paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ab2aaa99-7126-41fe-9b38-80290269be7f | anda-a-novel-data-augmentation-technique | 1910.01256 | null | https://arxiv.org/abs/1910.01256v1 | https://arxiv.org/pdf/1910.01256v1.pdf | ANDA: A Novel Data Augmentation Technique Applied to Salient Object Detection | In this paper, we propose a novel data augmentation technique (ANDA) applied to the Salient Object Detection (SOD) context. Standard data augmentation techniques proposed in the literature, such as image cropping, rotation, flipping, and resizing, only generate variations of the existing examples, providing a limited generalization. Our method has the novelty of creating new images, by combining an object with a new background while retaining part of its salience in this new context; To do so, the ANDA technique relies on the linear combination between labeled salient objects and new backgrounds, generated by removing the original salient object in a process known as image inpainting. Our proposed technique allows for more precise control of the object's position and size while preserving background information. Aiming to evaluate our proposed method, we trained multiple deep neural networks and compared the effect that our technique has in each one. We also compared our method with other data augmentation techniques. Our findings show that depending on the network improvement can be up to 14.1% in the F-measure and decay of up to 2.6% in the Mean Absolute Error. | ['Bruno A. Krinski', 'Eduardo Todt', 'Daniel V. Ruiz'] | 2019-10-03 | null | null | null | null | ['image-cropping'] | ['computer-vision'] | [ 8.19587648e-01 3.52030218e-01 5.10958880e-02 1.47861764e-02
-1.85755238e-01 -3.42856556e-01 6.91986382e-01 4.30024683e-01
-5.81210852e-01 7.64021337e-01 1.88275352e-01 2.34177932e-02
2.79598206e-01 -7.45299995e-01 -9.97639894e-01 -9.10137475e-01
1.19496271e-01 1.32088372e-02 5.59400320e-01 -1.79297552e-01
3.38167340e-01 7.65082181e-01 -1.77420938e+00 1.01099551e-01
7.81090796e-01 9.20310616e-01 4.04774457e-01 4.14509058e-01
-2.04215363e-01 9.29158032e-01 -8.56491983e-01 -1.15122810e-01
5.71144164e-01 -4.53661829e-01 -7.27911592e-01 3.64058465e-01
7.10983276e-01 -3.48314613e-01 -1.38531372e-01 8.77140820e-01
4.26611662e-01 2.08335444e-01 3.37843299e-01 -1.14041841e+00
-6.86959386e-01 4.12166953e-01 -1.04242802e+00 3.29374731e-01
1.23668075e-01 -9.46571305e-02 4.96221989e-01 -8.63909960e-01
7.81294048e-01 9.16463554e-01 5.52716017e-01 7.30932415e-01
-1.35731137e+00 -4.77238923e-01 2.38844976e-01 7.36012608e-02
-1.08266544e+00 -3.76416773e-01 1.09413338e+00 -2.61069089e-01
5.05262792e-01 4.28367555e-01 7.32176661e-01 8.39515567e-01
-7.30116665e-02 7.59292483e-01 1.24016035e+00 -9.40278292e-01
2.67938554e-01 2.70654470e-01 -2.39822678e-02 3.67535144e-01
5.02783716e-01 -1.27650753e-01 -3.28548461e-01 -1.29889976e-02
8.57091963e-01 5.81608154e-02 -1.56124219e-01 -6.61498189e-01
-1.14526427e+00 5.97631991e-01 5.82842588e-01 3.74958813e-01
-4.45237696e-01 1.24089807e-01 2.90106505e-01 -1.63062707e-01
5.25036275e-01 5.18629670e-01 -2.44159326e-01 3.31815600e-01
-1.01796150e+00 4.00235802e-01 2.87344605e-01 7.61615694e-01
7.57107377e-01 2.40243390e-01 -3.55188131e-01 6.31603956e-01
-1.37612090e-01 2.67162800e-01 7.23528683e-01 -7.57627785e-01
1.76144630e-01 6.88001037e-01 3.19257081e-01 -1.17874372e+00
-4.25850958e-01 -4.40607399e-01 -6.73364103e-01 5.95929980e-01
5.22004187e-01 -2.12301910e-01 -1.25541079e+00 1.97346926e+00
5.65318227e-01 2.89201766e-01 -2.98773032e-02 7.15177894e-01
5.51504612e-01 5.02730489e-01 2.21848190e-01 -2.90978491e-01
1.24386537e+00 -1.02656853e+00 -8.66634429e-01 -4.32567835e-01
2.97354460e-01 -1.02761137e+00 1.06537974e+00 2.85239160e-01
-1.31290781e+00 -6.72604978e-01 -1.17730296e+00 -8.86665881e-02
-5.00534058e-01 9.48743597e-02 4.30446357e-01 5.73233485e-01
-1.15130317e+00 5.91452003e-01 -6.45446360e-01 -4.70121205e-01
4.35212404e-01 3.44936609e-01 -3.81301343e-01 2.69103289e-01
-8.22884560e-01 1.12003505e+00 3.83094788e-01 -2.26471573e-01
-6.15105987e-01 -6.88220918e-01 -7.29242265e-01 1.45369366e-01
4.50656056e-01 -5.57870567e-01 1.03631103e+00 -1.28009975e+00
-1.20700884e+00 8.66484463e-01 -1.81536242e-01 -7.93963969e-01
5.67757607e-01 -5.14181077e-01 -1.61087468e-01 1.36389390e-01
4.38064374e-02 9.55889583e-01 1.19355786e+00 -1.51383746e+00
-5.51460922e-01 -2.72656411e-01 1.00868933e-01 8.19837004e-02
-3.16244423e-01 9.32074338e-02 -1.67614743e-01 -1.07155848e+00
7.74068981e-02 -8.86504591e-01 -3.18352342e-01 9.07194242e-02
-1.53354511e-01 3.71994555e-01 1.36653256e+00 -7.90039241e-01
1.14377272e+00 -2.29180479e+00 -2.62202206e-03 -7.52491206e-02
3.24308962e-01 6.30652249e-01 -1.62446320e-01 3.18562835e-01
-4.12017077e-01 2.08188873e-02 -4.80085671e-01 -4.62360084e-01
-4.15369481e-01 1.40758023e-01 -3.72293949e-01 2.98559844e-01
6.32868111e-01 6.20944262e-01 -8.39200377e-01 -4.66993690e-01
4.05956686e-01 6.26812696e-01 -4.98282641e-01 -3.32227759e-02
-9.26470682e-02 3.12513918e-01 1.01850867e-01 4.37047571e-01
9.48776186e-01 7.96264634e-02 -6.02613240e-02 -1.65694803e-01
-2.41814807e-01 6.30115718e-02 -1.27661598e+00 1.40277243e+00
-2.66068012e-01 7.35936284e-01 -4.72555980e-02 -9.05379951e-01
1.07124758e+00 -3.31106223e-02 3.84734243e-01 -6.58478439e-01
1.42888099e-01 -3.87349129e-02 1.05121560e-01 -3.09604615e-01
9.21293437e-01 -2.13888008e-02 3.44206959e-01 2.95379579e-01
-2.22228065e-01 2.68293411e-01 3.38330418e-01 1.39185935e-01
9.03131127e-01 2.07376495e-01 4.61207896e-01 -1.72323972e-01
3.99379820e-01 -1.85958609e-01 4.62613732e-01 7.51105070e-01
-2.68368006e-01 8.79156530e-01 3.93795460e-01 -4.43427771e-01
-1.30973446e+00 -7.79863179e-01 3.24278809e-02 9.11395550e-01
2.09225222e-01 -1.99666396e-02 -9.02997315e-01 -6.88779712e-01
-1.06732227e-01 6.73024833e-01 -9.43934798e-01 -3.24933082e-01
-7.66032279e-01 -8.67134690e-01 1.72722667e-01 5.66176474e-01
6.84272468e-01 -1.26763165e+00 -1.09362268e+00 1.08452283e-01
-1.42394193e-02 -1.05842221e+00 -3.46838176e-01 2.15527937e-01
-9.92747605e-01 -8.35075319e-01 -9.07735765e-01 -8.38882327e-01
9.89280522e-01 5.34558654e-01 9.85601366e-01 1.66373789e-01
-3.35142881e-01 1.13774324e-02 -4.96533006e-01 -6.38038754e-01
-4.95082885e-01 -1.02569766e-01 -7.21764788e-02 2.25586280e-01
2.06761993e-02 -5.98870635e-01 -6.16737425e-01 6.76915273e-02
-1.30929375e+00 2.92035729e-01 7.48610497e-01 7.18386352e-01
3.85586470e-01 -8.41180608e-02 5.60350060e-01 -9.28354502e-01
4.11018372e-01 -1.84119299e-01 -5.42387366e-01 1.90453697e-02
-4.83172864e-01 1.07122421e-01 4.26881582e-01 -6.78990543e-01
-1.10459626e+00 3.89109462e-01 1.32985607e-01 -4.67459142e-01
-2.07553595e-01 2.57860664e-02 6.42900961e-03 -3.48848522e-01
7.62673557e-01 2.04001322e-01 -8.44000280e-03 -4.51470584e-01
5.15863180e-01 2.34751672e-01 6.34584844e-01 -2.09045112e-01
8.83952439e-01 7.55598903e-01 1.61146149e-01 -6.26522481e-01
-7.69337296e-01 -2.63635516e-01 -8.48943412e-01 -1.18249379e-01
5.99328101e-01 -5.99181533e-01 -1.71028346e-01 4.96887892e-01
-1.16310561e+00 -1.10877819e-01 -7.41137743e-01 2.00706691e-01
-2.98115075e-01 4.60444540e-01 -2.04173937e-01 -8.90564680e-01
-2.98991889e-01 -8.55752885e-01 8.47128332e-01 3.94661963e-01
-2.23356292e-01 -6.38404250e-01 -1.60186499e-01 1.40299471e-02
6.94434166e-01 7.25906253e-01 7.72066653e-01 -6.19582236e-01
-4.12194461e-01 -2.60656595e-01 -3.10720205e-01 4.89702255e-01
3.88562351e-01 -6.10610545e-02 -1.01567614e+00 -2.47453481e-01
1.48181170e-01 7.99766406e-02 8.44909370e-01 4.40854907e-01
1.12567389e+00 -3.48553747e-01 -2.84952879e-01 1.45936877e-01
1.38876402e+00 3.97160351e-01 8.79019737e-01 6.70066237e-01
5.82970619e-01 5.35292685e-01 6.27542555e-01 3.92346203e-01
-2.96881884e-01 6.86012447e-01 6.72326148e-01 -5.83186328e-01
-5.55642486e-01 4.47731512e-03 5.03485985e-02 2.12248400e-01
-1.43175870e-01 7.84915015e-02 -5.58568299e-01 7.99128830e-01
-1.71990991e+00 -9.34111893e-01 2.37835571e-02 2.44680977e+00
8.60943675e-01 3.17167759e-01 2.60219634e-01 3.80150914e-01
8.95102143e-01 1.62206754e-01 -3.43651026e-01 -4.08560365e-01
-1.77103505e-01 3.67143005e-01 6.81753993e-01 4.17831153e-01
-1.13119030e+00 7.45155632e-01 6.44363928e+00 5.47228575e-01
-1.31037521e+00 -8.20197016e-02 5.93736827e-01 -2.17104211e-01
-1.25027085e-02 3.23859565e-02 -6.60743773e-01 4.98647034e-01
5.02587557e-01 -8.22715834e-02 2.67873973e-01 8.81397307e-01
2.38074675e-01 -4.56466168e-01 -7.13296413e-01 7.16601074e-01
4.29162890e-01 -1.17424750e+00 2.63247788e-01 -2.86058784e-02
7.82952547e-01 -4.69356984e-01 1.18309990e-01 8.21919590e-02
-1.59360051e-01 -5.60928822e-01 8.16417217e-01 3.46927136e-01
3.34746569e-01 -8.45724165e-01 7.55230546e-01 1.58053904e-03
-6.59895003e-01 -1.37080774e-01 -1.20088339e-01 -3.36958081e-01
8.78664106e-03 5.98221838e-01 -1.07322359e+00 3.09961289e-01
5.83733618e-01 1.93715587e-01 -8.13486278e-01 1.10320437e+00
-7.92130679e-02 4.22029942e-01 -2.52822757e-01 2.16010332e-01
3.48010547e-02 -3.28186452e-02 6.38013184e-01 1.12573946e+00
2.19711438e-01 -2.38049537e-01 -1.55735254e-01 9.24515426e-01
-1.60439417e-01 1.55264020e-01 -5.18244028e-01 2.44948044e-01
3.43638659e-01 1.28987384e+00 -1.00057709e+00 -5.74537575e-01
-3.31128418e-01 1.01515830e+00 1.28713235e-01 1.36992857e-01
-8.22087646e-01 -5.38262486e-01 2.95768321e-01 5.01011193e-01
4.87097144e-01 4.61172611e-02 -3.91755968e-01 -8.02815318e-01
3.23810130e-01 -6.69752896e-01 6.74040094e-02 -9.68652725e-01
-8.57733011e-01 6.05002880e-01 2.01051861e-01 -1.17051494e+00
-2.24498324e-02 -4.06226873e-01 -4.97463226e-01 8.07415783e-01
-1.47929358e+00 -1.19173598e+00 -5.33929348e-01 2.70852357e-01
5.65726995e-01 7.18722306e-03 5.56088269e-01 3.96403760e-01
-5.31828761e-01 3.39566797e-01 -5.89629263e-02 -3.61556262e-02
6.73585474e-01 -1.20777965e+00 5.36798060e-01 1.24341357e+00
-4.03306866e-03 5.22868514e-01 1.10322857e+00 -5.28750062e-01
-7.52637327e-01 -1.08736610e+00 7.67600119e-01 -1.95195898e-01
3.62354577e-01 -3.56811851e-01 -1.14099801e+00 6.42851710e-01
3.64032954e-01 1.09833844e-01 1.66285947e-01 -2.46394768e-01
-2.02188268e-01 -1.62537903e-01 -1.46431684e+00 7.75425375e-01
6.87032104e-01 3.56702097e-02 -5.49947917e-01 8.05629231e-03
7.67235160e-01 -4.50003266e-01 -2.21343011e-01 5.23405254e-01
3.10645103e-01 -1.08981872e+00 1.01467097e+00 -5.05499125e-01
5.80871880e-01 -5.61922967e-01 9.06102657e-02 -1.11813998e+00
-3.44728798e-01 -4.64387268e-01 -2.23369494e-01 1.29385281e+00
6.51745424e-02 -4.58962560e-01 9.29744482e-01 4.62773681e-01
-8.92800540e-02 -5.69167554e-01 -7.57473826e-01 -5.46515822e-01
-2.70584404e-01 -1.20013794e-02 3.93972427e-01 9.69126225e-01
-3.61090690e-01 -1.09070409e-02 -6.00969136e-01 1.96364343e-01
4.72043395e-01 -4.21700440e-02 8.88331532e-01 -1.09720659e+00
-1.44891888e-01 -3.22774500e-01 -4.76168066e-01 -4.86591876e-01
-2.97149122e-01 -4.61036772e-01 -1.76556572e-01 -1.25215471e+00
3.22089344e-01 -1.97747454e-01 -4.17355627e-01 6.60541236e-01
-3.27960759e-01 4.83496517e-01 5.20411253e-01 -5.29393293e-02
-1.93638310e-01 3.32271010e-01 1.20937586e+00 -3.61610844e-04
-4.14814740e-01 -1.92973316e-01 -8.25460792e-01 8.40665698e-01
9.29928541e-01 -4.81007665e-01 -2.36540049e-01 -3.25916946e-01
-8.09856355e-02 -5.28117836e-01 5.63594580e-01 -1.28331590e+00
-2.07269847e-01 4.09456007e-02 6.89647794e-01 -4.95650023e-01
3.56432259e-01 -8.73212278e-01 -1.11226641e-01 5.92366040e-01
-2.42996886e-01 3.54348123e-02 8.24838936e-01 3.84032249e-01
-9.52080041e-02 -3.84037971e-01 1.07650661e+00 -7.18064085e-02
-7.65324831e-01 -3.67965966e-01 -2.81624436e-01 -3.19704980e-01
1.22129035e+00 -3.60665053e-01 -2.34903619e-01 -3.04518789e-01
-7.94166923e-01 -3.36110622e-01 5.50926626e-01 4.24632311e-01
4.58951920e-01 -1.20649993e+00 -4.90211964e-01 3.32540065e-01
-8.64318982e-02 -1.17815332e-02 1.38958588e-01 7.82121181e-01
-5.47369480e-01 6.13649599e-02 -6.74521387e-01 -3.52533311e-01
-1.55741847e+00 9.81145144e-01 1.37592703e-01 -1.75821587e-01
-5.11887074e-01 5.06332695e-01 3.98309678e-01 7.90371522e-02
1.93207398e-01 -5.25564551e-01 -2.57638723e-01 -1.78038143e-02
6.72214806e-01 3.45988244e-01 1.20391294e-01 -4.89180654e-01
-1.86664417e-01 3.91466528e-01 -3.99405271e-01 5.64542338e-02
