metadata
language:
- ar
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- taqwa92/tm_data
metrics:
- wer
model-index:
- name: Whisper Small Arabic- Taqwa
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: tm_data
type: taqwa92/tm_data
config: default
split: test[:5%]
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 46.42559109874826
Whisper Small Arabic- Taqwa
This model is a fine-tuned version of openai/whisper-small on the tm_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.5306
- Wer: 46.4256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2375 | 4.85 | 500 | 0.5306 | 46.4256 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2