metadata
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-base-DIALOCONAN-WIKI-CLS
results: []
deberta-base-DIALOCONAN-WIKI-CLS
This model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3425
- Precision: 0.7075
- Recall: 0.7106
- F1: 0.7090
- Accuracy: 0.9442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3743 | 1.0 | 2500 | 0.4070 | 0.6887 | 0.6918 | 0.6894 | 0.9183 |
0.2331 | 2.0 | 5000 | 0.3845 | 0.6980 | 0.7000 | 0.6989 | 0.9308 |
0.1176 | 3.0 | 7500 | 0.3425 | 0.7075 | 0.7106 | 0.7090 | 0.9442 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1