1.14100635e+00 -4.35780026e-02 -7.60850459e-02 2.89051980e-01
7.82672405e-01 4.17428613e-01 -1.26258790e+00 -1.95957080e-01
-1.40826970e-01 -6.70638502e-01 1.09316565e-01 -8.40424001e-01
-1.04934990e+00 6.57745361e-01 9.23753142e-01 3.84648114e-01
1.57909989e+00 -2.20201254e-01 5.69408834e-01 -3.89068164e-02
1.12491632e-02 -8.92427146e-01 6.94333240e-02 1.13800891e-01
1.03277564e+00 -1.20201695e+00 1.99508697e-01 -5.36490738e-01
-5.14585018e-01 7.84017026e-01 7.02903032e-01 -2.63580352e-01
1.92885607e-01 3.31514597e-01 4.88395952e-02 1.27287969e-01
-4.31312084e-01 -2.85845131e-01 4.75031137e-02 6.80854380e-01
2.75052458e-01 -3.04535747e-01 -5.11165857e-01 1.12017758e-01
4.08370756e-02 9.97373485e-04 7.78647900e-01 1.25596547e+00
-5.18746138e-01 -1.06299567e+00 -7.04462349e-01 1.80890054e-01
-5.74947417e-01 -1.36783317e-01 -4.92139369e-01 1.12088966e+00
3.38148177e-01 5.40308237e-01 1.80691406e-01 -1.21357165e-01
4.43521380e-01 8.32505990e-03 4.20217156e-01 -4.75134283e-01
-4.31031138e-01 1.03385732e-01 -2.71649897e-01 -1.92700431e-01
-7.48243809e-01 -7.30255485e-01 -1.09235299e+00 6.69739544e-02
-3.23253602e-01 -2.07144618e-01 7.71629930e-01 7.60581553e-01
3.96081060e-01 7.56461084e-01 4.13508803e-01 -1.12548029e+00
-1.58188626e-01 -1.11380124e+00 -3.70138407e-01 7.59241760e-01
5.70510030e-01 -7.84141123e-01 -3.05524528e-01 4.33535963e-01] | [10.833586692810059, -0.9801509380340576] |
efeb7e50-0e82-434b-bf8c-5919d332bca0 | function-words-enhanced-attention-networks | 2204.12111 | null | https://arxiv.org/abs/2204.12111v1 | https://arxiv.org/pdf/2204.12111v1.pdf | Function-words Enhanced Attention Networks for Few-Shot Inverse Relation Classification | The relation classification is to identify semantic relations between two entities in a given text. While existing models perform well for classifying inverse relations with large datasets, their performance is significantly reduced for few-shot learning. In this paper, we propose a function words adaptively enhanced attention framework (FAEA) for few-shot inverse relation classification, in which a hybrid attention model is designed to attend class-related function words based on meta-learning. As the involvement of function words brings in significant intra-class redundancy, an adaptive message passing mechanism is introduced to capture and transfer inter-class differences.We mathematically analyze the negative impact of function words from dot-product measurement, which explains why message passing mechanism effectively reduces the impact. Our experimental results show that FAEA outperforms strong baselines, especially the inverse relation accuracy is improved by 14.33% under 1-shot setting in FewRel1.0. | ['Kewen Wang', 'Zhiyong Feng', 'Xiaowang Zhang', 'Shaojuan Wu', 'Chunliu Dou'] | 2022-04-26 | null | null | null | null | ['relation-classification'] | ['natural-language-processing'] | [ 1.36088133e-01 4.58449841e-01 -6.10464752e-01 -3.85286599e-01
-4.34599042e-01 1.07805748e-02 7.92092562e-01 5.11645734e-01
-3.43414277e-01 6.76786780e-01 3.25644612e-01 -5.04474863e-02
-4.79475290e-01 -1.17841649e+00 -5.34288943e-01 -3.41142118e-01
-1.45698518e-01 6.12756252e-01 2.94975251e-01 -8.64767432e-01
-8.54835007e-03 8.67413729e-02 -1.51895452e+00 3.47292125e-01
1.02911615e+00 9.78501558e-01 6.57289326e-02 6.86923027e-01
-4.72031921e-01 1.22734952e+00 -5.98282218e-01 -8.51848841e-01
-1.32562652e-01 -5.24380684e-01 -1.27451289e+00 -3.51590693e-01
-2.56465256e-01 -1.75036103e-01 -5.72878242e-01 9.55709517e-01
4.91309851e-01 6.96001112e-01 7.83953011e-01 -1.46933293e+00
-1.30442131e+00 8.82980287e-01 -4.23561424e-01 5.39050817e-01
3.99296999e-01 -2.38730699e-01 1.70700908e+00 -9.51872766e-01
5.26443839e-01 1.49330211e+00 4.77818042e-01 1.91349968e-01
-1.02773643e+00 -6.44336343e-01 4.43929099e-02 8.15729678e-01
-1.54230773e+00 -3.48707557e-01 4.68784600e-01 -7.78607428e-02
1.79744530e+00 3.16173077e-01 4.41645563e-01 7.40706205e-01
2.73931026e-01 6.38211310e-01 7.79686794e-02 -4.86738592e-01
3.22635961e-03 -7.39092454e-02 7.02633917e-01 4.78288621e-01
1.54497236e-01 -1.96032733e-01 -3.96670759e-01 -6.19715871e-03
3.30493599e-01 2.27383316e-01 -2.49679863e-01 -1.58082647e-03
-7.94905841e-01 9.51167464e-01 8.46168876e-01 5.03259718e-01
-2.48221457e-01 -1.60421561e-02 5.43127537e-01 4.43356246e-01
7.05505013e-01 4.98121381e-01 -6.59567356e-01 -9.51210111e-02
5.52408546e-02 -6.77225292e-02 7.80740023e-01 1.28263986e+00
8.51108611e-01 -5.54664791e-01 -6.05091453e-01 1.22305655e+00
1.97546408e-01 -1.19177543e-01 5.78174949e-01 -5.44516265e-01
6.19370580e-01 1.07014680e+00 -2.37162545e-01 -1.18182540e+00
-3.72380406e-01 -3.84660602e-01 -7.26219356e-01 -4.08309221e-01
-2.56340623e-01 2.07616046e-01 -7.28962183e-01 1.56100011e+00
3.94288987e-01 2.81271845e-01 3.31331223e-01 6.49613619e-01
1.34503162e+00 6.04335845e-01 5.96450925e-01 -3.17774117e-01
1.63451672e+00 -1.27342474e+00 -1.33300149e+00 -2.72477835e-01
1.17444646e+00 -4.20348614e-01 1.10967946e+00 -5.47278345e-01
-6.94505274e-01 -6.15594149e-01 -1.22438931e+00 -6.06988370e-01
-9.42902625e-01 -4.46910441e-01 9.41715479e-01 2.90778935e-01
-2.33672246e-01 7.85806000e-01 -3.69613528e-01 -5.88135302e-01
6.76782548e-01 3.17236960e-01 -3.27226043e-01 9.19640958e-02
-2.10045671e+00 1.11867166e+00 7.00240135e-01 -3.31829876e-01
-2.18321636e-01 -1.07170117e+00 -1.19860208e+00 6.96269572e-01
5.78318954e-01 -5.96407294e-01 1.14124954e+00 -4.18484956e-01
-1.14888573e+00 7.40451217e-01 -1.25851825e-01 -4.89174902e-01
7.59679591e-03 -3.03080410e-01 -7.14941919e-01 -9.32863653e-02
2.72646457e-01 4.00458604e-01 2.37337157e-01 -9.05703723e-01
-6.25234962e-01 -2.05522582e-01 3.42741847e-01 3.32367688e-01
-4.78284299e-01 -3.72780226e-02 -4.46746945e-01 -5.24302840e-01
-2.28177130e-01 -5.33067942e-01 9.69096944e-02 -3.06297898e-01
-2.35921100e-01 -7.60387361e-01 8.64572048e-01 -2.07975805e-01
1.62781048e+00 -1.95557892e+00 -7.49205276e-02 -3.86061192e-01
3.40734214e-01 4.45845783e-01 -1.75510749e-01 4.09088045e-01
-5.40746868e-01 1.47187933e-01 -1.65625140e-01 -8.58630687e-02
-1.34490281e-01 3.52164984e-01 -1.48920134e-01 1.54555812e-01
4.21524018e-01 1.52594745e+00 -1.21755731e+00 -5.54286182e-01
9.58248898e-02 4.13086861e-01 -1.73697308e-01 2.99937576e-01
5.98925576e-02 -3.87840092e-01 -3.65036428e-01 6.74459338e-01
5.18247247e-01 -5.28354049e-01 1.78774178e-01 -4.42648917e-01
4.70242172e-01 4.16304857e-01 -6.51997685e-01 1.63688695e+00
-4.64625388e-01 4.56651062e-01 -5.50597548e-01 -1.19293487e+00
9.24415052e-01 5.35482347e-01 4.38273013e-01 -8.01422954e-01
5.03525734e-01 -2.99632698e-01 4.44485247e-01 -6.18549466e-01
4.41335052e-01 -2.76359260e-01 3.26202735e-02 2.64562637e-01
5.21257341e-01 2.23469988e-01 2.13291734e-01 4.47592676e-01
1.40774727e+00 -9.82221365e-02 9.16984916e-01 -1.73193142e-01
6.11060619e-01 -1.94323674e-01 5.14416575e-01 6.55603826e-01
-4.12533909e-01 2.60659754e-01 5.22248507e-01 -4.20844525e-01
-6.08541131e-01 -8.27187121e-01 -9.60144922e-02 1.52974713e+00
5.51462471e-01 -7.28850126e-01 -1.98935091e-01 -8.75397384e-01
1.58529524e-02 8.84674251e-01 -1.00001717e+00 -8.80698144e-01
-1.53899714e-01 -9.76950407e-01 3.09230477e-01 6.28582418e-01
6.28954172e-01 -1.10569274e+00 -2.60249496e-01 2.74834007e-01
-2.09231675e-01 -1.03945673e+00 -4.47176486e-01 3.39898705e-01
-5.19303024e-01 -1.15049279e+00 -3.63305569e-01 -7.81746268e-01
1.59631327e-01 4.43884611e-01 1.38989151e+00 1.52312741e-01
-3.80787492e-01 1.13642924e-01 -7.31164694e-01 -3.54199290e-01
-3.25366110e-02 3.84657443e-01 -1.74749061e-01 2.52170004e-02
9.12064254e-01 -6.12519860e-01 -3.67780715e-01 1.20832838e-01
-5.13642430e-01 -1.33065119e-01 4.97460425e-01 1.21872878e+00
2.28126422e-01 1.48926312e-02 7.91689575e-01 -1.31953144e+00
8.57768655e-01 -9.19534743e-01 1.45060986e-01 6.54612422e-01
-9.11157846e-01 1.32715464e-01 5.00751555e-01 -5.25293708e-01
-1.28631604e+00 -3.97705406e-01 6.74193725e-02 -3.40658784e-01
1.28247842e-01 4.74736631e-01 -4.07171279e-01 1.87259540e-01
8.00910413e-01 -2.20876530e-01 -4.06069189e-01 -2.23764762e-01
6.27415240e-01 6.48729980e-01 2.49988422e-01 -2.79664814e-01
3.36492956e-01 2.22156510e-01 -1.01675689e-01 -5.13966978e-01
-1.38825357e+00 -6.70987785e-01 -5.40506005e-01 1.75799876e-01
9.91680920e-01 -7.84998059e-01 -9.50126231e-01 -1.22350737e-01
-1.34941733e+00 -6.39313385e-02 -3.40447307e-01 3.77696693e-01
-3.10212970e-01 1.20491898e-02 -7.77307391e-01 -7.56215215e-01
-6.18485510e-01 -6.97650194e-01 8.70757818e-01 2.49747768e-01
-4.57780302e-01 -1.14280617e+00 4.82054874e-02 3.16364914e-01
2.18276083e-01 -1.87210679e-01 1.09804523e+00 -9.61682796e-01
-1.27679691e-01 -1.83428928e-01 -5.45384407e-01 -2.16821074e-01
4.73134369e-01 -4.36511874e-01 -9.86611485e-01 3.06322724e-01
-2.63510197e-01 -3.11897635e-01 1.00252140e+00 1.13387980e-01
9.04752493e-01 -6.19115233e-02 -7.16110229e-01 3.86711717e-01
1.03385317e+00 3.27479035e-01 8.53500009e-01 1.70906410e-01
9.25893903e-01 7.09855378e-01 9.71018195e-01 3.42110157e-01
5.93405724e-01 6.81192338e-01 9.67601985e-02 5.53059988e-02
-3.11246812e-01 -1.58762187e-01 -2.67253488e-01 6.68127418e-01
-7.18431398e-02 -4.07523423e-01 -8.53008449e-01 5.65622091e-01
-2.18844843e+00 -1.05554628e+00 -2.64831454e-01 1.78178370e+00
9.48191583e-01 2.41524249e-01 -3.46799523e-01 6.22502640e-02
8.47327411e-01 1.35322109e-01 -4.24878180e-01 -3.17198902e-01
-1.84814371e-02 2.87883431e-01 2.33711883e-01 6.74871922e-01
-1.16909361e+00 1.20191348e+00 5.67528820e+00 1.09512973e+00
-3.86940807e-01 4.46434408e-01 5.83551109e-01 1.10394284e-01
-2.34518982e-02 -3.34626213e-02 -6.48115218e-01 2.28225246e-01
1.08718777e+00 -5.95835447e-01 -1.92108676e-02 8.45524013e-01
-3.77894431e-01 7.53536150e-02 -1.11177397e+00 9.48846102e-01
-1.05804903e-02 -1.22465336e+00 4.92685288e-03 -1.96175188e-01
5.09936929e-01 -2.04450950e-01 -3.55827332e-01 1.00177634e+00
2.79522836e-01 -1.02301872e+00 6.32410794e-02 3.95347267e-01
6.38173223e-01 -1.00530529e+00 9.00766730e-01 3.47288176e-02
-1.64227128e+00 -5.49030080e-02 -5.32348275e-01 -4.85924363e-01
1.48748085e-01 4.10412937e-01 -8.40046525e-01 6.67072296e-01
6.29220486e-01 9.20266807e-01 -4.01845813e-01 4.16664630e-01
-2.95939207e-01 2.12387726e-01 1.64574668e-01 -2.63283730e-01
-1.67827189e-01 8.95979479e-02 2.61220813e-01 1.12523592e+00
-8.62068310e-02 6.21197164e-01 2.28768699e-02 8.56115043e-01
-3.32931250e-01 1.34116411e-01 -5.67147493e-01 -1.66664943e-01
6.73592150e-01 1.48599255e+00 -6.88190818e-01 -6.75097167e-01
-6.95499063e-01 1.15867543e+00 8.71889174e-01 2.93923467e-01
-1.10441625e+00 -9.05302107e-01 9.93941605e-01 -3.15733224e-01
2.54380763e-01 2.99391806e-01 -2.76505589e-01 -1.02705538e+00
-3.79165977e-01 -1.16570681e-01 7.95929790e-01 -6.11005127e-01
-1.46779799e+00 4.62747782e-01 -4.63840812e-02 -9.81371045e-01
-2.13093627e-02 -2.95743972e-01 -6.56025469e-01 6.67394578e-01
-1.32418716e+00 -1.17058110e+00 -3.90054077e-01 3.04498225e-01
7.48276591e-01 -3.53963189e-02 1.21201336e+00 5.58326781e-01
-7.09363818e-01 7.82984734e-01 -4.57848191e-01 2.32116044e-01
6.35874271e-01 -1.20269227e+00 5.42377830e-01 3.61441463e-01
1.67351514e-01 7.35623837e-01 6.57131493e-01 -7.43765771e-01
-1.04916549e+00 -1.06662858e+00 1.23209465e+00 -4.43024367e-01
9.11011577e-01 -3.11727196e-01 -1.26456571e+00 7.70453155e-01
1.95272148e-01 5.39311051e-01 9.98110473e-01 5.60808301e-01
-6.15092754e-01 -4.12152037e-02 -1.01742923e+00 5.43117464e-01
1.40031123e+00 -7.09939539e-01 -9.22645032e-01 3.35359603e-01
1.33332014e+00 -3.12093869e-02 -1.27916038e+00 5.65425634e-01
4.51401681e-01 -4.95292664e-01 1.12661529e+00 -1.02273524e+00
6.90415621e-01 -5.66771701e-02 -1.04485117e-01 -1.37012160e+00
-6.82359338e-01 -1.99121565e-01 -8.98540556e-01 1.46954513e+00
4.93233711e-01 -5.76704383e-01 4.11329269e-01 7.67692029e-01
-9.50422511e-03 -8.53845894e-01 -6.07583463e-01 -8.34023595e-01
-1.48669630e-01 -2.63965458e-01 6.10290408e-01 1.34492588e+00
5.27928770e-01 1.45022511e+00 -2.90027082e-01 -1.01958044e-01
2.28145033e-01 5.42469025e-02 4.13802177e-01 -1.17987549e+00
-3.43607128e-01 -3.34319711e-01 -6.88022256e-01 -7.33622134e-01
5.40304124e-01 -9.95364487e-01 -3.53350490e-02 -1.43202138e+00
4.81583744e-01 -1.40635818e-01 -6.84066236e-01 4.90095764e-01
