|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xlsr-nm-clp |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlsr-nm-clp |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3632 |
|
- Wer: 0.5241 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0004 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 132 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 5.0552 | 4.8780 | 200 | 3.0646 | 1.0 | |
|
| 3.0248 | 9.7561 | 400 | 2.9305 | 1.0 | |
|
| 2.8381 | 14.6341 | 600 | 2.7349 | 1.0 | |
|
| 2.2963 | 19.5122 | 800 | 1.9857 | 0.9550 | |
|
| 1.3557 | 24.3902 | 1000 | 1.3196 | 0.7685 | |
|
| 0.6411 | 29.2683 | 1200 | 1.3063 | 0.6881 | |
|
| 0.394 | 34.1463 | 1400 | 1.2477 | 0.6527 | |
|
| 0.2608 | 39.0244 | 1600 | 1.1584 | 0.6013 | |
|
| 0.1804 | 43.9024 | 1800 | 1.2374 | 0.6013 | |
|
| 0.1442 | 48.7805 | 2000 | 1.3478 | 0.5643 | |
|
| 0.1264 | 53.6585 | 2200 | 1.2854 | 0.5740 | |
|
| 0.0892 | 58.5366 | 2400 | 1.2293 | 0.5900 | |
|
| 0.0813 | 63.4146 | 2600 | 1.2025 | 0.5482 | |
|
| 0.0597 | 68.2927 | 2800 | 1.3339 | 0.5466 | |
|
| 0.0495 | 73.1707 | 3000 | 1.4527 | 0.5595 | |
|
| 0.0453 | 78.0488 | 3200 | 1.4188 | 0.5257 | |
|
| 0.0402 | 82.9268 | 3400 | 1.2740 | 0.5289 | |
|
| 0.0367 | 87.8049 | 3600 | 1.3237 | 0.5161 | |
|
| 0.0324 | 92.6829 | 3800 | 1.3321 | 0.5177 | |
|
| 0.0267 | 97.5610 | 4000 | 1.3632 | 0.5241 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|