Criser2013's picture
End of training
5f5b38a verified
metadata
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
  - generated_from_trainer
datasets:
  - biobert_json
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER-finetuning-BETO-UNCASED-BIOBERT
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: biobert_json
          type: biobert_json
          config: Biobert_json
          split: validation
          args: Biobert_json
        metrics:
          - name: Precision
            type: precision
            value: 0.9467966573816156
          - name: Recall
            type: recall
            value: 0.9626168224299065
          - name: F1
            type: f1
            value: 0.9546412020783598
          - name: Accuracy
            type: accuracy
            value: 0.9762832612799123

NER-finetuning-BETO-UNCASED-BIOBERT

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1165
  • Precision: 0.9468
  • Recall: 0.9626
  • F1: 0.9546
  • Accuracy: 0.9763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3684 1.0 612 0.1093 0.9356 0.9523 0.9438 0.9708
0.1191 2.0 1224 0.1026 0.9388 0.9674 0.9529 0.9746
0.0842 3.0 1836 0.1011 0.9394 0.9690 0.9539 0.9754
0.0657 4.0 2448 0.0986 0.9468 0.9682 0.9574 0.9779
0.0437 5.0 3060 0.0988 0.9499 0.9649 0.9573 0.9772
0.0395 6.0 3672 0.1070 0.9446 0.9645 0.9545 0.9757
0.0311 7.0 4284 0.1110 0.9459 0.9673 0.9565 0.9766
0.0302 8.0 4896 0.1141 0.9449 0.9635 0.9541 0.9763
0.023 9.0 5508 0.1133 0.9485 0.9641 0.9563 0.9770
0.0198 10.0 6120 0.1165 0.9468 0.9626 0.9546 0.9763

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0