|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: |
|
- rhymes-ai/Aria-sequential_mlp |
|
- rhymes-ai/Aria |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
# Aria-sequential_mlp-bnb_nf4 |
|
BitsAndBytes NF4 quantization from [Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp), requires about 15.5 GB of VRAM and runs on a RTX 3090 and (not really practical, only without `device_map=auto`) on a RTX 4060 Ti 16 GB. |
|
Currently the model is not 5 GB sharded, as this seems to [cause problems](https://stackoverflow.com/questions/79068298/valueerror-supplied-state-dict-for-layers-does-not-contain-bitsandbytes-an) when loading serialized BNB models. This might make it impossible to load the model in free-tier Colab. |
|
|
|
### Installation |
|
``` |
|
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow bitsandbytes |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
### Inference |
|
Run this model with: |
|
``` python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig |
|
torch.cuda.set_device(0) |
|
|
|
model_id_or_path = "thwin27/Aria-sequential_mlp-bnb_nf4" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) |
|
|
|
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" |
|
|
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"text": None, "type": "image"}, |
|
{"text": "what is the image?", "type": "text"}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=text, images=image, return_tensors="pt") |
|
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) |
|
inputs = {k: v.to(model.device) for k, v in inputs.items()} |
|
|
|
with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=500, |
|
stop_strings=["<|im_end|>"], |
|
tokenizer=processor.tokenizer, |
|
do_sample=True, |
|
temperature=0.9, |
|
) |
|
output_ids = output[0][inputs["input_ids"].shape[1]:] |
|
result = processor.decode(output_ids, skip_special_tokens=True) |
|
|
|
print(result) |
|
print(f'Max allocated memory: {torch.cuda.max_memory_allocated(device="cuda") / 1024 ** 3:.3f}GiB') |
|
``` |
|
|
|
### Quantization |
|
Quantization created with: |
|
``` python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
model_id = "rhymes-ai/Aria-sequential_mlp" |
|
|
|
nf4_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
llm_int8_skip_modules=["language_model.lm_head", "multi_modal_projector", "vision_tower"], |
|
) |
|
|
|
model_nf4 = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=nf4_config) |
|
``` |