-9.25314903e-01 5.06992936e-02 -1.10783920e-01 -7.76666030e-02
-9.49030817e-01 1.09407961e+00 1.08062589e+00 -3.78778636e-01
-1.37132302e-01 -1.96294397e-01 -6.98983908e-01 3.46458554e-01
5.90505540e-01 -4.62741137e-01 -7.57319808e-01 -5.31519577e-02
5.29130995e-02 -1.08591534e-01 -5.34369610e-02 -6.59358621e-01
3.13501656e-01 7.72074461e-02 3.09000999e-01 -3.03607255e-01
4.64683801e-01 -7.19156563e-01 -1.66223317e-01 3.63339156e-01
-5.83325624e-01 -3.74968946e-01 -6.48439527e-02 8.22525084e-01
-2.18574822e-01 -2.65914232e-01 4.82855469e-01 -4.38420512e-02
-9.94533956e-01 3.91574353e-01 1.21915471e-02 2.21709162e-01
1.13450515e+00 1.74497560e-01 -4.49077487e-01 -3.27293783e-01
-5.76570988e-01 2.73080707e-01 -2.52626538e-01 8.70966077e-01
5.28924167e-01 -1.69676137e+00 -5.01219869e-01 -1.39096603e-01
7.72088110e-01 -3.40081602e-01 4.01210517e-01 7.37037122e-01
6.05296120e-02 3.61772656e-01 1.97542027e-01 -3.12896306e-03
-1.26470697e+00 9.04081583e-01 2.58429945e-01 -3.77899349e-01
-5.87235808e-01 1.27415705e+00 3.09086174e-01 -3.49571407e-01
8.38333927e-03 -1.07877754e-01 -4.53405768e-01 2.68911362e-01
8.30234170e-01 4.15372819e-01 1.36055410e-01 -5.99239707e-01
-4.13942307e-01 2.50211924e-01 -3.56064260e-01 2.24578053e-01
1.30063307e+00 -1.01596475e-01 -1.54780284e-01 6.16678953e-01
1.51187134e+00 -5.48867941e-01 -7.52723455e-01 -3.50652575e-01
3.12171578e-01 -4.85377342e-01 4.69514802e-02 -5.73854268e-01
-8.05705965e-01 6.32500231e-01 2.86116332e-01 4.08017993e-01
8.84221315e-01 4.63282615e-01 8.72609258e-01 4.32506472e-01
2.09791921e-02 -9.14937675e-01 8.75187442e-02 8.25766683e-01
7.40839839e-01 -1.55350482e+00 1.55327082e-01 -8.56100142e-01
-6.14398539e-01 7.82726109e-01 9.28843498e-01 2.49873642e-02
8.21496129e-01 1.69414610e-01 -4.64944214e-01 -5.60120046e-01
-1.10253537e+00 -7.13896692e-01 5.23572087e-01 5.56819260e-01
8.63480270e-01 -4.01937449e-03 -6.30155325e-01 1.02187991e+00
1.93982739e-02 -2.77414829e-01 -8.70945677e-02 8.53964210e-01
-3.39372307e-01 -9.30831075e-01 2.07323924e-01 6.37299001e-01
-2.72757202e-01 -3.85571033e-01 -4.26044136e-01 6.57999158e-01
1.74238637e-01 1.14206064e+00 2.43899956e-01 -6.34391248e-01
4.13037449e-01 2.20360860e-01 3.08025330e-01 -8.78060222e-01
-4.79260564e-01 -4.44694340e-01 3.51315439e-01 -5.57511926e-01
-2.25439712e-01 -1.56405926e-01 -1.61256540e+00 -2.49107808e-01
-6.71531856e-01 7.46251196e-02 -6.86150938e-02 1.19820893e+00
5.25438666e-01 1.14252841e+00 2.64055073e-01 -2.62331486e-01
-6.47464469e-02 -1.32425272e+00 -6.07856333e-01 7.47329891e-01
7.88617432e-02 -1.28000748e+00 -1.75502643e-01 -2.74989963e-01] | [9.254343032836914, 8.549166679382324] |
5f033c6c-b7af-47df-96b1-ac89a26b7038 | propagating-over-phrase-relations-for-one | null | null | https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/3304_ECCV_2020_paper.php | https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123640579.pdf | Propagating Over Phrase Relations for One-Stage Visual Grounding | Phrase level visual grounding aims to locate in an image the corresponding visual regions referred to by multiple noun phrases in a given sentence. Its challenge comes not only from large variations in visual contents and unrestricted phrase descriptions but also from unambiguous referrals derived from phrase relational reasoning. In this paper, we propose a linguistic structure guided propagation network for one-stage phrase grounding. It explicitly explores the linguistic structure of the sentence and performs relational propagation among noun phrases under the guidance of the linguistic relations between them. Specifically, we first construct a linguistic graph parsed from the sentence and then capture multimodal feature maps for all the phrasal nodes independently. The node features are then propagated over the edges with a tailor-designed relational propagation module and ultimately integrated for final prediction. Experiments on Flicker30K Entities dataset show that our model outperforms state-of-the-art methods and demonstrate the effectiveness of propagating among phrases with linguistic relations. | ['Yizhou Yu', 'Sibei Yang', 'Guanbin Li'] | null | null | null | null | eccv-2020-8 | ['phrase-grounding'] | ['natural-language-processing'] | [ 1.73658449e-02 5.12117863e-01 -4.40529227e-01 -4.28369999e-01
-7.35930085e-01 -6.40429974e-01 4.61314380e-01 4.92785633e-01
-1.54834956e-01 4.15055096e-01 4.88126606e-01 -1.43867552e-01
8.20079166e-03 -7.68547535e-01 -7.16580033e-01 -4.84273165e-01
-4.28194217e-02 4.30332065e-01 3.21308881e-01 -1.41761467e-01
5.36758192e-02 3.74243796e-01 -1.12141693e+00 8.03054631e-01
4.68688667e-01 8.34069669e-01 1.74091846e-01 5.26857734e-01
-4.23225909e-01 1.01894045e+00 -2.57572263e-01 -9.21376407e-01
-2.82820374e-01 -2.80056804e-01 -8.48985076e-01 4.66675758e-01
4.48380083e-01 -7.17910454e-02 -3.23254526e-01 9.83471930e-01
2.25947589e-01 -6.11492014e-03 5.11875987e-01 -1.16523170e+00
-9.92426395e-01 1.05290663e+00 -7.16089725e-01 2.87086098e-03
6.92869544e-01 -1.29182667e-01 1.82302904e+00 -1.22124159e+00
8.22516143e-01 1.37184370e+00 4.64519471e-01 3.73259068e-01
-1.35790181e+00 -3.27987850e-01 6.20737970e-01 1.27221420e-01
-1.55448925e+00 -9.54864696e-02 8.16593468e-01 -4.59865779e-01
1.16604841e+00 8.69371966e-02 6.13115668e-01 1.03889418e+00
6.22667968e-02 7.59160936e-01 7.17936873e-01 -4.15200382e-01
-2.99854040e-01 4.08285946e-01 3.38521034e-01 1.44426346e+00
-1.68324023e-01 -3.50624263e-01 -9.77626026e-01 2.18589567e-02
3.67557317e-01 -3.47662657e-01 -2.62713909e-01 -1.69071972e-01
-1.25978899e+00 7.40534544e-01 9.59918618e-01 8.50810017e-03
-4.77222979e-01 1.89881846e-01 1.49525464e-01 -1.79363295e-01
3.33988458e-01 2.12397203e-01 -1.82505846e-02 5.19832790e-01
-8.15121651e-01 1.34943396e-01 6.20818615e-01 1.09874892e+00
1.07574213e+00 -7.07461953e-01 -6.73282683e-01 7.29110658e-01
6.81038380e-01 3.96352947e-01 -1.43196091e-01 -9.14656937e-01
7.82700896e-01 9.96653914e-01 -9.59831700e-02 -1.61587727e+00
-4.99277502e-01 -3.71889412e-01 -4.68513489e-01 -3.22866648e-01
8.80127698e-02 -5.38259894e-02 -7.43557692e-01 1.63425565e+00
3.39139223e-01 -1.45785168e-01 -8.00592452e-02 8.57500970e-01
1.49915326e+00 6.64852262e-01 3.78856838e-01 2.68747173e-02
1.65648293e+00 -1.04273415e+00 -5.19763768e-01 -3.29122305e-01
3.46529484e-01 -4.27914858e-01 1.01156521e+00 -1.52603522e-01
-8.58444035e-01 -2.93365568e-01 -6.27624989e-01 -4.19644833e-01
-3.69976014e-01 1.50426552e-01 3.86225462e-01 2.85674352e-02
-1.31996703e+00 -1.36146238e-02 -5.24543047e-01 -5.18642783e-01
4.57633674e-01 4.03196692e-01 -4.01119351e-01 7.37814307e-02
-1.15476739e+00 8.02623808e-01 5.88784099e-01 3.51124763e-01
-4.49753642e-01 -3.85988593e-01 -1.07238281e+00 1.51842505e-01
4.18621272e-01 -1.06105292e+00 8.13709199e-01 -5.72273493e-01
-9.56503749e-01 1.33429730e+00 -4.82643366e-01 -3.02380174e-01
-5.10436743e-02 2.12018698e-01 -2.85825193e-01 6.46243215e-01
4.11492258e-01 1.30039513e+00 7.32758880e-01 -1.51610684e+00
-9.12203491e-01 -1.28269896e-01 6.09313130e-01 4.99649793e-01
-2.36242026e-01 1.93065360e-01 -1.12236559e+00 -2.31628373e-01
2.12530077e-01 -7.95755386e-01 3.00341174e-02 -3.12296506e-02
-1.06887543e+00 -4.33438867e-01 3.85740221e-01 -6.43445432e-01
1.35253692e+00 -2.22015572e+00 5.08560777e-01 5.00872850e-01
6.22512460e-01 -6.01755142e-01 -6.46597520e-02 4.10797805e-01
1.57648399e-01 2.22188190e-01 1.88489184e-02 -5.29227853e-01
2.01461941e-01 3.81790131e-01 -4.51199025e-01 1.38600513e-01
4.57179725e-01 1.21782839e+00 -9.27425742e-01 -1.09708488e+00
-8.91873986e-03 5.30220449e-01 -3.80272865e-01 -1.48818996e-02
-3.34004968e-01 1.86839357e-01 -5.23793399e-01 7.84058273e-01
1.22174367e-01 -6.51526392e-01 -3.28855254e-02 -7.42428541e-01
7.30464607e-02 1.46799803e-01 -5.74795187e-01 1.66595554e+00
-1.47134393e-01 5.41885555e-01 -1.30468860e-01 -4.96569812e-01
8.55729461e-01 1.46427810e-01 1.98141739e-01 -5.76831281e-01
-1.36404447e-02 -1.78606048e-01 -2.27524713e-01 -7.12805331e-01
4.82044131e-01 -6.23456985e-02 -3.83776188e-01 3.09505202e-02
6.98620453e-02 1.22771077e-01 3.38123351e-01 6.95822001e-01
8.10735941e-01 1.73724517e-01 1.17948942e-01 1.80769444e-01
6.70928001e-01 2.42562711e-01 3.54954869e-01 6.97024465e-01
-6.95030168e-02 5.38738310e-01 8.03227901e-01 -1.59079239e-01
-6.83747888e-01 -1.20482767e+00 -4.38904390e-02 1.29483640e+00
3.82446587e-01 -8.64983320e-01 -5.29660046e-01 -8.49816740e-01
-7.27573335e-02 6.80610299e-01 -8.47294390e-01 1.97365910e-01
-3.07180405e-01 -3.66895318e-01 4.56265181e-01 6.11459851e-01
2.63455719e-01 -1.24634302e+00 -2.89048076e-01 -1.01165332e-01
-3.87069792e-01 -1.56821597e+00 -2.92950958e-01 -8.90343860e-02
-2.79798925e-01 -8.10138643e-01 -4.12615299e-01 -1.04433107e+00
1.01226747e+00 -1.29761800e-01 1.24703944e+00 1.16609573e-01
1.05439601e-02 5.02108037e-01 -2.92444855e-01 -5.66142388e-02
-2.16232151e-01 8.08561370e-02 -3.16908449e-01 2.76096135e-01
4.36856836e-01 -1.42990708e-01 -4.64079410e-01 3.37086767e-02
-3.38223010e-01 4.03472275e-01 5.39838374e-01 6.39361441e-01
1.04753900e+00 1.59535259e-01 -6.46089688e-02 -8.66052032e-01
6.08741224e-01 -3.84590924e-01 -4.55135107e-01 7.74072409e-01
-1.77136436e-01 5.58157377e-02 1.33081347e-01 -2.13322192e-02
-1.00478983e+00 1.76352456e-01 1.47363558e-01 -3.45864177e-01
-2.26961970e-01 7.09070683e-01 5.11090867e-02 1.61809430e-01
4.09862965e-01 1.14621662e-01 -3.97203743e-01 4.56974208e-02
8.25795472e-01 4.61216599e-01 7.25105464e-01 -5.85287333e-01
8.27451587e-01 5.95380902e-01 1.08310692e-01 -7.36561656e-01
-1.24470723e+00 -3.20897728e-01 -7.07674742e-01 -4.73644257e-01
1.34436440e+00 -8.46909404e-01 -8.11947823e-01 -2.20217451e-01
-1.37093186e+00 6.16605617e-02 -6.99079782e-02 2.24281311e-01
-3.23786736e-01 7.68402293e-02 -7.60112464e-01 -5.74261725e-01
-2.83442855e-01 -1.03632116e+00 1.20929098e+00 2.77696580e-01
-2.37408876e-01 -1.05041933e+00 -1.71264172e-01 4.76596713e-01
-3.00959378e-01 2.17314854e-01 1.20299387e+00 -3.94242227e-01
-7.54463553e-01 -7.71371722e-02 -6.93822742e-01 -1.30612209e-01
-3.29399630e-02 3.06137979e-01 -8.31757009e-01 1.67144299e-01
-5.38488925e-01 -2.44453311e-01 8.52019906e-01 3.08346331e-01
6.53314471e-01 -3.34372312e-01 -6.04990780e-01 5.21194398e-01
1.39443326e+00 -2.12985381e-01 1.12831980e-01 3.00503790e-01
1.16151619e+00 1.09687102e+00 4.01754886e-01 1.44234067e-02
7.05005944e-01 4.92264420e-01 5.61438203e-01 -2.45034501e-01
-1.10201076e-01 -5.13481379e-01 1.44225568e-01 5.37439108e-01
1.74725771e-01 -3.72270405e-01 -1.13401783e+00 6.60627902e-01
-1.91811728e+00 -8.07568610e-01 -2.60271370e-01 1.42623830e+00
7.80498683e-01 1.30707666e-01 7.08027631e-02 -4.13235664e-01
8.95395577e-01 8.38184580e-02 -1.83743894e-01 -3.70669663e-01
-2.80582637e-01 -2.29223594e-01 1.50247663e-01 6.79065406e-01
-1.03926229e+00 1.33803582e+00 5.56544924e+00 5.46572387e-01
-7.56865799e-01 -2.57713571e-02 5.70763230e-01 1.30961034e-02
-6.06008768e-01 -1.78800561e-02 -1.09884250e+00 8.06434825e-02
3.70002717e-01 9.65504721e-03 2.11828768e-01 3.47280443e-01
8.28202888e-02 -3.33705619e-02 -1.25174236e+00 7.50049889e-01
2.75956482e-01 -1.43426335e+00 3.54437143e-01 -9.86522362e-02
4.50423181e-01 4.44101505e-02 1.13360301e-01 6.78498074e-02
1.02208704e-01 -1.06255805e+00 8.84221554e-01 6.16140246e-01
6.03906751e-01 -7.10284710e-01 6.05525136e-01 1.79325804e-01
-1.37158155e+00 2.34633628e-02 -1.92915246e-01 3.28463197e-01
2.85086095e-01 1.55598119e-01 -9.39498723e-01 4.90184665e-01
6.95053041e-01 7.56681025e-01 -7.78404057e-01 7.21834242e-01
-8.97999406e-01 3.96463633e-01 -1.97684109e-01 -1.83318391e-01
5.44914782e-01 9.09280479e-02 6.35742724e-01 1.54511893e+00
-6.10664375e-02 1.48891941e-01 2.57951826e-01 1.23330307e+00
-2.19667494e-01 3.78883719e-01 -6.80940390e-01 -7.58369416e-02
3.31137270e-01 1.50388098e+00 -8.72738659e-01 3.43982838e-02
-8.78595889e-01 9.50610518e-01 8.16052675e-01 7.24348903e-01
-7.70460963e-01 -2.85118133e-01 1.42097056e-01 4.43615131e-02
4.15976942e-01 -5.70782349e-02 -2.17627808e-01 -9.20296311e-01
1.42663747e-01 -2.12769911e-01 5.29111624e-01 -1.31234646e+00
-1.44543195e+00 8.17959368e-01 2.42315065e-02 -8.44479322e-01
-2.32058093e-02 -5.95361948e-01 -3.83086622e-01 1.04938209e+00
