test / README.md
vcliang's picture
End of training
733abb4
|
raw
history blame
2.37 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results: []

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6850
  • Precision: 0.8936
  • Recall: 0.9136
  • F1: 0.9035
  • Accuracy: 0.8445

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 100 0.6682 0.7574 0.8311 0.7925 0.7658
No log 2.67 200 0.4970 0.8289 0.8833 0.8552 0.8339
No log 4.0 300 0.5550 0.8398 0.8882 0.8634 0.8128
No log 5.33 400 0.5001 0.8800 0.9106 0.8950 0.8500
0.5341 6.67 500 0.5645 0.8947 0.9036 0.8992 0.8456
0.5341 8.0 600 0.5797 0.8847 0.9190 0.9016 0.8537
0.5341 9.33 700 0.6635 0.8816 0.9101 0.8956 0.8421
0.5341 10.67 800 0.6857 0.8939 0.9126 0.9031 0.8452
0.5341 12.0 900 0.6777 0.8941 0.9146 0.9042 0.8438
0.1335 13.33 1000 0.6850 0.8936 0.9136 0.9035 0.8445

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0