tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
ed25478 verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - loss:MultipleNegativesRankingLoss
  - loss:ContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
  - average_precision
  - f1
  - precision
  - recall
  - threshold
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
widget:
  - source_sentence: What is Mindset?
    sentences:
      - What is a mindset?
      - Can you eat only once a day?
      - Is law a good career choice?
  - source_sentence: Is a queef real?
    sentences:
      - Is "G" based on real events?
      - What is the entire court process?
      - How do I reduce my weight?
  - source_sentence: Is Cicret a scam?
    sentences:
      - Is the Cicret Bracelet a scam?
      - Was World War II Inevitable?
      - What are some of the best photos?
  - source_sentence: What is Planet X?
    sentences:
      - Do planet X exist?
      - What are the best C++ books?
      - How can I lose my weight fast?
  - source_sentence: How fast is fast?
    sentences:
      - How does light travel so fast?
      - How do I copyright my books?
      - What is a black hole made of?
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 32.724475965905576
  energy_consumed: 0.08418911136527617
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.399
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: quora duplicates
          type: quora-duplicates
        metrics:
          - type: cosine_accuracy
            value: 0.846
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7969297170639038
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7791495198902607
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7139598727226257
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.6977886977886978
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8819875776397516
            name: Cosine Recall
          - type: cosine_ap
            value: 0.8230449963294564
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.843
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 151.2908477783203
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.7660818713450294
            name: Dot F1
          - type: dot_f1_threshold
            value: 143.77838134765625
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.7237569060773481
            name: Dot Precision
          - type: dot_recall
            value: 0.8136645962732919
            name: Dot Recall
          - type: dot_ap
            value: 0.7946044629726107
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.838
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 194.99119567871094
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.7704081632653061
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 247.49777221679688
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.6536796536796536
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.937888198757764
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.8149715271935773
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.841
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 9.02225112915039
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.7703889585947302
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 11.385245323181152
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.6463157894736842
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.953416149068323
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.8152967320117391
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.846
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 194.99119567871094
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.7791495198902607
            name: Max F1
          - type: max_f1_threshold
            value: 247.49777221679688
            name: Max F1 Threshold
          - type: max_precision
            value: 0.7237569060773481
            name: Max Precision
          - type: max_recall
            value: 0.953416149068323
            name: Max Recall
          - type: max_ap
            value: 0.8230449963294564
            name: Max Ap
      - task:
          type: paraphrase-mining
          name: Paraphrase Mining
        dataset:
          name: quora duplicates dev
          type: quora-duplicates-dev
        metrics:
          - type: average_precision
            value: 0.5888649029434471
            name: Average Precision
          - type: f1
            value: 0.5761652140962487
            name: F1
          - type: precision
            value: 0.5477552123204396
            name: Precision
          - type: recall
            value: 0.6076834690513064
            name: Recall
          - type: threshold
            value: 0.7728720009326935
            name: Threshold
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.963
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9906
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9944
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9982
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.963
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4285333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.27568000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.14494
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8299562338609103
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9590366552956846
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9806221849555673
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9925738410935468
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9784033087450696
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9771579365079368
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9709189650394419
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.9514
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9852
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.991
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9968
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9514
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4247333333333334
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.27364
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14458000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.8194380520427287
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9520212390452685
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9755502441186265
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9910547306614953
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9715023430522326
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9692583333333334
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.961739772177385
            name: Dot Map@100

SentenceTransformer based on sentence-transformers/stsb-distilbert-base

This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the mnrl and cl datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
# Run inference
sentences = [
    'How fast is fast?',
    'How does light travel so fast?',
    'How do I copyright my books?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.846
cosine_accuracy_threshold 0.7969
cosine_f1 0.7791
cosine_f1_threshold 0.714
cosine_precision 0.6978
cosine_recall 0.882
cosine_ap 0.823
dot_accuracy 0.843
dot_accuracy_threshold 151.2908
dot_f1 0.7661
dot_f1_threshold 143.7784
dot_precision 0.7238
dot_recall 0.8137
dot_ap 0.7946
manhattan_accuracy 0.838
manhattan_accuracy_threshold 194.9912
manhattan_f1 0.7704
manhattan_f1_threshold 247.4978
manhattan_precision 0.6537
manhattan_recall 0.9379
manhattan_ap 0.815
euclidean_accuracy 0.841
euclidean_accuracy_threshold 9.0223
euclidean_f1 0.7704
euclidean_f1_threshold 11.3852
euclidean_precision 0.6463
euclidean_recall 0.9534
euclidean_ap 0.8153
max_accuracy 0.846
max_accuracy_threshold 194.9912
max_f1 0.7791
max_f1_threshold 247.4978
max_precision 0.7238
max_recall 0.9534
max_ap 0.823

Paraphrase Mining

Metric Value
average_precision 0.5889
f1 0.5762
precision 0.5478
recall 0.6077
threshold 0.7729

Information Retrieval

Metric Value
cosine_accuracy@1 0.963
cosine_accuracy@3 0.9906
cosine_accuracy@5 0.9944
cosine_accuracy@10 0.9982
cosine_precision@1 0.963
cosine_precision@3 0.4285
cosine_precision@5 0.2757
cosine_precision@10 0.1449
cosine_recall@1 0.83
cosine_recall@3 0.959
cosine_recall@5 0.9806
cosine_recall@10 0.9926
cosine_ndcg@10 0.9784
cosine_mrr@10 0.9772
cosine_map@100 0.9709
dot_accuracy@1 0.9514
dot_accuracy@3 0.9852
dot_accuracy@5 0.991
dot_accuracy@10 0.9968
dot_precision@1 0.9514
dot_precision@3 0.4247
dot_precision@5 0.2736
dot_precision@10 0.1446
dot_recall@1 0.8194
dot_recall@3 0.952
dot_recall@5 0.9756
dot_recall@10 0.9911
dot_ndcg@10 0.9715
dot_mrr@10 0.9693
dot_map@100 0.9617