-1.54934347e+00 -1.63047719e+00 -2.19041646e-01 6.54026449e-01
2.24845991e-01 1.62219517e-02 8.93120646e-01 -1.36196300e-01
-7.32417762e-01 4.53232259e-01 -7.38709509e-01 5.72924376e-01
3.70284140e-01 -1.27742124e+00 6.75632432e-02 9.08508480e-01
6.90326750e-01 7.94905245e-01 5.66733241e-01 -6.82903290e-01
-8.96115363e-01 -1.16459060e+00 1.52179480e+00 -4.75616038e-01
1.06118596e+00 -5.13712823e-01 -8.57078612e-01 8.28961134e-01
5.93691409e-01 -8.23233500e-02 7.55307615e-01 3.24649274e-01
-5.71062028e-01 -3.79547663e-02 -7.11056054e-01 7.26014435e-01
8.82566631e-01 -8.18366647e-01 -8.63767564e-01 4.94603634e-01
1.01331961e+00 -5.25926769e-01 -7.25050211e-01 4.56711501e-02
3.18694770e-01 -6.14814341e-01 1.05251801e+00 -6.65539145e-01
7.68118262e-01 -3.74266177e-01 -2.87443668e-01 -9.30276334e-01
-5.95733643e-01 -2.77544439e-01 -7.93529153e-02 1.54323208e+00
1.13857722e+00 -6.02867417e-02 7.07416058e-01 7.56218195e-01
8.22023973e-02 -8.44224572e-01 -5.93143821e-01 -1.64508045e-01
-4.03221428e-01 -4.99293417e-01 1.76124662e-01 6.37981951e-01
3.52133214e-01 8.77602041e-01 -9.35018212e-02 7.01496720e-01
6.63731217e-01 3.59984994e-01 1.89310119e-01 -8.21085632e-01
-3.79209936e-01 -3.36652637e-01 -3.94569933e-01 -9.62602675e-01
6.01606488e-01 -1.11728895e+00 1.57577336e-01 -2.03259254e+00
5.13105512e-01 -2.56187081e-01 -3.10914487e-01 8.77592981e-01
-2.67695516e-01 4.49242204e-01 2.29458794e-01 2.51896858e-01
-9.48060989e-01 1.80963904e-01 1.20023322e+00 -3.98157865e-01
-8.08638781e-02 -3.08327824e-01 -8.90153885e-01 8.42407644e-01
4.56951648e-01 -4.26941335e-01 -4.58010942e-01 -7.43690133e-01
8.71657014e-01 7.80986026e-02 6.70531809e-01 -4.42170531e-01
5.41936994e-01 -1.05999187e-01 2.15579405e-01 -8.87929797e-01
2.48701483e-01 -9.21627402e-01 -2.82290637e-01 -1.23150744e-01
-6.07740641e-01 8.82397592e-02 -1.16168903e-02 7.45360672e-01
-2.87055165e-01 -1.15776286e-01 2.98995942e-01 -1.22664973e-01
-8.55161786e-01 1.37677804e-01 -3.53709608e-02 4.81902901e-03
9.29826081e-01 -8.40137228e-02 -4.92572099e-01 -3.07134718e-01
-1.30494571e+00 5.97674370e-01 2.26166844e-01 2.99252242e-01
8.75623226e-01 -1.28476465e+00 -7.40002871e-01 -1.46883607e-01
4.97089267e-01 3.68850082e-02 8.44799578e-02 9.94738281e-01
-3.99562657e-01 4.78779018e-01 1.41583234e-01 -8.68025601e-01
-1.40070796e+00 5.70805073e-01 3.39882255e-01 -5.00061316e-03
-6.68939829e-01 1.33893204e+00 3.63274276e-01 -1.23229772e-01
3.86516660e-01 -3.84990871e-01 -5.99092066e-01 1.99161097e-01
2.26456344e-01 -2.09544316e-01 -3.10505897e-01 -1.23530376e+00
-6.54980063e-01 8.71940672e-01 -1.02820672e-01 -2.39357278e-01
1.02761090e+00 -4.29483891e-01 -4.85781431e-01 5.08694828e-01
1.17571652e+00 1.26245424e-01 -1.03525519e+00 -5.00156105e-01
-5.77713037e-03 -4.53484766e-02 1.07271262e-02 -8.43326092e-01
-1.09016621e+00 7.58027256e-01 -1.49137620e-03 1.89852506e-01
1.09254205e+00 7.98690319e-01 4.73320693e-01 3.84156942e-01
1.34538800e-01 -7.08246052e-01 2.73385607e-02 3.37656856e-01
8.31078053e-01 -1.07913506e+00 -7.46114179e-02 -8.30278873e-01
-9.20880556e-01 9.27184582e-01 5.86934447e-01 1.07891761e-01
4.00736928e-01 1.82413086e-01 6.13826737e-02 -6.32430017e-01
-7.31319606e-01 -4.16885287e-01 7.75395572e-01 5.24692416e-01
3.81776720e-01 2.89673544e-02 -9.96918306e-02 5.05635560e-01
-1.06491826e-01 -4.37230915e-01 1.05532393e-01 4.47426498e-01
-4.15129453e-01 -8.92881513e-01 -8.29378068e-02 1.60663053e-01
-3.08287382e-01 -5.00060320e-01 -7.84088790e-01 6.49340868e-01
4.10115302e-01 1.02368855e+00 1.99480444e-01 -4.13560033e-01
2.69390970e-01 9.08438209e-03 3.54660273e-01 -9.96191204e-01
-7.40468979e-01 1.96083739e-01 3.17192495e-01 -5.45198083e-01
-6.33611560e-01 -6.14004016e-01 -1.78436947e+00 3.99954990e-02
-7.99177364e-02 1.84493624e-02 3.90830964e-01 1.02917111e+00
3.27920318e-01 5.97407281e-01 2.78713256e-01 -4.08555686e-01
2.23327056e-01 -4.27668095e-01 -3.87603194e-01 5.05025744e-01
3.31103474e-01 -4.96779412e-01 -1.73035324e-01 1.91769391e-01] | [10.493812561035156, 1.4765198230743408] |
fb5ea972-9b3a-4fd1-883b-e5cd3d00816f | chat-crowd-a-dialog-based-platform-for-visual | 1812.04081 | null | http://arxiv.org/abs/1812.04081v3 | http://arxiv.org/pdf/1812.04081v3.pdf | Chat-crowd: A Dialog-based Platform for Visual Layout Composition | In this paper we introduce Chat-crowd, an interactive environment for visual
layout composition via conversational interactions. Chat-crowd supports
multiple agents with two conversational roles: agents who play the role of a
designer are in charge of placing objects in an editable canvas according to
instructions or commands issued by agents with a director role. The system can
be integrated with crowdsourcing platforms for both synchronous and
asynchronous data collection and is equipped with comprehensive quality
controls on the performance of both types of agents. We expect that this system
will be useful to build multimodal goal-oriented dialog tasks that require
spatial and geometric reasoning. | ['Paola Cascante-Bonilla', 'Vicente Ordonez', 'Song Feng', 'Xuwang Yin'] | 2018-12-10 | chat-crowd-a-dialog-based-platform-for-visual-1 | https://aclanthology.org/N19-4024 | https://aclanthology.org/N19-4024.pdf | naacl-2019-6 | ['goal-oriented-dialog'] | ['natural-language-processing'] | [-2.88181961e-01 1.55091837e-01 5.95615923e-01 -4.00333285e-01
-2.42808491e-01 -1.17812085e+00 9.82616246e-01 3.51331204e-01
-3.81357461e-01 5.50347626e-01 2.60228723e-01 -2.88083255e-01
1.38437571e-02 -7.88110673e-01 5.76858781e-03 -3.66359025e-01
1.03436261e-01 9.78979826e-01 6.77725852e-01 -8.41515303e-01
3.46929669e-01 7.49653459e-01 -1.71599209e+00 5.98344445e-01
3.73551100e-01 2.58531243e-01 6.33042216e-01 1.15586483e+00
-5.02699673e-01 1.35538208e+00 -9.41729724e-01 -2.49591306e-01
1.76837116e-01 -2.32705981e-01 -8.69923472e-01 4.55345660e-02
1.35374703e-02 -4.36667532e-01 -1.09505616e-02 5.73850036e-01
5.47097266e-01 4.48498040e-01 5.05554557e-01 -1.60547924e+00
-2.62775302e-01 4.34299588e-01 6.18220344e-02 -3.17258567e-01
1.27119100e+00 5.51126897e-01 8.25076938e-01 -6.88643038e-01
9.59946156e-01 1.59731638e+00 2.30989933e-01 6.01118445e-01
-7.38261461e-01 -6.02613501e-02 2.29562655e-01 4.56438102e-02
-1.22499132e+00 -5.13293743e-01 4.62828130e-01 -7.09168851e-01
8.58747184e-01 6.93563640e-01 4.47056890e-01 6.91578567e-01
-2.49042377e-01 5.47676742e-01 7.42278695e-01 -6.15525126e-01
4.53518331e-01 3.76216739e-01 -1.44783417e-02 8.12746346e-01
-4.68611360e-01 -3.78275722e-01 -7.90656805e-01 -4.41274524e-01
8.80079329e-01 -2.54262924e-01 -8.03647786e-02 -3.36430907e-01
-1.42273152e+00 6.31948948e-01 7.91916400e-02 4.69116092e-01
-2.63779521e-01 1.05646789e-01 3.77641112e-01 5.71391821e-01
1.58662289e-01 8.43771040e-01 -4.13457211e-03 -4.35909152e-01
2.94091608e-02 7.85777628e-01 1.23846173e+00 1.36346233e+00
4.98386353e-01 -3.70281219e-01 -3.86183470e-01 7.88150668e-01
4.13948029e-01 3.59694391e-01 -1.97278887e-01 -1.49074697e+00
4.23600823e-01 1.04654253e+00 8.58215213e-01 -8.36856127e-01
-5.98586202e-01 6.73843920e-01 -1.67408735e-01 1.10511804e+00
7.90341437e-01 -2.97037750e-01 -1.44186392e-01 9.13851857e-01
6.92856491e-01 -7.87306964e-01 -4.37661670e-02 9.99878228e-01
1.25955641e+00 3.95571321e-01 1.22675911e-01 2.52266079e-01
1.58795714e+00 -9.36356306e-01 -1.00939775e+00 3.19029152e-01
7.67659068e-01 -9.76840556e-01 1.29597449e+00 3.55815470e-01
-1.38365197e+00 -3.77090991e-01 -5.88704407e-01 -3.09781969e-01
-6.18200243e-01 9.43337977e-02 4.72984701e-01 5.25209725e-01
-1.24469316e+00 1.99355423e-01 -5.06004632e-01 -4.89915729e-01
-2.04931572e-01 2.14054853e-01 -2.87964880e-01 3.34810019e-01
-6.83013558e-01 1.13663614e+00 -2.23233223e-01 4.89726849e-02
-6.71718836e-01 -2.42791653e-01 -8.48990977e-01 -1.97884142e-01
4.07885402e-01 -7.06412435e-01 1.70134115e+00 -6.84636295e-01
-1.83962381e+00 7.74790883e-01 2.48995014e-02 1.34335831e-01
1.06785512e+00 -1.74069360e-01 5.09000905e-02 1.43090934e-01
1.78578779e-01 5.79004586e-01 4.34213690e-02 -1.51027429e+00
-7.40625918e-01 -3.01920980e-01 6.88610792e-01 6.06971800e-01
3.64495218e-01 6.80362821e-01 -6.10466003e-01 -2.03670621e-01
-4.26775038e-01 -9.13611829e-01 -1.31734505e-01 4.89508837e-01
-4.22910750e-01 -4.49289590e-01 1.05333555e+00 -4.09666359e-01
7.51657903e-01 -1.85033667e+00 1.31332994e-01 1.16237499e-01
2.35539794e-01 1.87072575e-01 5.55345695e-03 1.13636827e+00
6.35758936e-01 -1.31368756e-01 4.28624868e-01 -6.85040236e-01
6.91729009e-01 -1.17114522e-01 3.25885750e-02 1.22793041e-01
-3.85011733e-01 6.56681657e-01 -9.05451596e-01 -4.78011757e-01
6.48237586e-01 2.28596553e-01 -6.64215088e-02 7.24437237e-01
-6.71153545e-01 6.81786716e-01 -4.29961532e-01 3.44731480e-01
4.42320049e-01 -7.21890554e-02 5.54053009e-01 4.65860069e-01
-7.61696577e-01 2.83734709e-01 -1.32391524e+00 1.68880558e+00
-5.28855741e-01 8.49716783e-01 8.89462829e-01 -8.46284553e-02
9.67723489e-01 4.13924307e-01 7.41330087e-02 -2.85950571e-01
6.74191788e-02 -1.62200123e-01 -2.30358288e-01 -8.34801495e-01
8.71662676e-01 4.67005223e-01 -4.18268032e-02 1.04176819e+00
-5.45234859e-01 -4.94736165e-01 3.53217095e-01 3.98771554e-01
1.14838457e+00 2.42501557e-01 6.98489323e-02 -5.87342083e-02
3.69115442e-01 3.29235405e-01 -1.64962828e-01 8.58665049e-01
1.15052350e-01 2.43525639e-01 4.29044455e-01 -6.56409383e-01
-1.09784949e+00 -9.70746994e-01 6.67209029e-01 1.80173659e+00
2.59067774e-01 -3.85946602e-01 -5.57908595e-01 -2.66191512e-01
-2.97833830e-01 6.50585771e-01 -3.89846623e-01 7.67296255e-01
-5.46508849e-01 3.12180847e-01 4.81945783e-01 3.02349240e-01
2.65688986e-01 -1.39813709e+00 -1.05563390e+00 5.64140007e-02
-6.66920319e-02 -9.40852106e-01 -4.11171407e-01 -4.79497850e-01
-5.34463301e-02 -1.22434032e+00 -6.46822035e-01 -9.31462586e-01
7.41394877e-01 4.20006186e-01 1.04552233e+00 7.58104742e-01
-1.44056782e-01 9.24350023e-01 -8.35507452e-01 -6.07108951e-01
-7.13277042e-01 7.47195035e-02 -3.57904375e-01 -2.08115771e-01
2.33637206e-02 -4.15132433e-01 -4.93819207e-01 8.05611312e-01
-7.30117202e-01 5.81859231e-01 -3.81767869e-01 -2.98200157e-02
-4.25044686e-01 -4.48829859e-01 8.50801766e-02 -5.08343816e-01
1.14463139e+00 -6.53455853e-02 -7.63428748e-01 3.78402740e-01
3.22526693e-01 -2.37228051e-01 3.63857567e-01 -1.20368659e-01
-1.26820982e+00 2.69236773e-01 1.59118086e-01 3.90285909e-01
-5.83350122e-01 8.30456521e-03 -4.42570359e-01 -6.54471442e-02
5.06763101e-01 -3.24516356e-01 3.58453020e-02 -3.33459109e-01
4.46984023e-01 8.41482878e-01 3.49903703e-01 -7.21716464e-01
5.83157301e-01 5.03674448e-01 -3.02516073e-01 -9.28304255e-01
2.87671864e-01 -4.10976768e-01 -7.55822062e-01 -8.30616593e-01
1.05871534e+00 -6.46229088e-01 -1.62623084e+00 6.40319049e-01
-1.61755693e+00 -9.03665960e-01 1.59285422e-02 4.00182903e-02
-4.39679593e-01 1.86461568e-01 -5.52124381e-01 -1.13062263e+00
2.40278989e-02 -1.14020133e+00 1.12507224e+00 3.41920495e-01
-7.04111993e-01 -1.08175015e+00 1.03273652e-01 3.44929665e-01
4.94166523e-01 2.89886057e-01 3.73821497e-01 -6.22646689e-01
-7.26681888e-01 -1.38085648e-01 -1.56845301e-02 -5.17479777e-01
2.48136129e-02 3.89493197e-01 -7.33835697e-01 2.08133474e-01
-7.85596013e-01 -3.90157461e-01 -1.72764882e-01 -1.79065615e-01
4.82330054e-01 -2.50884324e-01 -3.76584619e-01 -2.98610598e-01
8.29129875e-01 7.04940617e-01 5.90957522e-01 3.66931677e-01
5.05480528e-01 1.09505022e+00 6.26072288e-01 6.31536245e-01
7.94599891e-01 1.30755532e+00 3.46957326e-01 -2.12533742e-01
3.21536899e-01 -5.13871349e-02 4.91286218e-02 6.68094084e-02
-3.20678651e-01 -5.71135402e-01 -1.10152411e+00 2.92366326e-01
-2.25771189e+00 -1.08674872e+00 -6.85274839e-01 1.76689994e+00
4.57971305e-01 -4.26674217e-01 4.65625167e-01 -5.63845746e-02
8.07721734e-01 8.58992785e-02 1.37266442e-01 -6.64696574e-01
2.80657351e-01 -3.67099792e-01 -5.16930129e-03 9.82562304e-01
-6.90067351e-01 8.48819852e-01 6.21665144e+00 2.32198507e-01
-4.79317576e-01 1.72769040e-01 8.06033388e-02 -4.11373936e-03
-2.85075158e-01 -9.07228291e-02 -3.98164034e-01 3.39114100e-01
2.59175390e-01 1.24503843e-01 7.50851274e-01 5.52086592e-01
7.96076119e-01 -7.34797418e-01 -1.23992598e+00 6.68732762e-01
-1.83401451e-01 -1.60836887e+00 -4.29416686e-01 1.47253852e-02
2.75385827e-01 -4.15155709e-01 -4.12137419e-01 1.41569581e-02
