Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-small on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2119
  • Bleu: 30.93
  • Chrf: 49.09
  • Wer: 63.1247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.02
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Bleu Chrf Validation Loss Wer
2.7017 0.02 100 2.83 14.96 2.4392 169.5182
2.6732 0.04 200 7.27 22.72 1.9552 103.2868
2.1622 0.07 300 11.43 30.01 1.7297 108.2395
2.0314 0.09 400 12.96 31.0 1.6499 106.4385
1.7219 0.11 500 12.94 33.67 1.5543 107.6092
1.577 0.13 600 12.84 35.03 1.4812 118.5502
1.3569 0.1532 700 1.4559 19.94 38.08 84.2864
1.3401 0.1751 800 1.3855 13.39 36.11 126.4295
1.2272 0.1970 900 1.3764 24.39 41.75 70.7789
1.2793 0.2189 1000 1.3389 23.01 42.13 80.6844
1.0383 0.2408 1100 1.3125 23.42 43.59 82.3953
1.0485 0.2627 1200 1.2996 25.42 42.99 69.4732
1.0427 0.2846 1300 1.2996 29.24 45.36 65.6461
0.8174 0.3065 1400 1.2522 27.28 45.67 68.3926
0.7345 0.3284 1500 1.2349 26.35 46.78 79.1986
0.7551 0.3503 1600 1.2317 27.81 46.49 70.6439
0.6765 0.3722 1700 1.2062 27.62 47.46 70.9140
0.6613 0.3940 1800 1.2087 26.56 47.12 72.8050
0.6181 0.4159 1900 1.2139 29.91 48.76 65.2859
0.5809 0.4378 2000 1.2119 30.93 49.09 63.1247

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ymoslem/whisper-small-ga2en-v5.1

Finetuned
(1989)
this model

Datasets used to train ymoslem/whisper-small-ga2en-v5.1

Evaluation results

  • Bleu on IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
    self-reported
    30.930
  • Wer on IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
    self-reported
    63.125