metadata
license: mit
tags:
- generated_from_trainer
datasets:
- lg-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: luganda-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lg-ner
type: lg-ner
config: lug
split: test
args: lug
metrics:
- name: Precision
type: precision
value: 0.9370212765957446
- name: Recall
type: recall
value: 0.9359591952394446
- name: F1
type: f1
value: 0.9364899347887723
- name: Accuracy
type: accuracy
value: 0.9824210946863764
luganda-ner-v1
This model is a fine-tuned version of xlm-roberta-base on the lg-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0908
- Precision: 0.9370
- Recall: 0.9360
- F1: 0.9365
- Accuracy: 0.9824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5792 | 1.0 | 609 | 0.2463 | 0.7259 | 0.7662 | 0.7455 | 0.9406 |
0.2271 | 2.0 | 1218 | 0.1587 | 0.8198 | 0.8782 | 0.8480 | 0.9607 |
0.1652 | 3.0 | 1827 | 0.1289 | 0.8612 | 0.8918 | 0.8762 | 0.9677 |
0.1266 | 4.0 | 2436 | 0.1083 | 0.8990 | 0.9059 | 0.9025 | 0.9744 |
0.081 | 5.0 | 3045 | 0.1043 | 0.9183 | 0.9147 | 0.9165 | 0.9767 |
0.0676 | 6.0 | 3654 | 0.0893 | 0.9261 | 0.9334 | 0.9297 | 0.9811 |
0.0565 | 7.0 | 4263 | 0.0877 | 0.9389 | 0.9368 | 0.9379 | 0.9813 |
0.0519 | 8.0 | 4872 | 0.0919 | 0.9404 | 0.9340 | 0.9372 | 0.9819 |
0.047 | 9.0 | 5481 | 0.0896 | 0.9376 | 0.9360 | 0.9368 | 0.9825 |
0.0379 | 10.0 | 6090 | 0.0908 | 0.9370 | 0.9360 | 0.9365 | 0.9824 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2