|
---
|
|
configs:
|
|
- config_name: hotpotqa-corpus
|
|
data_files:
|
|
- split: train
|
|
path: hotpotqa/corpus/*
|
|
- config_name: hotpotqa-queries
|
|
data_files:
|
|
- split: train
|
|
path: hotpotqa/queries/train.parquet
|
|
- split: dev
|
|
path: hotpotqa/queries/dev.parquet
|
|
- split: test
|
|
path: hotpotqa/queries/test.parquet
|
|
- config_name: hotpotqa-qrels
|
|
data_files:
|
|
- split: train
|
|
path: hotpotqa/qrels/train.parquet
|
|
- split: dev
|
|
path: hotpotqa/qrels/dev.parquet
|
|
- split: test
|
|
path: hotpotqa/qrels/test.parquet
|
|
- config_name: msmarco-corpus
|
|
data_files:
|
|
- split: train
|
|
path: msmarco/corpus/*
|
|
- config_name: msmarco-queries
|
|
data_files:
|
|
- split: train
|
|
path: msmarco/queries/train.parquet
|
|
- split: dev
|
|
path: msmarco/queries/dev.parquet
|
|
- config_name: msmarco-qrels
|
|
data_files:
|
|
- split: train
|
|
path: msmarco/qrels/train.parquet
|
|
- split: dev
|
|
path: msmarco/qrels/dev.parquet
|
|
- config_name: nfcorpus-corpus
|
|
data_files:
|
|
- split: train
|
|
path: nfcorpus/corpus/*
|
|
- config_name: nfcorpus-queries
|
|
data_files:
|
|
- split: train
|
|
path: nfcorpus/queries/train.parquet
|
|
- split: dev
|
|
path: nfcorpus/queries/dev.parquet
|
|
- split: test
|
|
path: nfcorpus/queries/test.parquet
|
|
- config_name: nfcorpus-qrels
|
|
data_files:
|
|
- split: train
|
|
path: nfcorpus/qrels/train.parquet
|
|
- split: dev
|
|
path: nfcorpus/qrels/dev.parquet
|
|
- split: test
|
|
path: nfcorpus/qrels/test.parquet
|
|
---
|
|
|
|
# BEIR embeddings with Cohere embed-english-v3.0 model
|
|
|
|
This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.
|
|
|
|
|
|
## Overview of datasets
|
|
|
|
This repository hosts all 18 datasets from BEIR, including query and document embeddings. The following table gives an overview of the available datasets.
|
|
See the next section how to load the individual datasets.
|
|
|
|
| Dataset | #Test Queries | #Documents
|
|
| --- | ---- | --- |
|
|
| nfcorpus | | 3633 |
|
|
|
|
|
|
|
|
## Loading the dataset
|
|
|
|
### Loading the document embeddings
|
|
The `corpus` split contains all document embeddings of the corpus.
|
|
|
|
You can either load the dataset like this:
|
|
```python
|
|
from datasets import load_dataset
|
|
dataset_name = "hotpotqa"
|
|
docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
|
|
```
|
|
|
|
Or you can also stream it without downloading it before:
|
|
```python
|
|
from datasets import load_dataset
|
|
dataset_name = "hotpotqa"
|
|
docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)
|
|
for doc in docs:
|
|
doc_id = doc['_id']
|
|
title = doc['title']
|
|
text = doc['text']
|
|
emb = doc['emb']
|
|
```
|
|
|
|
Note, depending on the dataset size, the corpus split can be quite large.
|
|
|
|
### Loading the query embeddings
|
|
The `queries` split contains all query embeddings. There might be up to three splits: `train`, `dev`, and `test`, depending which splits are available in BEIR. Evaluation is performed on the `test` split.
|
|
|
|
You can load the dataset like this:
|
|
```python
|
|
from datasets import load_dataset
|
|
dataset_name = "hotpotqa"
|
|
queries = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split="test")
|
|
|
|
for query in queries:
|
|
query_id = query['_id']
|
|
text = query['text']
|
|
emb = query['emb']
|
|
```
|
|
|
|
|
|
### Loading the qrels
|
|
|
|
The `qrels` split contains the query relevance annotation, i.e., it contains the relevance score for (query, document) pairs.
|
|
|
|
|
|
You can load the dataset like this:
|
|
```python
|
|
from datasets import load_dataset
|
|
dataset_name = "hotpotqa"
|
|
qrels = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split="test")
|
|
|
|
for qrel in qrels:
|
|
query_id = qrel['query_id']
|
|
corpus_id = qrel['corpus_id']
|
|
score = qrel['score']
|
|
```
|
|
|
|
## Search
|
|
The following shows an example, how the dataset can be used to build a semantic search application.
