metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
- loss:ContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What is Mindset?
sentences:
- What is a mindset?
- Can you eat only once a day?
- Is law a good career choice?
- source_sentence: Is a queef real?
sentences:
- Is "G" based on real events?
- What is the entire court process?
- How do I reduce my weight?
- source_sentence: Is Cicret a scam?
sentences:
- Is the Cicret Bracelet a scam?
- Was World War II Inevitable?
- What are some of the best photos?
- source_sentence: What is Planet X?
sentences:
- Do planet X exist?
- What are the best C++ books?
- How can I lose my weight fast?
- source_sentence: How fast is fast?
sentences:
- How does light travel so fast?
- How do I copyright my books?
- What is a black hole made of?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 32.724475965905576
energy_consumed: 0.08418911136527617
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.399
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.846
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7969297170639038
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7791495198902607
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7139598727226257
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6977886977886978
name: Cosine Precision
- type: cosine_recall
value: 0.8819875776397516
name: Cosine Recall
- type: cosine_ap
value: 0.8230449963294564
name: Cosine Ap
- type: dot_accuracy
value: 0.843
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 151.2908477783203
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7660818713450294
name: Dot F1
- type: dot_f1_threshold
value: 143.77838134765625
name: Dot F1 Threshold
- type: dot_precision
value: 0.7237569060773481
name: Dot Precision
- type: dot_recall
value: 0.8136645962732919
name: Dot Recall
- type: dot_ap
value: 0.7946044629726107
name: Dot Ap
- type: manhattan_accuracy
value: 0.838
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 194.99119567871094
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7704081632653061
name: Manhattan F1
- type: manhattan_f1_threshold
value: 247.49777221679688
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6536796536796536
name: Manhattan Precision
- type: manhattan_recall
value: 0.937888198757764
name: Manhattan Recall
- type: manhattan_ap
value: 0.8149715271935773
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.841
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.02225112915039
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7703889585947302
name: Euclidean F1
- type: euclidean_f1_threshold
value: 11.385245323181152
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6463157894736842
name: Euclidean Precision
- type: euclidean_recall
value: 0.953416149068323
name: Euclidean Recall
- type: euclidean_ap
value: 0.8152967320117391
name: Euclidean Ap
- type: max_accuracy
value: 0.846
name: Max Accuracy
- type: max_accuracy_threshold
value: 194.99119567871094
name: Max Accuracy Threshold
- type: max_f1
value: 0.7791495198902607
name: Max F1
- type: max_f1_threshold
value: 247.49777221679688
name: Max F1 Threshold
- type: max_precision
value: 0.7237569060773481
name: Max Precision
- type: max_recall
value: 0.953416149068323
name: Max Recall
- type: max_ap
value: 0.8230449963294564
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5888649029434471
name: Average Precision
- type: f1
value: 0.5761652140962487
name: F1
- type: precision
value: 0.5477552123204396
name: Precision
- type: recall
value: 0.6076834690513064
name: Recall
- type: threshold
value: 0.7728720009326935
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.963
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9906
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9944
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9982
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.963
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4285333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.27568000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14494
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8299562338609103
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9590366552956846
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9806221849555673
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9925738410935468
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9784033087450696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9771579365079368
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9709189650394419
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9514
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9852
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.991
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9968
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9514
name: Dot Precision@1
- type: dot_precision@3
value: 0.4247333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.27364
