videberta-base_1024 / README.md
tmnam20's picture
End of training
5603c70
|
raw
history blame
2.68 kB
metadata
base_model: Fsoft-AIC/videberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videberta-base_1024
    results: []

videberta-base_1024

This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5634
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.18
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6979 0.1 50 0.6724 0.75
0.6979 0.21 100 0.6272 0.75
0.6979 0.31 150 0.5727 0.75
0.6979 0.41 200 0.5659 0.75
0.6979 0.52 250 0.5675 0.75
0.6979 0.62 300 0.5633 0.75
0.6979 0.72 350 0.5931 0.75
0.6979 0.83 400 0.5644 0.75
0.6979 0.93 450 0.5633 0.75
0.6979 1.03 500 0.5926 0.75
0.6979 1.14 550 0.5649 0.75
0.6979 1.24 600 0.5628 0.75
0.6979 1.34 650 0.5631 0.75
0.6979 1.45 700 0.5688 0.75
0.6979 1.55 750 0.5624 0.75
0.6979 1.65 800 0.5630 0.75
0.6979 1.76 850 0.5628 0.75
0.6979 1.86 900 0.5624 0.75
0.6979 1.96 950 0.5637 0.75
0.5706 2.07 1000 0.5634 0.75

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1