|
--- |
|
library_name: transformers |
|
base_model: dccuchile/bert-base-spanish-wwm-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biobert_json |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NER-finetuning-BETO-UNCASED-BIOBERT |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: biobert_json |
|
type: biobert_json |
|
config: Biobert_json |
|
split: validation |
|
args: Biobert_json |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9467966573816156 |
|
- name: Recall |
|
type: recall |
|
value: 0.9626168224299065 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9546412020783598 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9762832612799123 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NER-finetuning-BETO-UNCASED-BIOBERT |
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1165 |
|
- Precision: 0.9468 |
|
- Recall: 0.9626 |
|
- F1: 0.9546 |
|
- Accuracy: 0.9763 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3684 | 1.0 | 612 | 0.1093 | 0.9356 | 0.9523 | 0.9438 | 0.9708 | |
|
| 0.1191 | 2.0 | 1224 | 0.1026 | 0.9388 | 0.9674 | 0.9529 | 0.9746 | |
|
| 0.0842 | 3.0 | 1836 | 0.1011 | 0.9394 | 0.9690 | 0.9539 | 0.9754 | |
|
| 0.0657 | 4.0 | 2448 | 0.0986 | 0.9468 | 0.9682 | 0.9574 | 0.9779 | |
|
| 0.0437 | 5.0 | 3060 | 0.0988 | 0.9499 | 0.9649 | 0.9573 | 0.9772 | |
|
| 0.0395 | 6.0 | 3672 | 0.1070 | 0.9446 | 0.9645 | 0.9545 | 0.9757 | |
|
| 0.0311 | 7.0 | 4284 | 0.1110 | 0.9459 | 0.9673 | 0.9565 | 0.9766 | |
|
| 0.0302 | 8.0 | 4896 | 0.1141 | 0.9449 | 0.9635 | 0.9541 | 0.9763 | |
|
| 0.023 | 9.0 | 5508 | 0.1133 | 0.9485 | 0.9641 | 0.9563 | 0.9770 | |
|
| 0.0198 | 10.0 | 6120 | 0.1165 | 0.9468 | 0.9626 | 0.9546 | 0.9763 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|