name: Dot Precision@5
- type: dot_precision@10
value: 0.14458000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.8194380520427287
name: Dot Recall@1
- type: dot_recall@3
value: 0.9520212390452685
name: Dot Recall@3
- type: dot_recall@5
value: 0.9755502441186265
name: Dot Recall@5
- type: dot_recall@10
value: 0.9910547306614953
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9715023430522326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9692583333333334
name: Dot Mrr@10
- type: dot_map@100
value: 0.961739772177385
name: Dot Map@100
SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the mnrl and cl datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
# Run inference
sentences = [
'How fast is fast?',
'How does light travel so fast?',
'How do I copyright my books?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.846 |
cosine_accuracy_threshold | 0.7969 |
cosine_f1 | 0.7791 |
cosine_f1_threshold | 0.714 |
cosine_precision | 0.6978 |
cosine_recall | 0.882 |
cosine_ap | 0.823 |
dot_accuracy | 0.843 |
dot_accuracy_threshold | 151.2908 |
dot_f1 | 0.7661 |
dot_f1_threshold | 143.7784 |
dot_precision | 0.7238 |
dot_recall | 0.8137 |
dot_ap | 0.7946 |
manhattan_accuracy | 0.838 |
manhattan_accuracy_threshold | 194.9912 |
manhattan_f1 | 0.7704 |
manhattan_f1_threshold | 247.4978 |
manhattan_precision | 0.6537 |
manhattan_recall | 0.9379 |
manhattan_ap | 0.815 |
euclidean_accuracy | 0.841 |
euclidean_accuracy_threshold | 9.0223 |
euclidean_f1 | 0.7704 |
euclidean_f1_threshold | 11.3852 |
euclidean_precision | 0.6463 |
euclidean_recall | 0.9534 |
euclidean_ap | 0.8153 |
max_accuracy | 0.846 |
max_accuracy_threshold | 194.9912 |
max_f1 | 0.7791 |
max_f1_threshold | 247.4978 |
max_precision | 0.7238 |
max_recall | 0.9534 |
max_ap | 0.823 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.5889 |
f1 | 0.5762 |
precision | 0.5478 |
recall | 0.6077 |
threshold | 0.7729 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.963 |
cosine_accuracy@3 | 0.9906 |
cosine_accuracy@5 | 0.9944 |
cosine_accuracy@10 | 0.9982 |
cosine_precision@1 | 0.963 |
cosine_precision@3 | 0.4285 |
cosine_precision@5 | 0.2757 |
cosine_precision@10 | 0.1449 |
cosine_recall@1 | 0.83 |
cosine_recall@3 | 0.959 |
cosine_recall@5 | 0.9806 |
cosine_recall@10 | 0.9926 |
cosine_ndcg@10 | 0.9784 |
cosine_mrr@10 | 0.9772 |
cosine_map@100 | 0.9709 |
dot_accuracy@1 | 0.9514 |
dot_accuracy@3 | 0.9852 |
dot_accuracy@5 | 0.991 |
dot_accuracy@10 | 0.9968 |
dot_precision@1 | 0.9514 |
dot_precision@3 | 0.4247 |
dot_precision@5 | 0.2736 |
dot_precision@10 | 0.1446 |
dot_recall@1 | 0.8194 |
dot_recall@3 | 0.952 |
dot_recall@5 | 0.9756 |
dot_recall@10 | 0.9911 |
dot_ndcg@10 | 0.9715 |
dot_mrr@10 | 0.9693 |
dot_map@100 | 0.9617 |
Training Details
Training Datasets
mnrl
- Dataset: mnrl at 451a485
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 13.85 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.65 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 14.76 tokens
- max: 64 tokens
- Samples:
anchor positive negative Why in India do we not have one on one political debate as in USA?
Why cant we have a public debate between politicians in India like the one in US?
Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
What is OnePlus One?
How is oneplus one?
Why is OnePlus One so good?
Does our mind control our emotions?
How do smart and successful people control their emotions?
How can I control my positive emotions for the people whom I love but they don't care about me?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
cl
- Dataset: cl at 451a485
- Size: 100,000 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.3 tokens
- max: 57 tokens
- min: 6 tokens
- mean: 15.66 tokens
- max: 56 tokens
- 0: ~62.00%
- 1: ~38.00%
- Samples:
sentence1 sentence2 label What is the step by step guide to invest in share market in india?
What is the step by step guide to invest in share market?
0
What is the story of Kohinoor (Koh-i-Noor) Diamond?
What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?
0
How can I increase the speed of my internet connection while using a VPN?
How can Internet speed be increased by hacking through DNS?
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Datasets
mnrl
- Dataset: mnrl at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 13.84 tokens
- max: 43 tokens
- min: 6 tokens
- mean: 13.8 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 14.71 tokens
- max: 56 tokens
- Samples:
anchor positive negative Which programming language is best for developing low-end games?
What coding language should I learn first for making games?
I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?
Should Meryl Streep be using her position to attack the president?
Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
Where can I found excellent commercial fridges in Sydney?
Where can I found impressive range of commercial fridges in Sydney?
