metadata
base_model: klue/roberta-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:574408
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
widget:
- source_sentence: 한 여성이 뜨거운 물 냄비에 음식을 넣고 있다.
sentences:
- 한 여성이 고기를 튀기고 있다.
- '세계 브리핑 아시아 : 미얀마 : 치명적인 반 무슬림 폭력 사태가 폭발했다.'
- 아기가 잠들고 있다.
- source_sentence: 러시아 비행기 추락 사고로 사망자 수 증가
sentences:
- 이탈리아 코치 추락으로 사망자 수가 39명으로 증가
- 헬리콥터 펍 추락 후 사망 두려워하는 세 명
- 흑백 개는 입에 갈색 물체를 물고 헤엄친다.
- source_sentence: 거울에 비친 한 여자가 옆에 있는 다른 여자와 함께 카메라를 외면하고 앉아 있었다.
sentences:
- 보도 위를 걷는 여자와 함께 길을 건너는 흑인 여성의 뒷모습.
- 여자가 거울을 응시하고 있다
- 한 여성이 햄버거를 응시하고 있다
- source_sentence: 스키를 탄 사람이 공중으로 뛰어오른다.
sentences:
- 밖에 한 남자가 있다.
- 그는 눈 위를 달리고 있다.
- 그는 스키를 타고 공중으로 뛰어올랐다.
- source_sentence: 내 옆이나 내 뒤에, 경외심을 느끼며 언더톤으로 말했다.
sentences:
- 그는 나와는 거리가 멀었다.
- FSIS는 접수된 의견과 기관의 요구 사항 재평가를 고려하여 연간 부담을 8,053,319시간으로 줄였습니다.
- 그는 나와 가까웠다.
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8657393669442817
name: Pearson Cosine
- type: spearman_cosine
value: 0.866343037897214
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8568809906017532
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8621129068016818
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8569880055215549
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8620159980137003
name: Spearman Euclidean
- type: pearson_dot
value: 0.8382433069709427
name: Pearson Dot
- type: spearman_dot
value: 0.8359003576467027
name: Spearman Dot
- type: pearson_max
value: 0.8657393669442817
name: Pearson Max
- type: spearman_max
value: 0.866343037897214
name: Spearman Max
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'내 옆이나 내 뒤에, 경외심을 느끼며 언더톤으로 말했다.',
'그는 나와 가까웠다.',
'그는 나와는 거리가 멀었다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8657 |
spearman_cosine | 0.8663 |
pearson_manhattan | 0.8569 |
spearman_manhattan | 0.8621 |
pearson_euclidean | 0.857 |
spearman_euclidean | 0.862 |
pearson_dot | 0.8382 |
spearman_dot | 0.8359 |
pearson_max | 0.8657 |
spearman_max | 0.8663 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 568,640 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 19.2 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 18.3 tokens
- max: 93 tokens
- min: 4 tokens
- mean: 14.64 tokens
- max: 54 tokens
- Samples:
sentence_0 sentence_1 sentence_2 발생 부하가 함께 5% 적습니다.
발생 부하의 5% 감소와 함께 11.
발생 부하가 5% 증가합니다.
어떤 행사를 위해 음식과 옷을 배급하는 여성들.
여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.
여자들이 사막에서 오토바이를 운전하고 있다.
어린 아이들은 그 지식을 얻을 필요가 있다.
응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.
젊은 사람들은 배울 필요가 없다.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 5,768 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 17.14 tokens
- max: 53 tokens
- min: 3 tokens
- mean: 17.21 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label 식품의약품관리국은 셔디 리서치를 인용하여 2001년 IMClone의 에르비턱스 판매 신청을 거절했다.
미국 식품의약국은 2001년 12월 이 재판이 부실하게 진행되었다고 말하면서 이클론의 원래 신청을 거부했다.
0.5599999999999999
이슬람 주도의 이집트 , 콥트 교회 이름은 새로운 교황이다
이집트 기독교인들은 새로운 교황을 선택한다
0.64
시리아 주지사는 공격을 중단하지 않는다
시리아 야당, '학살' 보고
0.2
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 5batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | sts-dev_spearman_max |
---|---|---|---|
0.3467 | 500 | 0.419 | - |
0.6935 | 1000 | 0.3032 | 0.8516 |
1.0007 | 1443 | - | 0.8605 |
1.0395 | 1500 | 0.2705 | - |
1.3863 | 2000 | 0.1368 | 0.8509 |
1.7330 | 2500 | 0.0906 | - |
2.0007 | 2886 | - | 0.8663 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}