Avinashc's picture
Add new SentenceTransformer model
807e410 verified
metadata
base_model: BAAI/bge-base-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The consolidated financial statements and accompanying notes listed in
      Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included
      elsewhere in this Annual Report on Form 10-K.
    sentences:
      - >-
        What is the carrying value of the indefinite-lived intangible assets
        related to the Certificate of Needs and Medicare licenses as of December
        31, 2023?
      - >-
        What sections of the Annual Report on Form 10-K contain the company's
        financial statements?
      - >-
        What was the effective tax rate excluding discrete net tax benefits for
        the year 2022?
  - source_sentence: >-
      Consumers are served through Amazon's online and physical stores with an
      emphasis on selection, price, and convenience.
    sentences:
      - >-
        What decision did the European Commission make on July 10, 2023
        regarding the United States?
      - >-
        What are the primary offerings to consumers through Amazon's online and
        physical stores?
      - >-
        What activities are included in the services and other revenue segment
        of General Motors Company?
  - source_sentence: >-
      Visa has traditionally referred to their structure of facilitating secure,
      reliable, and efficient money movement among consumers, issuing and
      acquiring financial institutions, and merchants as the 'four-party' model.
    sentences:
      - >-
        What model does Visa traditionally refer to regarding their transaction
        process among consumers, financial institutions, and merchants?
      - >-
        What percentage of Meta's U.S. workforce in 2023 were represented by
        people with disabilities, veterans, and members of the LGBTQ+ community?
      - >-
        What are the revenue sources for the Company’s Health Care Benefits
        Segment?
  - source_sentence: >-
      In addition to LinkedIn’s free services, LinkedIn offers monetized
      solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions,
      and Sales Solutions. Talent Solutions provide insights for workforce
      planning and tools to hire, nurture, and develop talent. Talent Solutions
      also includes Learning Solutions, which help businesses close critical
      skills gaps in times where companies are having to do more with existing
      talent.
    sentences:
      - >-
        What were the major factors contributing to the increased expenses
        excluding interest for Investor Services and Advisor Services in 2023?
      - >-
        What were the pre-tax earnings of the manufacturing sector in 2023,
        2022, and 2021?
      - What does LinkedIn's Talent Solutions include?
  - source_sentence: >-
      Management assessed the effectiveness of the company’s internal control
      over financial reporting as of December 31, 2023. In making this
      assessment, we used the criteria set forth by the Committee of Sponsoring
      Organizations of the Treadway Commission (COSO) in Internal
      Control—Integrated Framework (2013).
    sentences:
      - >-
        What criteria did Caterpillar Inc. use to assess the effectiveness of
        its internal control over financial reporting as of December 31, 2023?
      - What are the primary components of U.S. sales volumes for Ford?
      - >-
        What was the percentage increase in Schwab's common stock dividend in
        2022?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6514285714285715
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.79
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8228571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8785714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6514285714285715
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2633333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16457142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08785714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6514285714285715
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.79
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8228571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8785714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.765832517664664
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7298044217687073
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.733780107239095
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6471428571428571
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7828571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8228571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8685714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6471428571428571
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26095238095238094
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16457142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08685714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6471428571428571
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7828571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8228571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8685714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7588695496897898
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.723611111111111
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7284354380762504
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6257142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7614285714285715
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8214285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.87
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6257142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2538095238095238
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16428571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.087
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6257142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7614285714285715
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8214285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.87
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7469869474164086
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7076785714285712
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.711905388391952
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.62
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7371428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7828571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8485714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.62
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24571428571428572
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15657142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08485714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.62
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7371428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7828571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8485714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7301000101741961
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6927205215419503
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.697374681707091
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5728571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7014285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.73
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7828571428571428
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5728571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.23380952380952374
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.146
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07828571428571428
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5728571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7014285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.73
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7828571428571428
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6772252893840157
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.643600340136054
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6506393379163631
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Avinashc/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
    'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
    'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6514
cosine_accuracy@3 0.79
cosine_accuracy@5 0.8229
cosine_accuracy@10 0.8786
cosine_precision@1 0.6514
cosine_precision@3 0.2633
cosine_precision@5 0.1646
cosine_precision@10 0.0879
cosine_recall@1 0.6514
cosine_recall@3 0.79
cosine_recall@5 0.8229
cosine_recall@10 0.8786
cosine_ndcg@10 0.7658
cosine_mrr@10 0.7298
cosine_map@100 0.7338

Information Retrieval

Metric Value
cosine_accuracy@1 0.6471
cosine_accuracy@3 0.7829
cosine_accuracy@5 0.8229
cosine_accuracy@10 0.8686
cosine_precision@1 0.6471
cosine_precision@3 0.261
cosine_precision@5 0.1646
cosine_precision@10 0.0869
cosine_recall@1 0.6471
cosine_recall@3 0.7829
cosine_recall@5 0.8229
cosine_recall@10 0.8686
cosine_ndcg@10 0.7589
cosine_mrr@10 0.7236
cosine_map@100 0.7284

Information Retrieval

Metric Value
cosine_accuracy@1 0.6257
cosine_accuracy@3 0.7614
cosine_accuracy@5 0.8214
cosine_accuracy@10 0.87
cosine_precision@1 0.6257
cosine_precision@3 0.2538
cosine_precision@5 0.1643
cosine_precision@10 0.087
cosine_recall@1 0.6257
cosine_recall@3 0.7614
cosine_recall@5 0.8214
cosine_recall@10 0.87
cosine_ndcg@10 0.747
cosine_mrr@10 0.7077
cosine_map@100 0.7119

Information Retrieval

Metric Value
cosine_accuracy@1 0.62
cosine_accuracy@3 0.7371
cosine_accuracy@5 0.7829
cosine_accuracy@10 0.8486
cosine_precision@1 0.62
cosine_precision@3 0.2457
cosine_precision@5 0.1566
cosine_precision@10 0.0849
cosine_recall@1 0.62
cosine_recall@3 0.7371
cosine_recall@5 0.7829
cosine_recall@10 0.8486
cosine_ndcg@10 0.7301
cosine_mrr@10 0.6927
cosine_map@100 0.6974

Information Retrieval

Metric Value
cosine_accuracy@1 0.5729
cosine_accuracy@3 0.7014
cosine_accuracy@5 0.73
cosine_accuracy@10 0.7829
cosine_precision@1 0.5729
cosine_precision@3 0.2338
cosine_precision@5 0.146
cosine_precision@10 0.0783
cosine_recall@1 0.5729
cosine_recall@3 0.7014
cosine_recall@5 0.73
cosine_recall@10 0.7829
cosine_ndcg@10 0.6772
cosine_mrr@10 0.6436
cosine_map@100 0.6506

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 44.33 tokens
    • max: 289 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3). What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
    In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes. What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
    Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022. How much did the marketing expenses increase in the year ended December 31, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_768_cosine_map@100 dim_512_cosine_map@100 dim_256_cosine_map@100 dim_128_cosine_map@100 dim_64_cosine_map@100
0.64 1 0.7114 0.7030 0.6891 0.6658 0.6075
1.92 3 0.7323 0.7288 0.7106 0.6916 0.6464
2.56 4 0.7338 0.7284 0.7119 0.6974 0.6506
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.41.2
  • PyTorch: 2.2.0a0+6a974be
  • Accelerate: 0.27.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}