-10-17 12:04:26,008 DEV : loss 0.20511414110660553 - f1-score (micro avg) 0.6161 |
|
2023-10-17 12:04:26,049 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:04:49,116 epoch 4 - iter 361/3617 - loss 0.05873537 - time (sec): 23.07 - samples/sec: 1674.62 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 12:05:12,376 epoch 4 - iter 722/3617 - loss 0.06004159 - time (sec): 46.33 - samples/sec: 1645.73 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 12:05:35,066 epoch 4 - iter 1083/3617 - loss 0.06324927 - time (sec): 69.02 - samples/sec: 1673.37 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 12:05:57,755 epoch 4 - iter 1444/3617 - loss 0.06295022 - time (sec): 91.70 - samples/sec: 1671.02 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 12:06:20,466 epoch 4 - iter 1805/3617 - loss 0.06317630 - time (sec): 114.42 - samples/sec: 1668.82 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 12:06:42,695 epoch 4 - iter 2166/3617 - loss 0.06379107 - time (sec): 136.64 - samples/sec: 1673.67 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 12:07:04,646 epoch 4 - iter 2527/3617 - loss 0.06397835 - time (sec): 158.60 - samples/sec: 1681.56 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 12:07:27,971 epoch 4 - iter 2888/3617 - loss 0.06348311 - time (sec): 181.92 - samples/sec: 1678.47 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 12:07:49,326 epoch 4 - iter 3249/3617 - loss 0.06347814 - time (sec): 203.28 - samples/sec: 1686.73 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 12:08:11,036 epoch 4 - iter 3610/3617 - loss 0.06347373 - time (sec): 224.98 - samples/sec: 1686.43 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 12:08:11,436 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:08:11,436 EPOCH 4 done: loss 0.0634 - lr: 0.000033 |
|
2023-10-17 12:08:18,597 DEV : loss 0.22120679914951324 - f1-score (micro avg) 0.6187 |
|
2023-10-17 12:08:18,639 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:08:42,405 epoch 5 - iter 361/3617 - loss 0.03776153 - time (sec): 23.77 - samples/sec: 1596.80 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 12:09:05,646 epoch 5 - iter 722/3617 - loss 0.04135391 - time (sec): 47.01 - samples/sec: 1629.07 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 12:09:28,421 epoch 5 - iter 1083/3617 - loss 0.04270991 - time (sec): 69.78 - samples/sec: 1637.87 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 12:09:51,769 epoch 5 - iter 1444/3617 - loss 0.04260540 - time (sec): 93.13 - samples/sec: 1635.70 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 12:10:14,299 epoch 5 - iter 1805/3617 - loss 0.04110131 - time (sec): 115.66 - samples/sec: 1656.86 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 12:10:36,976 epoch 5 - iter 2166/3617 - loss 0.04177018 - time (sec): 138.34 - samples/sec: 1668.53 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 12:10:59,264 epoch 5 - iter 2527/3617 - loss 0.04324074 - time (sec): 160.62 - samples/sec: 1663.73 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 12:11:21,101 epoch 5 - iter 2888/3617 - loss 0.04411956 - time (sec): 182.46 - samples/sec: 1658.59 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 12:11:45,148 epoch 5 - iter 3249/3617 - loss 0.04348395 - time (sec): 206.51 - samples/sec: 1652.71 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 12:12:07,783 epoch 5 - iter 3610/3617 - loss 0.04478114 - time (sec): 229.14 - samples/sec: 1654.40 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 12:12:08,198 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:12:08,198 EPOCH 5 done: loss 0.0447 - lr: 0.000028 |
|
2023-10-17 12:12:14,607 DEV : loss 0.2750839591026306 - f1-score (micro avg) 0.6418 |
|
2023-10-17 12:12:14,652 saving best model |
|
2023-10-17 12:12:15,246 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:12:37,546 epoch 6 - iter 361/3617 - loss 0.02896062 - time (sec): 22.30 - samples/sec: 1678.63 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 12:13:01,122 epoch 6 - iter 722/3617 - loss 0.02877240 - time (sec): 45.87 - samples/sec: 1629.00 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 12:13:23,419 epoch 6 - iter 1083/3617 - loss 0.03088311 - time (sec): 68.17 - samples/sec: 1654.59 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 12:13:45,707 epoch 6 - iter 1444/3617 - loss 0.03181763 - time (sec): 90.46 - samples/sec: 1672.21 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 12:14:07,684 epoch 6 - iter 1805/3617 - loss 0.03280478 - time (sec): 112.44 - samples/sec: 1689.30 