8.66696894e-01 -9.38274384e-01 8.65530074e-01 7.71145284e-01
4.89467472e-01 -4.96152997e-01 3.63365054e-01 6.47826016e-01
-1.26386797e+00 3.21728051e-01 1.60304889e-01 -6.75041080e-01
6.55911505e-01 -2.81955838e-01 -1.14984751e+00 2.35543638e-01
5.04231751e-01 -3.11902255e-01 -2.88355559e-01 1.11912489e+00
-1.76196799e-01 -2.73636222e-01 -1.06618479e-01 -8.13301980e-01
-1.42672792e-01 -3.45594585e-01 5.87142408e-01 1.22555292e+00
-6.26094220e-03 3.54728460e-01 4.86994594e-01 5.36407530e-01
4.40177977e-01 2.06615478e-01 -6.96961284e-01 3.26847434e-01
7.26351976e-01 1.17878032e+00 -8.91367018e-01 -3.65003705e-01
-5.33660240e-02 1.07603323e+00 2.06979677e-01 3.47088486e-01
-5.67861319e-01 -6.60340607e-01 6.38597190e-01 2.58116156e-01
-9.95276645e-02 -6.83857739e-01 -1.66877538e-01 -3.57839525e-01
-3.68936993e-02 -8.32183719e-01 -4.39472273e-02 -1.45177531e+00
-8.69838834e-01 6.83787704e-01 6.54650433e-03 -9.63753462e-01
-3.55419815e-01 -6.71583056e-01 -1.02759266e+00 9.02513385e-01
-4.99858856e-01 -1.26751435e+00 -8.03701341e-01 5.15847862e-01
6.29517019e-01 -3.47084910e-01 1.06865382e+00 -3.63174789e-02
-7.70282000e-02 -1.37619272e-01 -5.04932761e-01 2.77208894e-01
5.35432518e-01 -1.52206087e+00 4.27135438e-01 3.53858657e-02
-9.59609896e-02 5.26258051e-01 8.99833441e-01 -5.40479362e-01
-1.38903487e+00 -3.95923972e-01 8.78820479e-01 -7.22066402e-01
4.53915268e-01 -6.42646074e-01 -4.74891782e-01 5.42488873e-01
8.61809373e-01 -6.00709260e-01 7.22667813e-01 -9.87485498e-02
1.03678569e-01 2.48065054e-01 -1.10094178e+00 8.85945439e-01
1.03504825e+00 -5.81901789e-01 -5.64788640e-01 6.99726343e-01
4.64800537e-01 -8.89908075e-01 -3.04115891e-01 -4.51222748e-01
5.10770679e-01 -1.12855732e+00 5.81620276e-01 -5.03196657e-01
4.18927819e-02 -7.58195698e-01 2.40585551e-01 -1.32093608e+00
1.47082284e-02 -1.18186855e+00 8.12842131e-01 1.27641308e+00
4.18903321e-01 -5.78205347e-01 4.30959016e-01 1.24124706e+00
-4.22506072e-02 2.89693087e-01 -6.04838908e-01 -2.70821720e-01
-4.96097714e-01 -4.64668900e-01 7.72563159e-01 6.50470078e-01
6.72408581e-01 2.87522614e-01 -1.86769560e-01 2.83903986e-01
-1.69460177e-01 -3.21607202e-01 1.60362077e+00 -1.20086443e+00
-1.22362144e-01 -5.62665164e-01 4.75145765e-02 -9.49070096e-01
-9.46533158e-02 -2.95404643e-01 2.08918154e-01 -2.01803112e+00
-4.69761699e-01 -4.29107755e-01 1.04150069e+00 2.41491333e-01
3.05305868e-01 -2.68776506e-01 6.91446364e-01 1.66746661e-01
-1.03866208e+00 2.79263079e-01 1.19697821e+00 9.81524214e-02
-6.36658072e-01 1.53279230e-01 -1.60666287e-01 8.02210927e-01
7.86328077e-01 -7.59366602e-02 -3.86430085e-01 -4.21711475e-01
5.65174401e-01 2.70994425e-01 5.77255785e-01 -8.86043727e-01
7.51717210e-01 -3.97409081e-01 -8.23105052e-02 -3.37570101e-01
5.58065951e-01 -1.07192707e+00 4.44095612e-01 1.02604248e-01
-6.57629192e-01 6.34000719e-01 -1.82837490e-02 2.04266295e-01
1.72993958e-01 -3.96381199e-01 4.75557856e-02 -4.46422637e-01
-4.78994966e-01 -4.91084784e-01 -1.19850147e+00 -3.26525956e-01
1.38685882e+00 -1.95084825e-01 -8.80204260e-01 -1.00396562e+00
-8.40318918e-01 5.22318244e-01 8.27895463e-01 4.39010084e-01
4.78559703e-01 -1.17929125e+00 -5.47001004e-01 -2.21024632e-01
1.02930531e-01 -9.11087394e-02 -2.43911315e-02 3.24156225e-01
-1.32241261e+00 5.83818331e-02 -1.63746357e-01 -4.46877152e-01
-1.75679410e+00 3.24843496e-01 2.27260187e-01 3.47482935e-02
-3.91451985e-01 6.13401830e-01 -7.01917037e-02 -8.15588892e-01
6.07011616e-01 -2.95147691e-02 -3.19852322e-01 9.21577960e-02
1.10952163e+00 7.66787648e-01 -3.72042879e-02 -5.55163503e-01
-3.98861349e-01 4.25762944e-02 5.20711899e-01 -7.71239996e-01
1.10674238e+00 -3.04064602e-01 -2.35107943e-01 6.30459666e-01
4.40210938e-01 4.02912259e-01 -1.18899071e+00 3.12357545e-01
-9.61713567e-02 -4.83154178e-01 -6.25673115e-01 -9.28703547e-01
-3.06410581e-01 4.81239498e-01 3.64348739e-01 7.48625696e-01
4.04103547e-01 2.98104901e-02 -1.21596837e-02 7.15109408e-01
7.44497418e-01 -1.35775459e+00 3.64849687e-01 5.08777320e-01
1.42869031e+00 -9.09794986e-01 -2.27170840e-01 -5.02162099e-01
-1.18474686e+00 1.21209741e+00 7.36484468e-01 1.66468069e-01
2.34629259e-01 6.50785863e-01 6.65573597e-01 -6.50462091e-01
-9.47015166e-01 -3.89452666e-01 1.01133503e-01 1.13757443e+00
4.93582577e-01 2.44086325e-01 -1.59445122e-01 2.56181192e-02
-2.91112095e-01 -1.63986176e-01 7.32287526e-01 1.24853194e+00
-6.82135284e-01 -1.13715613e+00 -9.44380701e-01 -3.92181396e-01
3.03186953e-01 2.91064650e-01 -1.03316402e+00 8.53006065e-01
1.04540102e-01 1.52452791e+00 2.45072082e-01 -7.43031129e-02
7.18850553e-01 -1.98164657e-02 1.64229020e-01 -7.50436246e-01
-1.14534855e+00 -2.07086191e-01 8.77573788e-01 -4.57222909e-01
-3.49112540e-01 -6.00529850e-01 -1.28661668e+00 -4.52896178e-01
5.18939421e-02 3.64658862e-01 6.66058123e-01 7.75074542e-01
2.09418610e-01 8.93023983e-02 2.74848998e-01 -1.23460937e+00
9.41917822e-02 -1.07263160e+00 -3.01771462e-01 2.06739232e-01
8.70797634e-02 -3.69470686e-01 -5.04635759e-02 1.21016920e-01] | [5.31419038772583, 0.2904457747936249] |
f9453a5c-8045-4375-b46d-8e5a52e559f2 | what-s-cracking-a-review-and-analysis-of-deep | 2202.03714 | null | https://arxiv.org/abs/2202.03714v1 | https://arxiv.org/pdf/2202.03714v1.pdf | What's Cracking? A Review and Analysis of Deep Learning Methods for Structural Crack Segmentation, Detection and Quantification | Surface cracks are a very common indicator of potential structural faults. Their early detection and monitoring is an important factor in structural health monitoring. Left untreated, they can grow in size over time and require expensive repairs or maintenance. With recent advances in computer vision and deep learning algorithms, the automatic detection and segmentation of cracks for this monitoring process have become a major topic of interest. This review aims to give researchers an overview of the published work within the field of crack analysis algorithms that make use of deep learning. It outlines the various tasks that are solved through applying computer vision algorithms to surface cracks in a structural health monitoring setting and also provides in-depth reviews of recent fully, semi and unsupervised approaches that perform crack classification, detection, segmentation and quantification. Additionally, this review also highlights popular datasets used for cracks and the metrics that are used to evaluate the performance of those algorithms. Finally, potential research gaps are outlined and further research directions are provided. | ['Gordon Morison', 'Peter Barrie', 'Mike Mannion', 'Mark Jenkins', 'Jacob König'] | 2022-02-08 | null | null | null | null | ['crack-segmentation'] | ['computer-vision'] | [ 2.98663616e-01 -4.28706482e-02 -1.61450818e-01 -1.36903867e-01
-7.96469331e-01 -8.76291245e-02 -3.46021861e-01 6.44812047e-01
-2.35442385e-01 1.95863426e-01 -4.26780656e-02 -1.00538626e-01
-7.92188477e-03 -9.91589367e-01 -3.91428113e-01 -8.92524540e-01
-6.07932545e-02 4.03542489e-01 2.84032315e-01 -5.66903576e-02
7.25166261e-01 5.67068875e-01 -1.69396842e+00 4.14766550e-01
5.87270677e-01 1.03069448e+00 -1.00059681e-01 9.06472981e-01
4.05845672e-01 6.91841245e-01 -6.28461182e-01 2.77624995e-01
-3.93411130e-01 -1.50408342e-01 -1.00625277e+00 4.71297562e-01
4.90606755e-01 -6.20354414e-01 -2.31363222e-01 5.80261171e-01
9.22597587e-01 -2.37991050e-01 8.30248237e-01 -6.05596662e-01
-4.81203198e-01 4.97571826e-01 -6.68487370e-01 6.61693037e-01
3.64452064e-01 1.06950561e-02 1.03813887e+00 -1.36758566e+00
1.98474199e-01 7.66404390e-01 1.18209076e+00 2.82305688e-01
-7.76193142e-01 -1.47871569e-01 -3.35129827e-01 3.35024267e-01
-8.95749032e-01 -2.11672217e-01 1.09621358e+00 -1.02080083e+00
1.14206970e+00 4.71276976e-02 7.95372367e-01 6.05033278e-01
3.03126544e-01 8.84137213e-01 6.42778814e-01 -7.20298350e-01
3.37300003e-01 -6.52227402e-01 7.23576784e-01 9.80963945e-01
4.92335439e-01 1.33030443e-03 -2.64796436e-01 -5.85265495e-02
8.21694136e-01 -1.78483110e-02 -1.07532904e-01 3.36019732e-02
-7.87872255e-01 1.23931861e+00 3.43883544e-01 5.98955572e-01
-5.01738071e-01 3.61895800e-01 6.12968564e-01 2.61069983e-01
4.00729954e-01 3.50582391e-01 -1.69414699e-01 1.74846470e-01
-1.23225951e+00 3.32448244e-01 2.41091773e-01 7.18375444e-02
5.82684457e-01 3.14378291e-01 -9.67220441e-02 1.22182262e+00
5.63284039e-01 5.39263666e-01 1.32710189e-01 -1.12039232e+00
9.92737636e-02 7.05575466e-01 -2.85204649e-01 -1.13856971e+00
-7.77456939e-01 -3.81566137e-01 -6.60004854e-01 6.08162761e-01
2.44319022e-01 -4.60616022e-01 -9.89331126e-01 3.85482371e-01
2.60962725e-01 -2.74800509e-01 -5.27207136e-01 5.61564684e-01
1.05479491e+00 2.44841561e-01 -3.37325841e-01 -4.27375408e-03
1.26038003e+00 -1.06141210e+00 -8.24643552e-01 -4.60702449e-01
4.93905693e-01 -5.34176946e-01 8.39844048e-01 4.81695235e-01
-9.70862985e-01 -4.04366076e-01 -1.28075361e+00 3.70141938e-02
-1.73575744e-01 3.60758185e-01 3.58429521e-01 9.17274594e-01
-6.49398088e-01 6.51822746e-01 -1.17993522e+00 -2.71713644e-01
9.31777775e-01 1.75807729e-01 3.64997163e-02 -1.05977111e-01
-9.00742948e-01 6.48872912e-01 -1.00060530e-01 4.61712360e-01
-1.25319386e+00 -4.11789387e-01 -8.86668801e-01 -4.21344668e-01
3.49681303e-02 -2.69440979e-01 1.25278080e+00 -3.39048635e-03
-9.54042375e-01 1.06808925e+00 1.32309496e-02 -1.78989530e-01
8.18176344e-02 -6.36848330e-01 1.29673630e-01 4.76855069e-01
1.39433503e-01 7.35009611e-02 1.05431247e+00 -1.30458796e+00
-7.96960592e-01 -4.13082510e-01 -5.32542691e-02 -2.74614275e-01
-1.77441344e-01 1.98671937e-01 2.12725669e-01 -7.29057908e-01
4.81393009e-01 -5.59273183e-01 -2.98300683e-01 3.95290628e-02
-7.30751634e-01 -4.19455469e-01 1.05033088e+00 -9.73206758e-01
1.43073022e+00 -1.63147020e+00 5.46343103e-02 1.79490373e-01
4.25943047e-01 5.33383787e-02 6.11775517e-01 8.72124255e-01
-8.68462026e-02 1.00739505e-02 -1.18161809e+00 -3.33353519e-01
-5.10745883e-01 1.78472757e-01 3.22311223e-01 7.84785628e-01
1.20638106e-02 6.17635846e-01 -7.59573638e-01 -4.41427231e-01
2.04310015e-01 2.64126539e-01 -3.13672781e-01 -7.25166202e-02
2.46289685e-01 5.01767278e-01 -2.25575328e-01 1.37735021e+00
3.84099662e-01 -8.59264731e-02 -6.41642034e-01 -1.65260643e-01
-2.14184761e-01 -3.36545646e-01 -1.12278044e+00 1.24332774e+00
-1.04319789e-01 7.61610866e-01 2.11247444e-01 -1.52963543e+00
7.35374868e-01 7.10516870e-01 8.08256209e-01 -1.33514926e-01
3.85263443e-01 5.47665894e-01 -4.83646542e-01 -1.18464053e+00
-3.22706215e-02 -2.13219151e-01 1.40341192e-01 7.28847921e-01
-3.34118843e-01 -2.39459753e-01 2.03793883e-01 -2.49010727e-01
1.16826618e+00 -5.90862751e-01 -2.18813151e-01 -1.13717854e-01
6.09411061e-01 1.80784196e-01 2.96950072e-01 5.46277821e-01
-3.25580865e-01 8.99324358e-01 1.44885346e-01 -7.59480059e-01
-7.95524657e-01 -6.94171548e-01 -3.32496285e-01 7.06872582e-01
-2.57107109e-01 4.00540709e-01 -1.04966748e+00 -6.11833632e-01
8.06639716e-02 -4.62377779e-02 -9.08192158e-01 -1.17957756e-01
-7.67900586e-01 -1.14031899e+00 8.34968388e-01 9.25792098e-01
2.81995863e-01 -1.27022552e+00 -1.25337875e+00 3.19079846e-01
-3.26915920e-01 -6.75659418e-01 1.28726095e-01 1.30649814e-02
-1.42296171e+00 -1.73916614e+00 -1.08923149e+00 -1.30280674e+00
7.62944400e-01 1.37454912e-01 8.86984348e-01 9.70613420e-01
-1.04218245e+00 7.70917952e-01 -6.44256353e-01 -4.62239832e-01
-3.45997334e-01 -3.02208737e-02 -3.06505919e-01 -1.24161772e-01
5.74692786e-02 -2.27571309e-01 -8.95872653e-01 3.40991579e-02
-8.44663262e-01 -6.29958570e-01 3.69514495e-01 9.98664975e-01
6.44953787e-01 5.23883581e-01 7.32436895e-01 -8.83894026e-01
8.91045451e-01 -4.14006352e-01 4.55057919e-02 -2.10758019e-02
-8.91950667e-01 -5.29670417e-01 -4.25755501e-01 1.76655918e-01
-7.92950988e-01 3.71226445e-02 -6.50448084e-01 1.60234928e-01
-4.00548905e-01 9.71222579e-01 4.38187629e-01 -1.34837851e-01
1.01020575e+00 -3.24884981e-01 1.72345921e-01 -6.77521288e-01
3.09953541e-02 8.11817706e-01 3.84899318e-01 -4.68469560e-01
6.60422266e-01 8.91899407e-01 -1.25459462e-01 -1.41495717e+00
-1.04095972e+00 -8.01077068e-01 -1.03832293e+00 -8.30595613e-01
1.06330311e+00 -4.65578526e-01 -3.62014659e-02 1.52003789e+00
-1.05346048e+00 -3.08211297e-01 -3.05807680e-01 1.43985227e-01
-2.32723534e-01 7.92089701e-01 -1.23157656e+00 -9.15872872e-01
