|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-xsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-xsum |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4626 |
|
- Rouge1: 10.9564 |
|
- Rouge2: 4.685 |
|
- Rougel: 10.3752 |
|
- Rougelsum: 10.39 |
|
- Gen Len: 15.9259 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 3 | 2.0757 | 5.4388 | 1.552 | 5.2972 | 5.3409 | 16.6667 | |
|
| No log | 2.0 | 6 | 1.9515 | 7.8036 | 3.5979 | 7.7847 | 7.8498 | 16.6667 | |
|
| No log | 3.0 | 9 | 1.8397 | 7.8036 | 3.5979 | 7.7847 | 7.8498 | 16.8148 | |
|
| No log | 4.0 | 12 | 1.7541 | 9.1266 | 4.3563 | 9.1926 | 9.2266 | 16.8148 | |
|
| No log | 5.0 | 15 | 1.6738 | 9.2104 | 4.3563 | 9.3105 | 9.3533 | 16.5556 | |
|
| No log | 6.0 | 18 | 1.5897 | 9.6908 | 4.3563 | 9.8162 | 9.8658 | 16.5185 | |
|
| No log | 7.0 | 21 | 1.5435 | 9.5442 | 3.8683 | 9.6336 | 9.5258 | 16.7037 | |
|
| No log | 8.0 | 24 | 1.5038 | 10.7654 | 4.4381 | 10.1637 | 10.1979 | 16.7037 | |
|
| No log | 9.0 | 27 | 1.4776 | 10.7654 | 4.4381 | 10.1637 | 10.1979 | 16.1481 | |
|
| No log | 10.0 | 30 | 1.4626 | 10.9564 | 4.685 | 10.3752 | 10.39 | 15.9259 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|