Training Details

Training Datasets

mnrl

  • Dataset: mnrl at 451a485
  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 13.85 tokens
    • max: 42 tokens
    • min: 6 tokens
    • mean: 13.65 tokens
    • max: 44 tokens
    • min: 4 tokens
    • mean: 14.76 tokens
    • max: 64 tokens
  • Samples:
    anchor positive negative
    Why in India do we not have one on one political debate as in USA? Why cant we have a public debate between politicians in India like the one in US? Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?
    What is OnePlus One? How is oneplus one? Why is OnePlus One so good?
    Does our mind control our emotions? How do smart and successful people control their emotions? How can I control my positive emotions for the people whom I love but they don't care about me?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

cl

  • Dataset: cl at 451a485
  • Size: 100,000 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 6 tokens
    • mean: 15.3 tokens
    • max: 57 tokens
    • min: 6 tokens
    • mean: 15.66 tokens
    • max: 56 tokens
    • 0: ~62.00%
    • 1: ~38.00%
  • Samples:
    sentence1 sentence2 label
    What is the step by step guide to invest in share market in india? What is the step by step guide to invest in share market? 0
    What is the story of Kohinoor (Koh-i-Noor) Diamond? What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back? 0
    How can I increase the speed of my internet connection while using a VPN? How can Internet speed be increased by hacking through DNS? 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Datasets

mnrl

  • Dataset: mnrl at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 13.84 tokens
    • max: 43 tokens
    • min: 6 tokens
    • mean: 13.8 tokens
    • max: 38 tokens
    • min: 6 tokens
    • mean: 14.71 tokens
    • max: 56 tokens
  • Samples:
    anchor positive negative
    Which programming language is best for developing low-end games? What coding language should I learn first for making games? I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages ​​I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?
    Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump? Should Meryl Streep be using her position to attack the president? Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?
    Where can I found excellent commercial fridges in Sydney? Where can I found impressive range of commercial fridges in Sydney? What is the best grocery delivery service in Sydney?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

cl

  • Dataset: cl at 451a485
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 5 tokens
    • mean: 15.59 tokens
    • max: 59 tokens
    • min: 6 tokens
    • mean: 15.65 tokens
    • max: 76 tokens
    • 0: ~63.40%
    • 1: ~36.60%
  • Samples:
    sentence1 sentence2 label
    What should I ask my friend to get from UK to India? What is the process of getting a surgical residency in UK after completing MBBS from India? 0
    How can I learn hacking for free? How can I learn to hack seriously? 1
    Which is the best website to learn programming language C++? Which is the best website to learn C++ Programming language for free? 0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: False
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss cl loss mnrl loss cosine_map@100 quora-duplicates-dev_average_precision quora-duplicates_max_ap
0 0 - - - 0.9245 0.4200 0.6890
0.0320 100 0.1634 - - - - -
0.0640 200 0.1206 - - - - -
0.0800 250 - 0.0190 0.1469 0.9530 0.5068 0.7354
0.0960 300 0.1036 - - - - -
0.1280 400 0.0836 - - - - -
0.1599 500 0.0918 0.0180 0.1008 0.9553 0.5259 0.7643
0.1919 600 0.0784 - - - - -
0.2239 700 0.0656 - - - - -
0.2399 750 - 0.0177 0.0905 0.9593 0.5305 0.7686
0.2559 800 0.0593 - - - - -
0.2879 900 0.0534 - - - - -
0.3199 1000 0.0612 0.0161 0.0736 0.9642 0.5512 0.7881
0.3519 1100 0.0572 - - - - -
0.3839 1200 0.06 - - - - -
0.3999 1250 - 0.0158 0.0641 0.9649 0.5567 0.7983
0.4159 1300 0.0565 - - - - -
0.4479 1400 0.0565 - - - - -
0.4798 1500 0.0475 0.0154 0.0578 0.9645 0.5614 0.8062
0.5118 1600 0.0596 - - - - -
0.5438 1700 0.0509 - - - - -
0.5598 1750 - 0.0150 0.0525 0.9674 0.5762 0.8092
0.5758 1800 0.0403 - - - - -
0.6078 1900 0.0431 - - - - -
0.6398 2000 0.0481 0.0150 0.0531 0.9689 0.5824 0.8128
0.6718 2100 0.05 - - - - -
0.7038 2200 0.0468 - - - - -
0.7198 2250 - 0.0146 0.0486 0.9684 0.5756 0.8195
0.7358 2300 0.0436 - - - - -
0.7678 2400 0.0409 - - - - -
0.7997 2500 0.0391 0.0145 0.0454 0.9705 0.5822 0.8190
0.8317 2600 0.0412 - - - - -
0.8637 2700 0.0373 - - - - -
0.8797 2750 - 0.0143 0.0451 0.9705 0.5889 0.8229
0.8957 2800 0.0428 - - - - -
0.9277 2900 0.0419 - - - - -
0.9597 3000 0.0376 0.0143 0.0435 0.9709 0.5889 0.8230
0.9917 3100 0.0366 - - - - -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.084 kWh
  • Carbon Emitted: 0.033 kg of CO2
  • Hours Used: 0.399 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.0.0.dev0
  • Transformers: 4.41.0.dev0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}