-8.15582037e-01 -1.26003671e+00 1.12762225e+00 2.10058078e-01
-2.86304634e-02 -1.23177874e+00 4.17686671e-01 1.00661922e+00
3.61605525e-01 9.23235357e-01 9.53012288e-01 1.53052315e-01
1.00795910e-01 -7.03714907e-01 6.25384971e-02 6.69927120e-01
3.51922601e-01 4.51228619e-01 -1.09739649e+00 -4.07893986e-01
2.25542739e-01 -3.67049187e-01 1.11667407e+00 9.02847826e-01
7.38225877e-01 1.98225170e-01 -5.58863640e-01 -1.16970398e-01
1.53279257e+00 1.77231878e-01 4.86839652e-01 4.06656504e-01
8.58521700e-01 9.03119445e-01 5.97635508e-01 4.29252714e-01
1.07984573e-01 3.14716324e-02 9.12248492e-01 -3.50650847e-01
-2.19166636e-01 5.20736039e-01 -7.37477988e-02 9.32220459e-01
-5.27822852e-01 2.33429849e-01 -1.42382860e+00 9.93645728e-01
-1.27712405e+00 -9.42990839e-01 -1.01166677e+00 1.59407842e+00
5.49988329e-01 1.84775203e-01 1.15460329e-01 1.40259576e+00
8.56204569e-01 -1.56676605e-01 -5.15342891e-01 -1.48978099e-01
5.77541022e-03 4.59784329e-01 2.70783544e-01 3.90503943e-01
-1.46188366e+00 4.11757618e-01 7.49584723e+00 2.38778770e-01
-9.41828549e-01 2.41933271e-01 4.50956076e-01 5.14460325e-01
1.58815295e-01 -2.12800145e-01 -2.36606672e-01 -8.38672444e-02
3.97288501e-01 9.64307606e-01 -1.62886739e-01 5.35617828e-01
3.24533284e-01 -4.79595453e-01 -7.79606640e-01 6.57437146e-01
-6.30197451e-02 -1.30957472e+00 -6.10875905e-01 -6.64357617e-02
8.43353927e-01 1.44352525e-01 5.80144301e-02 -3.02818567e-01
-4.16180402e-01 -8.55864048e-01 7.38043904e-01 4.05407101e-01
5.96949935e-01 -6.34745717e-01 1.08572280e+00 3.79738472e-02
-1.19284081e+00 -6.10061646e-01 -2.78390020e-01 -2.95364112e-01
5.67222238e-01 1.18106794e+00 -2.10332230e-01 2.80367762e-01
1.23935032e+00 8.72182369e-01 -5.27413130e-01 1.40305901e+00
-4.45560098e-01 1.22388804e+00 -1.56370968e-01 5.59332848e-01
1.30228996e-01 9.42473412e-02 3.71337086e-01 1.13311255e+00
1.07389592e-01 -1.88919142e-01 1.94287643e-01 6.50187433e-01
3.18322003e-01 -3.94085534e-02 -3.39781553e-01 2.18634933e-01
3.80429715e-01 8.42753410e-01 -1.10630083e+00 -8.22184794e-03
-5.41056216e-01 5.33772528e-01 -1.73804313e-01 1.42716661e-01
-6.69077694e-01 -6.18855476e-01 1.73802331e-01 4.46420550e-01
6.23753965e-02 -2.66759187e-01 -8.27580273e-01 -4.25470501e-01
-1.49514675e-01 -6.63942516e-01 6.19815648e-01 -2.66325384e-01
-1.27786994e+00 6.54403642e-02 -1.27020674e-02 -6.39393091e-01
4.89802122e-01 -6.80027306e-01 -1.00709820e+00 1.10102192e-01
-1.23073375e+00 -1.09947813e+00 -4.42823738e-01 3.05128753e-01
1.11162841e+00 6.31561950e-02 4.34427023e-01 5.65794587e-01
-1.07744634e+00 2.92421728e-01 4.97674085e-02 6.46166801e-01
2.30526298e-01 -1.23394811e+00 3.37830186e-01 8.25416267e-01
-1.05104670e-01 1.55445099e-01 6.17592275e-01 -9.17468548e-01
-9.25889850e-01 -8.88837516e-01 5.92685282e-01 -3.64637673e-01
3.12797755e-01 3.22376043e-01 -1.12346232e+00 3.61360461e-01
1.99695140e-01 -2.20103025e-01 5.88302612e-01 -1.79155305e-01
1.53480530e-01 2.85758823e-01 -1.22103608e+00 -1.18848398e-01
4.66276348e-01 -5.75631976e-01 -5.87478101e-01 4.91110176e-01
1.37384117e-01 -3.93282413e-01 -1.21742964e+00 5.27482629e-01
4.92954195e-01 -1.20259511e+00 1.09031343e+00 2.60585081e-02
5.47516346e-01 -1.12354085e-02 2.59526372e-01 -7.51552284e-01
-3.73379230e-01 6.20474741e-02 -2.71910846e-01 7.64979601e-01
3.33928406e-01 -3.01222771e-01 1.12441778e+00 2.45251372e-01
-8.09890091e-01 -1.16148841e+00 -9.07611191e-01 -1.95115447e-01
3.87570530e-01 -5.79779267e-01 5.38819470e-03 7.42245615e-01
-1.32446453e-01 1.07558668e-01 1.12982228e-01 2.78015107e-01
9.00146961e-01 -1.70650825e-01 7.48777613e-02 -1.82272434e+00
3.66751820e-01 -5.03843427e-01 -2.46169209e-01 -4.99295682e-01
-4.14945155e-01 -5.06779075e-01 3.46188694e-01 -2.23711181e+00
-1.09574638e-01 -2.62935996e-01 -4.08911407e-02 5.87222159e-01
-7.70782754e-02 4.83341038e-01 -6.86643243e-01 3.99316013e-01
2.31554404e-01 1.86522707e-01 1.27503181e+00 -6.10854685e-01
1.24850295e-01 4.29705352e-01 -3.47120166e-01 8.77213717e-01
1.13267875e+00 -6.24794543e-01 -8.61235708e-02 -6.89376771e-01
4.41943616e-01 -2.01460779e-01 3.72242242e-01 -1.41718531e+00
1.93555623e-01 1.52386293e-01 -5.36923222e-02 -9.67613101e-01
3.13777849e-02 -6.58583701e-01 -4.10142690e-01 1.09240103e+00
-6.40913919e-02 5.71140125e-02 -8.93397182e-02 8.12427342e-01
-3.22065920e-01 -9.21788454e-01 1.20982707e+00 -2.29060292e-01
-4.74972934e-01 8.02459195e-02 -1.15009093e+00 -1.00166216e-01
1.09949899e+00 -7.31180668e-01 5.00865020e-02 -9.07598436e-02
-1.01347268e+00 1.34059086e-01 1.92363843e-01 9.54744890e-02
1.21200526e+00 -9.47537363e-01 -8.07721972e-01 -6.87295198e-02
6.01496063e-02 4.60291594e-01 4.73789841e-01 1.10420036e+00
-1.23667574e+00 1.52154705e-02 -1.30906450e-02 -8.87478650e-01
-1.20178282e+00 3.53611350e-01 5.97665966e-01 -7.77161196e-02
-8.26182783e-01 1.25836849e+00 -5.43511450e-01 -5.66010959e-02
2.75079221e-01 -6.71967626e-01 -7.74499178e-01 2.47538313e-01
3.26264560e-01 1.28732848e+00 5.88502645e-01 -7.10591972e-01
-1.61239579e-01 1.18253076e+00 3.31007510e-01 2.85227567e-01
1.47007895e+00 -2.81565547e-01 -5.01829445e-01 6.04117215e-01
7.50313640e-01 -3.31889063e-01 -9.74369764e-01 5.26855700e-02
2.86021322e-01 1.98198140e-01 4.00740117e-01 -3.30427617e-01
-1.82636952e+00 1.41170120e+00 1.12936592e+00 4.18199599e-01
9.64268923e-01 2.88232446e-01 1.29137230e+00 2.20128760e-01
1.83204487e-01 -1.57289064e+00 6.70610428e-01 4.98872429e-01
9.97160733e-01 -1.40812945e+00 1.09623618e-01 -4.49724019e-01
-1.79069400e-01 1.46061492e+00 3.05320948e-01 -3.94922167e-01
1.17128825e+00 2.14670941e-01 3.17671716e-01 -1.28520548e+00
1.90994263e-01 -2.73568220e-02 4.35108319e-02 8.79600108e-01
5.74993730e-01 -2.01676503e-01 -1.69657409e-01 1.20648645e-01
4.40782309e-01 -5.06142914e-01 5.98554730e-01 1.65563226e+00
-1.30054855e+00 -9.14736688e-01 -8.77965212e-01 7.07794666e-01
-8.14052582e-01 4.22021866e-01 -3.76546025e-01 3.41841489e-01
2.54501313e-01 1.59019887e+00 -3.93388242e-01 -2.91941792e-01
3.88162047e-01 -1.55930072e-01 1.75796524e-01 -9.15547431e-01
-6.30190909e-01 -8.28429237e-02 -4.15844098e-02 -1.70774817e-01
-6.56834602e-01 -7.81835020e-01 -1.64172804e+00 3.33712250e-01
-9.04136300e-01 -1.14015408e-01 6.00446165e-01 1.07701552e+00
-3.81232202e-01 8.43635619e-01 4.41956103e-01 -9.46808338e-01
-1.77631378e-01 -1.01343906e+00 -6.84108019e-01 -9.95848142e-03
5.74636042e-01 -1.03274703e+00 -3.79676133e-01 5.19344568e-01] | [7.492422580718994, 1.5522392988204956] |
e135eca3-f474-4fb3-90ad-238e9f4a62ee | invariant-deep-compressible-covariance | 2011.05702 | null | https://arxiv.org/abs/2011.05702v1 | https://arxiv.org/pdf/2011.05702v1.pdf | Invariant Deep Compressible Covariance Pooling for Aerial Scene Categorization | Learning discriminative and invariant feature representation is the key to visual image categorization. In this article, we propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization. We consider transforming the input image according to a finite transformation group that consists of multiple confounding orthogonal matrices, such as the D4 group. Then, we adopt a Siamese-style network to transfer the group structure to the representation space, where we can derive a trivial representation that is invariant under the group action. The linear classifier trained with trivial representation will also be possessed with invariance. To further improve the discriminative power of representation, we extend the representation to the tensor space while imposing orthogonal constraints on the transformation matrix to effectively reduce feature dimensions. We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods. In particular, with using ResNet architecture, our IDCCP model can reduce the dimension of the tensor representation by about 98% without sacrificing accuracy (i.e., <0.5%). | ['Ling Shao', 'Yu Guan', 'Gerard Parr', 'Yi Ren', 'Shidong Wang'] | 2020-11-11 | null | null | null | null | ['image-categorization'] | ['computer-vision'] | [ 1.89652860e-01 -4.09102023e-01 9.25201774e-02 -2.15403110e-01
-8.38251337e-02 -8.57752621e-01 3.67332846e-01 -5.39053380e-01
-2.34778181e-01 -7.84991831e-02 2.87560165e-01 -2.39696756e-01
-3.79135996e-01 -4.70427334e-01 -4.87881511e-01 -7.13996112e-01
-1.54460073e-01 -2.80157447e-01 -1.08371764e-01 -3.42473418e-01
1.83148190e-01 5.80149174e-01 -1.31050861e+00 2.51868546e-01
8.35780621e-01 1.31950903e+00 -1.92350633e-02 3.80031466e-01
3.24191868e-01 8.49222243e-01 -4.17028189e-01 -1.26870707e-01
8.25361729e-01 -1.79535627e-01 -1.00582600e+00 4.96973485e-01
6.99366391e-01 -4.73320931e-01 -8.08272004e-01 1.27568161e+00
1.30412653e-01 3.43366951e-01 7.08476484e-01 -1.21971881e+00
-1.24893725e+00 4.62598503e-01 -5.85869253e-01 9.73773748e-02
-7.64986053e-02 6.59499259e-04 1.20156252e+00 -1.02946341e+00
4.43907499e-01 1.34924889e+00 2.46533915e-01 3.08408558e-01
-1.28037810e+00 -5.93211174e-01 5.44613421e-01 2.06168756e-01
-1.69106328e+00 -2.11118788e-01 8.06347907e-01 -6.74037576e-01
6.33133054e-01 4.56281155e-01 4.25776452e-01 6.65710390e-01
2.93029517e-01 6.26941264e-01 7.59871960e-01 7.01360628e-02
6.99113542e-03 -4.20045733e-01 2.56371409e-01 9.61824775e-01
1.78092465e-01 -2.56869704e-01 -8.94482061e-02 1.89619628e-03
7.92361856e-01 5.35364032e-01 -3.23205709e-01 -6.52243376e-01
-1.64156663e+00 9.20364380e-01 1.12331963e+00 2.05640823e-01
-2.34926358e-01 1.33367285e-01 5.87605417e-01 4.12015945e-01
3.37698609e-01 6.68155193e-01 -1.86237171e-01 5.95910311e-01
-4.81540889e-01 2.01225765e-02 3.52567911e-01 1.01509607e+00
5.85052073e-01 2.31978565e-01 -4.54158396e-01 9.17006373e-01
2.53179461e-01 6.49092972e-01 7.00663328e-01 -9.75928068e-01
5.44992626e-01 9.92135286e-01 -2.05499694e-01 -1.51128316e+00
-3.95360678e-01 -4.77511555e-01 -1.44843924e+00 -2.38325685e-01
4.77651469e-02 2.45319121e-02 -1.07461238e+00 1.73219514e+00
9.47059914e-02 -5.91763519e-02 7.77333826e-02 1.19179821e+00
6.54451251e-01 6.19696081e-01 -2.72066295e-01 2.94213265e-01
1.34069479e+00 -1.00974619e+00 -4.36691761e-01 -3.28836329e-02
7.62945473e-01 -7.39005387e-01 1.14927888e+00 1.41511187e-01
-4.14479762e-01 -5.75789213e-01 -1.39679253e+00 -3.19012880e-01
-2.20509380e-01 7.26888537e-01 8.16397429e-01 1.70437455e-01
-7.80899584e-01 6.46193683e-01 -8.60601842e-01 -2.91027993e-01
4.37795043e-01 4.23925221e-01 -6.87513292e-01 -4.20263052e-01
-8.76383781e-01 4.46923912e-01 2.91248083e-01 3.17946136e-01
-9.11528885e-01 -5.97074807e-01 -9.51039314e-01 7.02155381e-02
2.48779193e-01 -6.96346164e-01 7.34154820e-01 -6.67354047e-01
-1.40738773e+00 5.50758719e-01 -2.03829557e-02 -2.14831308e-01
2.93041348e-01 -1.28486708e-01 -1.13809235e-01 2.59839833e-01
2.74654120e-01 5.65032303e-01 1.24666846e+00 -7.49180436e-01
-2.14941561e-01 -3.17801625e-01 5.69378853e-01 1.43487468e-01
-7.01581359e-01 1.17302805e-01 -2.44318396e-01 -8.96983147e-01
7.77763903e-01 -1.42329776e+00 -3.11617136e-01 2.63329953e-01
-6.51626348e-01 -2.50757903e-01 8.21852505e-01 -6.59387410e-01
1.02888405e+00 -2.59247971e+00 7.62163758e-01 2.26933092e-01
5.23368657e-01 -6.57819882e-02 -4.95399147e-01 1.01434231e-01
-4.21901733e-01 3.35370570e-01 -4.24130201e-01 -7.81526566e-02
5.52331246e-02 1.49641693e-01 -7.47609735e-01 6.47657633e-01
3.77756655e-01 8.07999372e-01 -6.36642516e-01 -4.59342822e-02
3.98583710e-02 2.61718541e-01 -8.68255496e-01 1.53381407e-01
3.07057023e-01 1.83426872e-01 -5.90521038e-01 5.81064045e-01
9.97120619e-01 -3.26761037e-01 5.73396273e-02 -6.66107237e-01
-7.15209246e-02 9.36324969e-02 -1.07730222e+00 1.81378925e+00
-2.67389297e-01 5.30888915e-01 -1.57777980e-01 -1.13599539e+00
8.47887456e-01 -2.62713969e-01 4.72104520e-01 -1.02924228e-01
3.01179141e-01 1.09770549e-02 4.10860419e-01 -1.35875612e-01
5.25501609e-01 1.97539613e-01 -2.15663850e-01 3.73700321e-01
2.57750183e-01 -8.07504505e-02 2.16805220e-01 2.92026490e-01
8.88692379e-01 -1.85970008e-01 1.09229356e-01 -5.66682160e-01
6.75589800e-01 -4.04466510e-01 6.56297565e-01 3.92267853e-01
-2.31478378e-01 5.71580112e-01 6.76719427e-01 -7.74813890e-01
-8.87274444e-01 -8.17082942e-01 -1.58119872e-01 9.85604465e-01
3.13808560e-01 -6.50374711e-01 -5.94620883e-01 -7.93849349e-01
5.89226596e-02 8.22415277e-02 -8.43499541e-01 -5.92781723e-01
-4.29218233e-01 -8.72428179e-01 3.60436112e-01 5.55008471e-01