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 12:14:30,091 epoch 6 - iter 2166/3617 - loss 0.03257395 - time (sec): 134.84 - samples/sec: 1691.26 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 12:14:52,451 epoch 6 - iter 2527/3617 - loss 0.03273840 - time (sec): 157.20 - samples/sec: 1693.80 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 12:15:16,751 epoch 6 - iter 2888/3617 - loss 0.03337305 - time (sec): 181.50 - samples/sec: 1675.04 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 12:15:39,289 epoch 6 - iter 3249/3617 - loss 0.03410165 - time (sec): 204.04 - samples/sec: 1671.99 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 12:15:59,015 epoch 6 - iter 3610/3617 - loss 0.03367272 - time (sec): 223.77 - samples/sec: 1695.44 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 12:15:59,460 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:15:59,460 EPOCH 6 done: loss 0.0337 - lr: 0.000022 |
|
2023-10-17 12:16:06,723 DEV : loss 0.3224092423915863 - f1-score (micro avg) 0.6278 |
|
2023-10-17 12:16:06,764 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:16:30,012 epoch 7 - iter 361/3617 - loss 0.01207785 - time (sec): 23.25 - samples/sec: 1632.13 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 12:16:52,430 epoch 7 - iter 722/3617 - loss 0.01588108 - time (sec): 45.66 - samples/sec: 1649.57 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 12:17:14,472 epoch 7 - iter 1083/3617 - loss 0.01914681 - time (sec): 67.71 - samples/sec: 1671.24 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 12:17:38,387 epoch 7 - iter 1444/3617 - loss 0.02093559 - time (sec): 91.62 - samples/sec: 1648.96 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 12:18:00,039 epoch 7 - iter 1805/3617 - loss 0.02030467 - time (sec): 113.27 - samples/sec: 1670.47 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 12:18:22,176 epoch 7 - iter 2166/3617 - loss 0.02042856 - time (sec): 135.41 - samples/sec: 1675.92 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 12:18:45,119 epoch 7 - iter 2527/3617 - loss 0.01975550 - time (sec): 158.35 - samples/sec: 1676.74 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 12:19:04,588 epoch 7 - iter 2888/3617 - loss 0.01949421 - time (sec): 177.82 - samples/sec: 1705.58 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 12:19:22,591 epoch 7 - iter 3249/3617 - loss 0.01975215 - time (sec): 195.82 - samples/sec: 1746.76 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 12:19:44,496 epoch 7 - iter 3610/3617 - loss 0.02006605 - time (sec): 217.73 - samples/sec: 1742.14 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 12:19:44,901 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:19:44,901 EPOCH 7 done: loss 0.0202 - lr: 0.000017 |
|
2023-10-17 12:19:51,251 DEV : loss 0.317545086145401 - f1-score (micro avg) 0.6272 |
|
2023-10-17 12:19:51,295 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:20:13,563 epoch 8 - iter 361/3617 - loss 0.01412422 - time (sec): 22.27 - samples/sec: 1693.14 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 12:20:37,743 epoch 8 - iter 722/3617 - loss 0.01808065 - time (sec): 46.45 - samples/sec: 1612.50 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 12:21:02,137 epoch 8 - iter 1083/3617 - loss 0.01681718 - time (sec): 70.84 - samples/sec: 1590.05 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 12:21:26,146 epoch 8 - iter 1444/3617 - loss 0.01601246 - time (sec): 94.85 - samples/sec: 1600.06 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 12:21:49,292 epoch 8 - iter 1805/3617 - loss 0.01568364 - time (sec): 117.99 - samples/sec: 1600.39 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 12:22:11,848 epoch 8 - iter 2166/3617 - loss 0.01635340 - time (sec): 140.55 - samples/sec: 1609.35 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 12:22:33,797 epoch 8 - iter 2527/3617 - loss 0.01630735 - time (sec): 162.50 - samples/sec: 1622.79 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 12:22:55,815 epoch 8 - iter 2888/3617 - loss 0.01515567 - time (sec): 184.52 - samples/sec: 1637.90 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 12:23:18,342 epoch 8 - iter 3249/3617 - loss 0.01483412 - time (sec): 207.05 - samples/sec: 1648.57 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 12:23:41,314 epoch 8 - iter 3610/3617 - loss 0.01486930 - time (sec): 230.02 - samples/sec: 1648.51 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 12:23:41,781 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:23:41,781 EPOCH 8 done: loss 0.0148 - lr: 0.000011 |
