zkdeng's picture
Model save
23804c3 verified
|
raw
history blame
3.48 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 20-finetuned-spiderTraining50-200
    results: []

20-finetuned-spiderTraining50-200

This model is a fine-tuned version of facebook/convnextv2-tiny-22k-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4409
  • Accuracy: 0.8909
  • Precision: 0.8899
  • Recall: 0.8922
  • F1: 0.8881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.4597 1.0 125 1.1828 0.6617 0.7065 0.6632 0.6495
1.2938 2.0 250 1.0667 0.6827 0.7244 0.6845 0.6701
1.1316 3.0 375 0.9465 0.7257 0.7828 0.7291 0.7280
0.7827 4.0 500 0.8576 0.7397 0.7701 0.7394 0.7372
0.7407 5.0 625 0.8084 0.7728 0.7876 0.7728 0.7636
0.6481 6.0 750 0.7537 0.7798 0.7999 0.7783 0.7765
0.5868 7.0 875 0.6406 0.8258 0.8341 0.8266 0.8224
0.4461 8.0 1000 0.7555 0.7768 0.7953 0.7736 0.7679
0.4984 9.0 1125 0.6601 0.8128 0.8260 0.8120 0.8059
0.3898 10.0 1250 0.7017 0.8108 0.8296 0.8079 0.8059
0.3262 11.0 1375 0.6199 0.8258 0.8341 0.8268 0.8212
0.3243 12.0 1500 0.6561 0.8188 0.8316 0.8256 0.8191
0.2914 13.0 1625 0.6037 0.8368 0.8504 0.8429 0.8351
0.2627 14.0 1750 0.5609 0.8529 0.8588 0.8557 0.8501
0.2457 15.0 1875 0.5266 0.8639 0.8674 0.8666 0.8613
0.2294 16.0 2000 0.5475 0.8589 0.8658 0.8608 0.8560
0.2088 17.0 2125 0.4929 0.8699 0.8726 0.8678 0.8672
0.2101 18.0 2250 0.4488 0.8799 0.8782 0.8775 0.8752
0.1767 19.0 2375 0.4543 0.8829 0.8824 0.8808 0.8782
0.1445 20.0 2500 0.4409 0.8909 0.8899 0.8922 0.8881

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3