1.16321933e+00 -3.19131523e-01 -1.26045555e-01 -2.58827478e-01
-1.64328292e-01 -1.20026517e+00 -7.75789380e-01 -7.84907490e-02
-7.09632874e-01 -9.79595363e-01 -7.26645470e-01 -6.57745898e-01
1.05298710e+00 8.13476980e-01 3.64117742e-01 1.20230965e-01
-1.81182683e-01 2.91401237e-01 -4.53688711e-01 2.86137089e-02
2.27785304e-01 1.48825422e-01 4.15792972e-01 4.09237832e-01
1.59902707e-01 -2.23648876e-01 -6.50578260e-01 5.92497051e-01
-1.10946226e+00 3.58484918e-03 4.30976868e-01 1.04064894e+00
4.73083466e-01 8.74836668e-02 2.11413484e-03 -2.62480110e-01
5.37453353e-01 -3.13989103e-01 -4.91469413e-01 2.29264006e-01
-1.42450303e-01 2.83099920e-01 8.94305408e-01 -6.49438441e-01
-4.19974715e-01 1.82653040e-01 3.08242261e-01 -8.08345556e-01
2.67147183e-01 5.87015927e-01 -3.22000496e-02 -5.91143608e-01
6.29140615e-01 2.51967251e-01 7.53996242e-03 -4.21923250e-01
4.16621149e-01 5.14903069e-01 1.86075017e-01 -4.67868567e-01
1.33250928e+00 6.10603452e-01 2.73353696e-01 -8.26930821e-01
-1.09372461e+00 -2.65991390e-01 -1.01673639e+00 2.14689389e-01
8.20900977e-01 -9.84794378e-01 -6.73921227e-01 4.61082429e-01
-1.01529169e+00 1.75307374e-02 -1.48760840e-01 6.47576451e-01
-2.51904696e-01 6.43068671e-01 -5.57243884e-01 -1.18837342e-01
-2.16828659e-01 -1.26266181e+00 8.70363295e-01 -1.32405847e-01
1.82916775e-01 -5.34649551e-01 -2.97189146e-01 1.07501730e-01
4.27516669e-01 1.73292279e-01 8.45491230e-01 -3.90129477e-01
-6.93615973e-01 -2.85224080e-01 -5.21516740e-01 7.37908185e-01
2.33398244e-01 -3.56918313e-02 -6.51702642e-01 -6.64252579e-01
1.54551435e-02 -3.00219893e-01 1.24538541e+00 -4.49803611e-03
1.63688886e+00 -3.91873747e-01 -3.22575383e-02 1.20449460e+00
1.09208345e+00 -1.73699372e-02 4.08257097e-01 2.59760201e-01
1.15633261e+00 4.11540657e-01 3.91011626e-01 2.88274467e-01
3.62481475e-01 5.23276627e-01 3.20083290e-01 -2.55551711e-02
-6.19253796e-03 -2.43448377e-01 3.70969117e-01 1.19448316e+00
-3.07199687e-01 1.78740323e-01 -6.54967248e-01 1.93697274e-01
-1.77243090e+00 -5.88452637e-01 2.70043999e-01 1.91155279e+00
3.35042685e-01 -1.73557654e-01 -3.44313562e-01 1.28388911e-01
5.59533060e-01 4.77286637e-01 -7.15074480e-01 -1.86526656e-01
-9.43233445e-02 -2.97295660e-01 7.23219514e-01 1.34786189e-01
-1.58046329e+00 1.04097164e+00 5.87936831e+00 6.35312259e-01
-1.43326283e+00 -2.59389639e-01 2.38360688e-01 2.53392905e-01
-2.05064621e-02 -2.27818033e-03 -4.16134417e-01 2.43120000e-01
3.54683578e-01 -4.01536942e-01 8.54285419e-01 1.06775033e+00
-3.11571300e-01 5.96134603e-01 -1.13289881e+00 1.21069121e+00
4.73855615e-01 -1.05809677e+00 6.49384975e-01 1.66815445e-01
7.20340908e-01 -4.67042625e-02 3.91730458e-01 4.68001753e-01
1.57487273e-01 -8.96699727e-01 6.33700192e-01 3.90845150e-01
9.71092224e-01 -5.21001160e-01 6.36721849e-01 2.62774676e-02
-1.46414959e+00 -3.82905215e-01 -1.13615119e+00 -1.11694552e-01
-3.92115027e-01 2.51256913e-01 -2.80108303e-01 6.92353606e-01
6.81965232e-01 1.32585275e+00 -8.66292775e-01 7.68184841e-01
-1.07327044e-01 3.82593513e-01 -2.66533673e-01 2.06046745e-01
4.53701764e-01 -4.47106808e-01 5.59890926e-01 7.85035670e-01
4.54542130e-01 2.90455431e-01 3.81062537e-01 8.25037658e-01
-4.40358400e-01 1.72030896e-01 -9.29837942e-01 -2.34577850e-01
1.01717763e-01 1.41267180e+00 -6.07434869e-01 -2.95290530e-01
-3.28953117e-01 1.21183538e+00 3.71045679e-01 4.73021686e-01
-5.05690932e-01 -7.88763821e-01 9.06441629e-01 -4.58122551e-01
5.03513455e-01 -5.93349576e-01 8.93226787e-02 -1.92382729e+00
1.15234584e-01 -9.10337508e-01 2.63410211e-01 -5.22543490e-01
-1.41533303e+00 8.22030246e-01 -4.97708842e-03 -1.72632253e+00
1.58101574e-01 -1.13283873e+00 -4.56367522e-01 7.67159998e-01
-1.23032260e+00 -1.43266249e+00 -5.56148946e-01 7.48386443e-01
3.75147432e-01 -4.89833474e-01 8.32896471e-01 1.79046169e-01
-8.64659369e-01 7.65241504e-01 1.00763306e-01 5.59987426e-01
5.15851974e-01 -9.40593302e-01 3.90532434e-01 1.04920757e+00
1.38303687e-04 1.13928199e+00 1.25594735e-01 -1.38093054e-01
-1.61756361e+00 -1.52908671e+00 2.63139755e-01 -3.11907262e-01
8.96911621e-01 -6.36407793e-01 -8.76754642e-01 9.21924770e-01
-1.15464360e-01 4.56842244e-01 7.62646735e-01 1.70657784e-02
-9.45057690e-01 -3.46610278e-01 -8.47429395e-01 8.89117539e-01
1.26564264e+00 -8.35650504e-01 -5.53851068e-01 5.15860260e-01
1.05584836e+00 -2.92344689e-01 -1.04442334e+00 4.89359945e-01
4.68552709e-01 -4.64312077e-01 1.00373471e+00 -9.85908926e-01
4.85379070e-01 -6.63122892e-01 -6.31860018e-01 -1.58705676e+00
-1.08342338e+00 -4.50292230e-01 2.43290991e-01 8.00147653e-01
9.77598131e-02 -8.61313283e-01 6.78942427e-02 4.67927963e-01
-2.24361584e-01 -6.84231341e-01 -7.79161274e-01 -1.02402747e+00
1.55401126e-01 -1.87567160e-01 8.53519380e-01 1.07053161e+00
-1.22506775e-01 3.81351799e-01 -5.10376453e-01 2.88975328e-01
5.42544782e-01 3.59913647e-01 7.11601138e-01 -1.08003759e+00
7.07908422e-02 -1.90540254e-01 -9.43304181e-01 -1.37596262e+00
4.91128147e-01 -1.38004982e+00 -2.80136406e-01 -1.11809170e+00
3.30695719e-01 -1.59561172e-01 -5.57492971e-01 6.72741950e-01
-2.82869842e-02 3.49223554e-01 6.95642829e-01 5.50311863e-01
-5.28777540e-01 9.34221745e-01 1.50709748e+00 -6.32285416e-01
9.28214118e-02 -4.36816245e-01 -9.85469341e-01 7.47794986e-01
7.30540097e-01 -2.37565264e-01 -3.89749080e-01 -7.38025069e-01
3.30289491e-02 -5.20708501e-01 3.13855231e-01 -9.61427271e-01
1.53263822e-01 -2.32578248e-01 5.07941723e-01 -2.41966650e-01
2.17782885e-01 -6.35555089e-01 -3.23849916e-01 5.39002180e-01
-5.46488404e-01 2.05930267e-02 9.19712484e-02 5.07240057e-01
-3.01233113e-01 -2.13681925e-02 7.58266628e-01 6.07803836e-02
-5.83474815e-01 7.48441041e-01 -8.18053782e-02 -2.11682707e-01
9.09271061e-01 1.62767351e-01 -4.93335754e-01 -6.66225925e-02
-4.22524095e-01 2.26115406e-01 3.98760408e-01 6.00620031e-01
7.68925309e-01 -1.77238417e+00 -6.10218048e-01 5.28952897e-01
3.75099897e-01 -1.96425959e-01 2.71843523e-01 7.58585811e-01
-5.64807296e-01 5.91573060e-01 -5.00785291e-01 -6.31440759e-01
-1.03172350e+00 8.33554804e-01 4.07467216e-01 4.11094315e-02
-7.12734103e-01 6.73583090e-01 7.28094220e-01 -6.62423313e-01
-1.38620570e-01 -7.60114253e-01 -3.55293185e-01 -7.72923529e-02
5.90437651e-01 1.61037207e-01 -7.83420876e-02 -8.92999053e-01
-5.35280287e-01 1.06099689e+00 -2.13747621e-01 3.43765557e-01
1.13886523e+00 -5.75344190e-02 -4.82244372e-01 1.85665667e-01
1.73198199e+00 -1.98342308e-01 -9.70655620e-01 -2.87991911e-01
-3.70190412e-01 -6.68229878e-01 2.09061936e-01 -1.54531389e-01
-1.19840586e+00 9.34025943e-01 5.29705226e-01 1.98034137e-01
1.12597549e+00 -2.50989109e-01 4.38503355e-01 1.03961313e+00
2.36970440e-01 -6.91301525e-01 1.48978651e-01 8.64064693e-01
1.52692366e+00 -1.14009356e+00 2.25792363e-01 -4.74742413e-01
-7.57251680e-01 1.09449673e+00 6.05827987e-01 -6.25803471e-01
8.04211974e-01 -4.94619250e-01 -1.03609316e-01 -2.16042340e-01
-5.67437649e-01 -8.81838575e-02 8.29641521e-01 3.42073262e-01
2.10755765e-01 2.81938195e-01 -8.11475590e-02 4.40170884e-01
-3.72697949e-01 -4.33875442e-01 5.05767703e-01 5.66780210e-01
-7.97142759e-02 -6.03304386e-01 -2.59295970e-01 5.42095244e-01
-2.46206179e-01 -5.89187853e-02 -4.66993690e-01 4.53832805e-01
-2.54922286e-02 7.09981024e-01 6.64505810e-02 -9.10728991e-01
4.59412545e-01 -3.20149362e-01 1.93452150e-01 -5.93122900e-01
-1.13425907e-02 -2.66910285e-01 -4.01602924e-01 -7.89412379e-01
-2.48953104e-01 -4.65609580e-01 -9.09113407e-01 -2.68079132e-01
-1.07493967e-01 -7.89601952e-02 4.59433615e-01 6.32493734e-01
4.48118180e-01 5.43962359e-01 1.12935162e+00 -9.86681223e-01
-1.03758049e+00 -9.82954502e-01 -7.40180552e-01 5.08408248e-01
4.27513838e-01 -9.23946738e-01 -6.94424868e-01 1.04069076e-01] | [9.019206047058105, 2.2378528118133545] |
3c9c8d4f-a972-4ef8-bb3a-ae72e2c118d3 | automatic-annotation-of-semantic-term-types | null | null | https://aclanthology.org/L18-1586 | https://aclanthology.org/L18-1586.pdf | Automatic Annotation of Semantic Term Types in the Complete ACL Anthology Reference Corpus | null | ["H{\\'e}ctor Mart{\\'\\i}nez Alonso", 'Anne-Kathrin Schumann'] | 2018-05-01 | automatic-annotation-of-semantic-term-types-1 | https://aclanthology.org/L18-1586 | https://aclanthology.org/L18-1586.pdf | lrec-2018-5 | ['lexical-analysis'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.269936561584473, 3.7788901329040527] |
41ed5ddf-204b-4175-a61b-e84e75a731fd | a-framework-for-bidirectional-decoding-case | 2305.1258 | null | https://arxiv.org/abs/2305.12580v1 | https://arxiv.org/pdf/2305.12580v1.pdf | A Framework for Bidirectional Decoding: Case Study in Morphological Inflection | Transformer-based encoder-decoder models that generate outputs in a left-to-right fashion have become standard for sequence-to-sequence tasks. In this paper, we propose a framework for decoding that produces sequences from the "outside-in": at each step, the model chooses to generate a token on the left, on the right, or join the left and right sequences. We argue that this is more principled than prior bidirectional decoders. Our proposal supports a variety of model architectures and includes several training methods, such as a dynamic programming algorithm that marginalizes out the latent ordering variable. Our model improves considerably over a simple baseline based on unidirectional transformers on the SIGMORPHON 2023 inflection task and sets SOTA on the 2022 shared task. The model performs particularly well on long sequences, can learn the split point of words composed of stem and affix (without supervision), and performs better relative to the baseline on datasets that have fewer unique lemmas (but more examples per lemma). | ['Julia Hockenmaier', 'Marc E. Canby'] | 2023-05-21 | null | null | null | null | ['morphological-inflection'] | ['natural-language-processing'] | [ 6.25183165e-01 3.48714411e-01 -2.32431769e-01 -4.50678855e-01
-1.21519005e+00 -9.68081653e-01 9.14451122e-01 -1.58734366e-01
-3.25268090e-01 9.17918324e-01 7.73672462e-01 -8.27036858e-01
4.99183327e-01 -7.35079169e-01 -9.53731358e-01 -6.82731688e-01
3.24374586e-01 7.83150792e-01 -9.37035158e-02 -4.14977580e-01
1.07517391e-01 -7.39248618e-02 -1.15499914e+00 7.58336484e-01
5.90313435e-01 3.77850860e-01 4.68142480e-01 6.78839266e-01
-2.34926939e-01 1.00277042e+00 -4.64188516e-01 -9.36653435e-01
1.86903268e-01 -8.30191016e-01 -8.46116483e-01 -3.20498735e-01
3.86848897e-01 -3.50784063e-01 -1.84054583e-01 7.33406544e-01
3.34380418e-01 -2.91236967e-01 9.88788962e-01 -9.05124962e-01
-8.70002508e-01 1.56321013e+00 -4.11852270e-01 3.39301415e-02
3.41030657e-01 7.14747235e-02 1.64678204e+00 -9.32066023e-01
8.85364532e-01 1.28627610e+00 6.34745002e-01 6.21339679e-01
-1.56049192e+00 -5.84257782e-01 1.47333488e-01 4.71640863e-02
-1.09873199e+00 -7.66928434e-01 2.75151163e-01 -5.95313549e-01
1.45163059e+00 1.60894588e-01 5.25535226e-01 1.34981585e+00
2.09067792e-01 9.25876439e-01 8.62699747e-01 -6.56765282e-01
-1.63713112e-01 -1.84607044e-01 -3.80321220e-02 6.55116796e-01
1.28085732e-01 1.30644232e-01 -7.92983949e-01 -3.14450860e-02
5.49899518e-01 -4.76730019e-01 -1.55952379e-01 -9.91903692e-02
-1.46189845e+00 6.87054157e-01 -1.12881258e-01 2.11780399e-01
-2.15348288e-01 4.42750603e-01 4.91392165e-01 4.73727137e-01
4.14619356e-01 3.61365527e-01 -6.93762779e-01 -4.59772199e-01
-1.09983730e+00 3.10211599e-01 8.99642646e-01 1.26460028e+00
6.00840449e-01 -3.78617160e-02 -4.18258280e-01 7.19146967e-01
1.87294871e-01 3.97132456e-01 4.22782868e-01 -7.64011443e-01
9.76212442e-01 -4.58711460e-02 4.61171456e-02 -2.77706772e-01
9.25743431e-02 -2.43037939e-01 -4.95772332e-01 -1.69684649e-01
5.47530591e-01 -2.04318687e-01 -1.04581761e+00 1.99728167e+00
-2.70371199e-01 -2.03700483e-01 -1.13466484e-02 4.32778001e-01
2.74553329e-01 9.52968955e-01 -2.99509503e-02 -1.17235355e-01
1.22395980e+00 -1.00769103e+00 -7.18446791e-01 -3.41221839e-01
1.00841630e+00 -7.93360174e-01 1.15468943e+00 4.06348288e-01
-1.53320324e+00 -2.97562063e-01 -7.99605668e-01 -6.22649670e-01
-1.96693420e-01 1.86633274e-01 4.79853451e-01 4.74491030e-01
-1.38133180e+00 6.36485696e-01 -8.90354335e-01 -1.64035484e-01
-6.93868995e-02 -1.62836730e-01 -3.23491573e-01 1.19338073e-01
-1.29321015e+00 1.14093065e+00 5.25643229e-01 -4.18601707e-02