|
|
|
|
Get your API key from [cohere.com](https://cohere.com) and start using this dataset.
|
|
|
|
```python
|
|
#Run: pip install cohere datasets torch
|
|
from datasets import load_dataset
|
|
import torch
|
|
import cohere
|
|
dataset_name = "hotpotqa"
|
|
co = cohere.Client("<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com
|
|
|
|
#Load at max 1000 documents + embeddings
|
|
max_docs = 1000
|
|
docs_stream = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)
|
|
docs = []
|
|
doc_embeddings = []
|
|
for doc in docs_stream:
|
|
docs.append(doc)
|
|
doc_embeddings.append(doc['emb'])
|
|
if len(docs) >= max_docs:
|
|
break
|
|
|
|
doc_embeddings = torch.tensor(doc_embeddings)
|
|
|
|
query = 'What is an abstract' #Your query
|
|
response = co.embed(texts=[query], model='embed-english-v3.0', input_type='search_query')
|
|
query_embedding = response.embeddings
|
|
query_embedding = torch.tensor(query_embedding)
|
|
|
|
# Compute dot score between query embedding and document embeddings
|
|
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
|
|
top_k = torch.topk(dot_scores, k=3)
|
|
|
|
# Print results
|
|
print("Query:", query)
|
|
for doc_id in top_k.indices[0].tolist():
|
|
print(docs[doc_id]['title'])
|
|
print(docs[doc_id]['text'], "\n")
|
|
```
|
|
|
|
|
|
## Running evaluations
|
|
|
|
This dataset allows to reproduce the [BEIR](https://github.com/beir-cellar/beir) performance results and to compute nDCG@10, Recall@10, and Accuracy@3.
|
|
|
|
You must have `beir`, `faiss`, `numpy`, and `datasets` installed. The following scripts loads all files, runs search and computes the search quality metrices.
|
|
|
|
```python
|
|
import numpy as np
|
|
import faiss
|
|
from beir.retrieval.evaluation import EvaluateRetrieval
|
|
import time
|
|
from datasets import load_dataset
|
|
|
|
def faiss_search(index, queries_emb, k=[10, 100]):
|
|
start_time = time.time()
|
|
faiss_scores, faiss_doc_ids = index.search(queries_emb, max(k))
|
|
print(f"Search took {(time.time()-start_time):.2f} sec")
|
|
|
|
query2id = {idx: qid for idx, qid in enumerate(query_ids)}
|
|
doc2id = {idx: cid for idx, cid in enumerate(docs_ids)}
|
|
|
|
faiss_results = {}
|
|
for idx in range(0, len(faiss_scores)):
|
|
qid = query2id[idx]
|
|
doc_scores = {doc2id[doc_id]: score.item() for doc_id, score in zip(faiss_doc_ids[idx], faiss_scores[idx])}
|
|
faiss_results[qid] = doc_scores
|
|
|
|
ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(qrels, faiss_results, k)
|
|
acc = EvaluateRetrieval.evaluate_custom(qrels, faiss_results, [3, 5, 10], metric="acc")
|
|
print(ndcg)
|
|
print(recall)
|
|
print(acc)
|
|
|
|
dataset_name = "<<DATASET_NAME>>"
|
|
dataset_split = "test"
|
|
num_dim = 1024
|
|
|
|
#Load qrels
|
|
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split=dataset_split)
|
|
qrels = {}
|
|
for row in df:
|
|
qid = row['query_id']
|
|
cid = row['corpus_id']
|
|
|
|
if row['score'] > 0:
|
|
if qid not in qrels:
|
|
qrels[qid] = {}
|
|
qrels[qid][cid] = row['score']
|
|
|
|
#Load queries
|
|
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split=dataset_split)
|
|
|
|
query_ids = df['_id']
|
|
query_embs = np.asarray(df['emb'])
|
|
print("Query embeddings:", query_embs.shape)
|
|
|
|
#Load corpus
|
|
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
|
|
|
|
docs_ids = df['_id']
|
|
|
|
#Build index
|
|
print("Build index. This might take some time")
|
|
index = faiss.IndexFlatIP(num_dim)
|
|
index.add(np.asarray(df.to_pandas()['emb'].tolist()))
|
|
|
|
#Run and evaluate search
|
|
print("Seach on index")
|
|
faiss_search(index, query_embs)
|
|
```
|
|
|
|
## Notes
|
|
- This dataset was created with `datasets==2.15.0`. Make sure to use this or a newer version of the datasets library.
|
|
|
|
|
|
|
|
|