What is the best grocery delivery service in Sydney?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
cl
- Dataset: cl at 451a485
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 15.59 tokens
- max: 59 tokens
- min: 6 tokens
- mean: 15.65 tokens
- max: 76 tokens
- 0: ~63.40%
- 1: ~36.60%
- Samples:
sentence1 sentence2 label What should I ask my friend to get from UK to India?
What is the process of getting a surgical residency in UK after completing MBBS from India?
0
How can I learn hacking for free?
How can I learn to hack seriously?
1
Which is the best website to learn programming language C++?
Which is the best website to learn C++ Programming language for free?
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | cl loss | mnrl loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
---|---|---|---|---|---|---|---|
0 | 0 | - | - | - | 0.9245 | 0.4200 | 0.6890 |
0.0320 | 100 | 0.1634 | - | - | - | - | - |
0.0640 | 200 | 0.1206 | - | - | - | - | - |
0.0800 | 250 | - | 0.0190 | 0.1469 | 0.9530 | 0.5068 | 0.7354 |
0.0960 | 300 | 0.1036 | - | - | - | - | - |
0.1280 | 400 | 0.0836 | - | - | - | - | - |
0.1599 | 500 | 0.0918 | 0.0180 | 0.1008 | 0.9553 | 0.5259 | 0.7643 |
0.1919 | 600 | 0.0784 | - | - | - | - | - |
0.2239 | 700 | 0.0656 | - | - | - | - | - |
0.2399 | 750 | - | 0.0177 | 0.0905 | 0.9593 | 0.5305 | 0.7686 |
0.2559 | 800 | 0.0593 | - | - | - | - | - |
0.2879 | 900 | 0.0534 | - | - | - | - | - |
0.3199 | 1000 | 0.0612 | 0.0161 | 0.0736 | 0.9642 | 0.5512 | 0.7881 |
0.3519 | 1100 | 0.0572 | - | - | - | - | - |
0.3839 | 1200 | 0.06 | - | - | - | - | - |
0.3999 | 1250 | - | 0.0158 | 0.0641 | 0.9649 | 0.5567 | 0.7983 |
0.4159 | 1300 | 0.0565 | - | - | - | - | - |
0.4479 | 1400 | 0.0565 | - | - | - | - | - |
0.4798 | 1500 | 0.0475 | 0.0154 | 0.0578 | 0.9645 | 0.5614 | 0.8062 |
0.5118 | 1600 | 0.0596 | - | - | - | - | - |
0.5438 | 1700 | 0.0509 | - | - | - | - | - |
0.5598 | 1750 | - | 0.0150 | 0.0525 | 0.9674 | 0.5762 | 0.8092 |
0.5758 | 1800 | 0.0403 | - | - | - | - | - |
0.6078 | 1900 | 0.0431 | - | - | - | - | - |
0.6398 | 2000 | 0.0481 | 0.0150 | 0.0531 | 0.9689 | 0.5824 | 0.8128 |
0.6718 | 2100 | 0.05 | - | - | - | - | - |
0.7038 | 2200 | 0.0468 | - | - | - | - | - |
0.7198 | 2250 | - | 0.0146 | 0.0486 | 0.9684 | 0.5756 | 0.8195 |
0.7358 | 2300 | 0.0436 | - | - | - | - | - |
0.7678 | 2400 | 0.0409 | - | - | - | - | - |
0.7997 | 2500 | 0.0391 | 0.0145 | 0.0454 | 0.9705 | 0.5822 | 0.8190 |
0.8317 | 2600 | 0.0412 | - | - | - | - | - |
0.8637 | 2700 | 0.0373 | - | - | - | - | - |
0.8797 | 2750 | - | 0.0143 | 0.0451 | 0.9705 | 0.5889 | 0.8229 |
0.8957 | 2800 | 0.0428 | - | - | - | - | - |
0.9277 | 2900 | 0.0419 | - | - | - | - | - |
0.9597 | 3000 | 0.0376 | 0.0143 | 0.0435 | 0.9709 | 0.5889 | 0.8230 |
0.9917 | 3100 | 0.0366 | - | - | - | - | - |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.084 kWh
- Carbon Emitted: 0.033 kg of CO2
- Hours Used: 0.399 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}