|
2023-10-17 12:23:48,164 DEV : loss 0.3655739724636078 - f1-score (micro avg) 0.6602 |
|
2023-10-17 12:23:48,207 saving best model |
|
2023-10-17 12:23:48,840 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:24:11,655 epoch 9 - iter 361/3617 - loss 0.00915400 - time (sec): 22.81 - samples/sec: 1667.62 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 12:24:34,394 epoch 9 - iter 722/3617 - loss 0.00828080 - time (sec): 45.55 - samples/sec: 1634.29 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 12:24:57,398 epoch 9 - iter 1083/3617 - loss 0.00838778 - time (sec): 68.56 - samples/sec: 1624.06 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 12:25:21,466 epoch 9 - iter 1444/3617 - loss 0.00854920 - time (sec): 92.62 - samples/sec: 1609.74 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 12:25:44,800 epoch 9 - iter 1805/3617 - loss 0.00847143 - time (sec): 115.96 - samples/sec: 1621.53 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 12:26:07,965 epoch 9 - iter 2166/3617 - loss 0.00871744 - time (sec): 139.12 - samples/sec: 1625.29 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 12:26:31,239 epoch 9 - iter 2527/3617 - loss 0.00823885 - time (sec): 162.40 - samples/sec: 1627.58 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 12:26:55,849 epoch 9 - iter 2888/3617 - loss 0.00773025 - time (sec): 187.01 - samples/sec: 1618.47 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 12:27:19,397 epoch 9 - iter 3249/3617 - loss 0.00760834 - time (sec): 210.55 - samples/sec: 1614.92 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 12:27:43,113 epoch 9 - iter 3610/3617 - loss 0.00769799 - time (sec): 234.27 - samples/sec: 1618.48 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 12:27:43,552 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:27:43,552 EPOCH 9 done: loss 0.0077 - lr: 0.000006 |
|
2023-10-17 12:27:49,962 DEV : loss 0.4163112938404083 - f1-score (micro avg) 0.6467 |
|
2023-10-17 12:27:50,004 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:28:13,013 epoch 10 - iter 361/3617 - loss 0.00413246 - time (sec): 23.01 - samples/sec: 1593.63 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 12:28:35,587 epoch 10 - iter 722/3617 - loss 0.00334843 - time (sec): 45.58 - samples/sec: 1657.68 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 12:28:58,768 epoch 10 - iter 1083/3617 - loss 0.00444223 - time (sec): 68.76 - samples/sec: 1625.52 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 12:29:22,388 epoch 10 - iter 1444/3617 - loss 0.00421888 - time (sec): 92.38 - samples/sec: 1628.53 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 12:29:45,256 epoch 10 - iter 1805/3617 - loss 0.00399761 - time (sec): 115.25 - samples/sec: 1631.71 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 12:30:07,935 epoch 10 - iter 2166/3617 - loss 0.00472994 - time (sec): 137.93 - samples/sec: 1641.01 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 12:30:31,147 epoch 10 - iter 2527/3617 - loss 0.00456748 - time (sec): 161.14 - samples/sec: 1631.95 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 12:30:54,698 epoch 10 - iter 2888/3617 - loss 0.00474495 - time (sec): 184.69 - samples/sec: 1636.72 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 12:31:16,709 epoch 10 - iter 3249/3617 - loss 0.00463207 - time (sec): 206.70 - samples/sec: 1652.97 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 12:31:40,217 epoch 10 - iter 3610/3617 - loss 0.00465381 - time (sec): 230.21 - samples/sec: 1647.46 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 12:31:40,665 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:31:40,665 EPOCH 10 done: loss 0.0046 - lr: 0.000000 |
|
2023-10-17 12:31:47,136 DEV : loss 0.43618330359458923 - f1-score (micro avg) 0.6512 |
|
2023-10-17 12:31:48,461 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:31:48,463 Loading model from best epoch ... |
|
2023-10-17 12:31:50,256 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org |
|
2023-10-17 12:31:58,239 |
|
Results: |
|
- F-score (micro) 0.6485 |
|
- F-score (macro) 0.4908 |
|
- Accuracy 0.4915 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.6662 0.7733 0.7157 591 |
|
pers 0.5293 0.7339 0.6150 357 |
|
org 0.2353 0.1013 0.1416 79 |
|
|
|
micro avg 0.5984 0.7079 0.6485 1027 |
|
macro avg 0.4769 0.5361 0.4908 1027 |
|
weighted avg 0.5855 0.7079 0.6366 1027 |
|
|
|
2023-10-17 12:31:58,239 ---------------------------------------------------------------------------------------------------- |
|
|