BlueBeagle's picture
End of training
02d68b0
|
raw
history blame
2.45 kB
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-xsum
    results: []

t5-small-finetuned-xsum

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4626
  • Rouge1: 10.9564
  • Rouge2: 4.685
  • Rougel: 10.3752
  • Rougelsum: 10.39
  • Gen Len: 15.9259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 3 2.0757 5.4388 1.552 5.2972 5.3409 16.6667
No log 2.0 6 1.9515 7.8036 3.5979 7.7847 7.8498 16.6667
No log 3.0 9 1.8397 7.8036 3.5979 7.7847 7.8498 16.8148
No log 4.0 12 1.7541 9.1266 4.3563 9.1926 9.2266 16.8148
No log 5.0 15 1.6738 9.2104 4.3563 9.3105 9.3533 16.5556
No log 6.0 18 1.5897 9.6908 4.3563 9.8162 9.8658 16.5185
No log 7.0 21 1.5435 9.5442 3.8683 9.6336 9.5258 16.7037
No log 8.0 24 1.5038 10.7654 4.4381 10.1637 10.1979 16.7037
No log 9.0 27 1.4776 10.7654 4.4381 10.1637 10.1979 16.1481
No log 10.0 30 1.4626 10.9564 4.685 10.3752 10.39 15.9259

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3