-1.04595006e+00 -6.08448684e-01 -9.78662014e-01 1.07343867e-01
-1.36711344e-01 -8.30163538e-01 1.54161489e+00 -9.33144152e-01
-1.70338619e+00 1.01202714e+00 -5.78353107e-01 -6.83652520e-01
5.40545940e-01 -3.12095970e-01 -6.51718769e-03 -2.17783839e-01
2.91321933e-01 7.76396632e-01 5.85483849e-01 -9.06585336e-01
-6.23171091e-01 -1.14581227e-01 -2.26257771e-01 1.81626678e-01
4.98743542e-02 2.02627480e-01 -3.13907653e-01 -7.90237188e-01
-1.90367892e-01 -9.87909794e-01 1.74479991e-01 -3.72441322e-01
-6.49276257e-01 -3.09336424e-01 1.09661460e-01 -9.15593266e-01
1.30608582e+00 -1.85032320e+00 5.18093944e-01 -4.83895056e-02
-2.42778033e-01 -4.95990478e-02 -1.52159631e-01 8.81016731e-01
-4.01849121e-01 2.10966349e-01 -4.07128572e-01 -5.08963287e-01
1.83101594e-01 2.11225495e-01 -6.22087657e-01 1.91197738e-01
1.86736494e-01 1.11555469e+00 -9.45835650e-01 -3.59375447e-01
-1.92858636e-01 2.25338057e-01 -6.81861401e-01 7.00002536e-02
-4.15514141e-01 5.41681312e-02 1.97944596e-01 2.34042078e-01
1.83957562e-01 -2.68262684e-01 5.37294924e-01 1.22406594e-01
-2.69357115e-01 1.33799517e+00 -7.44495928e-01 1.89204800e+00
-6.45162523e-01 8.11544955e-01 -6.52637482e-02 -7.24583447e-01
7.33528316e-01 7.02506959e-01 -1.46613389e-01 -3.93846691e-01
-1.10883452e-01 3.92216712e-01 1.79551169e-01 -3.33405286e-01
6.70290351e-01 -4.55117613e-01 -2.30009302e-01 6.45668924e-01
2.34398931e-01 -2.62003720e-01 4.87798959e-01 4.35206175e-01
1.15001333e+00 7.14083970e-01 4.18292999e-01 -2.79314578e-01
1.71658576e-01 -1.14830539e-01 3.89622480e-01 7.56186485e-01
3.32363009e-01 6.42544746e-01 8.24850917e-01 -1.63993105e-01
-1.53754890e+00 -1.28032434e+00 9.66202244e-02 1.36638331e+00
-3.91356587e-01 -6.31520748e-01 -6.32378101e-01 -5.94041348e-01
-7.01634064e-02 1.36316252e+00 -4.87472296e-01 -4.00097594e-02
-8.39392781e-01 -3.35329592e-01 1.07573104e+00 6.33833885e-01
-1.52570441e-01 -1.10253274e+00 -3.46143097e-02 3.29058707e-01
-6.47320032e-01 -7.76990414e-01 -6.64660871e-01 5.70867956e-01
-6.59059346e-01 -5.53011954e-01 -5.45965970e-01 -9.91100550e-01
4.94577974e-01 -2.47017398e-01 1.39718211e+00 -2.77788132e-01
3.51899028e-01 -3.08068067e-01 -2.19957471e-01 -2.56298631e-01
-8.30457032e-01 4.73765790e-01 -3.23682308e-01 -2.85046041e-01
3.02321166e-01 -5.99648356e-01 5.92121854e-03 -1.40390009e-01
-6.26455307e-01 4.75480050e-01 6.51913226e-01 9.24198210e-01
2.26603970e-01 -5.67511916e-01 5.16721964e-01 -1.18455327e+00
5.67831516e-01 -5.45891106e-01 -3.96156311e-01 3.32473606e-01
-4.34327185e-01 5.92734218e-01 9.40875947e-01 -7.93505013e-02
-1.07342827e+00 2.12534331e-02 -3.64591867e-01 6.81772828e-02
2.83612832e-02 4.31702644e-01 -3.24968666e-01 8.94183636e-01
5.75681150e-01 6.06069207e-01 2.70173827e-04 -5.84894657e-01
8.82620990e-01 6.48477018e-01 5.51768482e-01 -7.22244263e-01
8.09243143e-01 2.15668604e-01 -3.13675821e-01 -4.93640810e-01
-6.51580513e-01 -1.36294857e-01 -6.32390738e-01 2.62869805e-01
7.29629278e-01 -1.11846673e+00 -3.55598986e-01 3.01969677e-01
-1.61648715e+00 -6.45604312e-01 -3.30640018e-01 2.51983047e-01
-7.72010207e-01 8.97913352e-02 -1.17412961e+00 -5.04910827e-01
-4.40461874e-01 -9.91159618e-01 1.10037339e+00 -3.93132448e-01
-7.58073092e-01 -9.25373435e-01 1.39969841e-01 4.35351208e-02
2.44634062e-01 -2.78376967e-01 1.32536769e+00 -6.55814648e-01
-6.78584516e-01 1.29962638e-01 7.04871565e-02 4.30333108e-01
1.33015171e-01 1.99273050e-01 -5.89872718e-01 -1.00597598e-01
-3.49919111e-01 -4.32169378e-01 1.18137598e+00 1.43521857e-02
7.52232671e-01 -5.36949813e-01 -3.96245629e-01 6.03846431e-01
1.11325884e+00 3.68721895e-02 7.66600490e-01 1.79264888e-01
6.68713868e-01 5.44203639e-01 -4.66158278e-02 1.25381753e-01
6.78352594e-01 3.61755282e-01 6.08302318e-02 3.43903482e-01
-4.54126626e-01 -9.03096199e-01 9.13466632e-01 1.22649789e+00
2.48578876e-01 -5.92520535e-01 -7.88166106e-01 1.00049138e+00
-1.49212158e+00 -1.18393743e+00 -2.27749303e-01 1.95884717e+00
1.42687690e+00 2.23517835e-01 -6.82004467e-02 4.72410098e-02
7.41994679e-01 3.63786608e-01 -1.06416002e-01 -6.95295751e-01
-2.08671883e-01 5.32488644e-01 6.41068161e-01 8.49865913e-01
-6.16698742e-01 1.30623388e+00 7.50574160e+00 9.12184000e-01
-9.15793300e-01 1.39899865e-01 4.89988208e-01 -2.43316159e-01
-1.04859352e+00 3.32922101e-01 -1.16861629e+00 7.37250209e-01
1.20753765e+00 -4.47818898e-02 7.00958788e-01 4.98540908e-01
1.33359775e-01 1.91553831e-01 -1.54673362e+00 5.25329769e-01
1.63245186e-01 -1.39317167e+00 2.76719362e-01 -6.90115690e-02
6.88948631e-01 8.38475451e-02 -3.75539884e-02 2.34215692e-01
9.51143682e-01 -1.06913984e+00 1.24948370e+00 3.06971818e-01
1.02412474e+00 -4.95579660e-01 1.75012171e-01 5.44950783e-01
-1.03005123e+00 2.39727184e-01 -2.13584956e-02 -3.10121417e-01
5.97536325e-01 5.17196774e-01 -1.09674728e+00 2.72109002e-01
1.30502060e-01 8.13950181e-01 -2.06949770e-01 3.99089664e-01
-1.05745184e+00 1.08269656e+00 -1.44109473e-01 -2.37095520e-01
1.63834065e-01 -3.16900223e-01 4.71038193e-01 1.69784546e+00
3.94327074e-01 -2.63330847e-01 -2.35363245e-01 7.65895188e-01
-2.56549329e-01 4.18570414e-02 -8.95022988e-01 -1.17800429e-01
6.38432145e-01 9.02220547e-01 -3.47292513e-01 -6.32889688e-01
-4.11469251e-01 1.07712018e+00 7.28408813e-01 3.99568737e-01
-7.79127777e-01 -4.91878957e-01 5.49261630e-01 1.92837507e-01
6.88485086e-01 -4.47822034e-01 -4.49625731e-01 -1.22890937e+00
-1.72021762e-02 -1.05730617e+00 2.64354259e-01 -8.35840881e-01
-1.11008418e+00 4.25844669e-01 -1.23896692e-02 -8.09018672e-01
-7.83527911e-01 -5.15810966e-01 -4.67411190e-01 1.11623836e+00
-1.31270134e+00 -1.07971883e+00 6.29616857e-01 2.41304085e-01
5.59003890e-01 6.79682270e-02 6.64423347e-01 2.96212554e-01
-2.78553486e-01 6.31134331e-01 2.42207110e-01 4.88126218e-01
7.60553718e-01 -1.43424690e+00 1.06057143e+00 1.20776904e+00
4.60079908e-01 9.71772313e-01 7.25020766e-01 -6.48769736e-01
-1.12818134e+00 -9.01219308e-01 1.79108441e+00 -6.30322337e-01
8.99132013e-01 -8.14781010e-01 -5.36189854e-01 1.48993313e+00
6.99885666e-01 -4.67919677e-01 5.95745265e-01 2.23561898e-01
-7.00042903e-01 1.49362296e-01 -4.33009833e-01 8.97037983e-01
1.33002985e+00 -7.93685257e-01 -8.83733571e-01 2.28534415e-01
8.66690814e-01 -3.79366755e-01 -4.80100006e-01 -4.61874157e-02
6.94969475e-01 -8.37344527e-01 5.39442897e-01 -7.42054820e-01
9.88044918e-01 -2.60752112e-01 -2.35722154e-01 -1.70070243e+00
-4.98177290e-01 -1.04569244e+00 -5.43612950e-02 1.28329015e+00
9.59365249e-01 -4.40353006e-01 5.71611762e-01 1.46688193e-01
-3.88074458e-01 -4.53536004e-01 -7.14693427e-01 -8.09733450e-01
4.67131793e-01 -4.43789661e-01 5.80950737e-01 5.68684399e-01
1.47338212e-01 8.70030403e-01 -5.05197883e-01 -2.99805820e-01
2.53421754e-01 6.83915541e-02 5.44144809e-01 -6.81746244e-01
-6.00831330e-01 -5.38072288e-01 9.68934447e-02 -1.75414109e+00
2.93552935e-01 -1.55571675e+00 3.85091186e-01 -1.61154413e+00
1.55717716e-01 -2.63184726e-01 8.63974262e-03 7.06023574e-01
-2.66895711e-01 -1.20391892e-02 2.35949904e-01 6.05856851e-02
-2.72840440e-01 5.25781453e-01 8.90334785e-01 -2.35604439e-02
2.24418938e-01 -3.24410528e-01 -8.78438890e-01 4.67185885e-01
6.28880024e-01 -7.02846467e-01 -2.88591802e-01 -9.25921261e-01
6.62235320e-01 2.66369045e-01 -8.94589499e-02 -3.74171913e-01
1.29268155e-01 -2.23799143e-02 1.19287491e-01 -7.00437486e-01
2.72240311e-01 -3.11817378e-01 1.66802108e-01 3.90569270e-01
-9.21032012e-01 4.30305451e-01 -2.04646200e-01 2.41315052e-01
-4.12041992e-02 -2.62323648e-01 5.37041783e-01 -4.20404613e-01
-1.13957651e-01 -4.06462587e-02 -6.72340035e-01 4.89430219e-01
6.53210580e-01 5.90255931e-02 -3.60710740e-01 -4.54614818e-01
-4.68409270e-01 -2.42498443e-02 4.73367453e-01 3.92911494e-01
2.09981859e-01 -1.29280150e+00 -1.01913786e+00 1.88041151e-01
9.16247163e-03 -2.33141288e-01 -5.14435053e-01 5.77929974e-01
-5.77244639e-01 6.14007831e-01 4.41397019e-02 -2.52634466e-01
-9.64264452e-01 4.60013002e-01 2.26038277e-01 -5.37765026e-01
-4.52630669e-01 1.16056895e+00 2.00512215e-01 -5.83014548e-01
-3.70352343e-03 -3.88427168e-01 2.36439288e-01 2.26165652e-01
3.93881530e-01 2.60831416e-01 -1.47074200e-02 -6.23170674e-01
-2.51462162e-01 1.26965106e-01 -2.86962569e-01 -7.49506772e-01
1.21259153e+00 -1.20251320e-01 -4.08726156e-01 8.43855321e-01
1.27204788e+00 3.29191953e-01 -1.18959677e+00 -1.62964404e-01
1.39193177e-01 -1.30400330e-01 -4.84668285e-01 -8.20996106e-01
-6.01160347e-01 1.05399930e+00 -4.49686527e-01 1.54121667e-01
5.40903866e-01 -7.82202836e-03 9.83994067e-01 1.93933249e-01
2.61374086e-01 -1.02618694e+00 -1.69934049e-01 9.69739437e-01
6.76403701e-01 -6.03363812e-01 -3.56020153e-01 -2.09625617e-01
-7.76723444e-01 1.01360011e+00 2.57371426e-01 -5.16552813e-02
2.32226580e-01 6.69285059e-01 -2.06066705e-02 2.04126492e-01
-1.35190594e+00 -1.00366779e-01 -1.26389548e-01 3.86204004e-01
1.01832306e+00 2.87733316e-01 -4.72475886e-01 1.82844460e-01
-8.03404093e-01 -9.70056877e-02 5.88690519e-01 7.18131244e-01
-3.15572917e-01 -1.46277010e+00 -9.20541212e-02 4.07768548e-01
-5.84121764e-01 -9.15823698e-01 -2.46044680e-01 5.95974445e-01
1.54716268e-01 9.39877510e-01 2.77362108e-01 -1.08234033e-01
-6.86083287e-02 7.03375041e-01 6.94759965e-01 -9.11264002e-01
-6.06555998e-01 5.72797917e-02 5.86028278e-01 -2.55712777e-01
8.80173966e-02 -1.03174484e+00 -1.15987551e+00 -2.84932524e-01
-1.17940173e-01 1.25713050e-01 4.46850210e-01 1.02193105e+00
3.83502126e-01 4.11890119e-01 3.72081518e-01 -5.31736910e-01
-7.63234615e-01 -1.06378770e+00 -4.34925526e-01 3.29202056e-01
3.67287576e-01 -7.74902776e-02 -2.94703811e-01 4.10819411e-01] | [11.34865665435791, 9.185531616210938] |
87e58a1a-370e-46eb-8f92-455ec2c9c9e5 | learning-to-predict-3d-lane-shape-and-camera | 2112.15351 | null | https://arxiv.org/abs/2112.15351v1 | https://arxiv.org/pdf/2112.15351v1.pdf | Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints | Detecting 3D lanes from the camera is a rising problem for autonomous vehicles. In this task, the correct camera pose is the key to generating accurate lanes, which can transform an image from perspective-view to the top-view. With this transformation, we can get rid of the perspective effects so that 3D lanes would look similar and can accurately be fitted by low-order polynomials. However, mainstream 3D lane detectors rely on perfect camera poses provided by other sensors, which is expensive and encounters multi-sensor calibration issues. To overcome this problem, we propose to predict 3D lanes by estimating camera pose from a single image with a two-stage framework. The first stage aims at the camera pose task from perspective-view images. To improve pose estimation, we introduce an auxiliary 3D lane task and geometry constraints to benefit from multi-task learning, which enhances consistencies between 3D and 2D, as well as compatibility in the above two tasks. The second stage targets the 3D lane task. It uses previously estimated pose to generate top-view images containing distance-invariant lane appearances for predicting accurate 3D lanes. Experiments demonstrate that, without ground truth camera pose, our method outperforms the state-of-the-art perfect-camera-pose-based methods and has the fewest parameters and computations. Codes are available at https://github.com/liuruijin17/CLGo. | ['Zejian yuan', 'Zhiliang Xiong', 'Tie Liu', 'Dapeng Chen', 'Ruijin Liu'] | 2021-12-31 | null | null | null | null | ['3d-lane-detection'] | ['computer-vision'] | [-2.28972808e-01 -1.09327145e-01 -3.59378219e-01 -4.95506495e-01
-8.08850229e-01 -6.14342093e-01 4.84264612e-01 -7.44693756e-01
-1.86295241e-01 1.69185400e-01 -1.28028482e-01 -5.22181988e-01
5.34565628e-01 -5.02711296e-01 -9.69896197e-01 -7.28066146e-01
5.36007643e-01 5.36568701e-01 5.90661883e-01 -2.00647444e-01
3.36426795e-01 7.37371206e-01 -1.39813542e+00 -1.58503488e-01
8.74109387e-01 7.10308969e-01 4.64805037e-01 6.79257751e-01
-5.66612966e-02 3.92279625e-01 2.84519717e-02 -4.02101964e-01
5.80206096e-01 1.86314464e-01 5.42187840e-02 6.29046500e-01
9.03228641e-01 -8.16076934e-01 -3.87407333e-01 1.11695218e+00
5.31386444e-03 -1.93644807e-01 4.65497881e-01 -1.52421832e+00
-1.48559501e-02 -3.85495424e-01 -8.47277224e-01 -3.68409514e-01
4.70724285e-01 4.43315804e-01 7.30993450e-01 -1.14731932e+00
5.09940386e-01 1.32930887e+00 8.45773757e-01 2.61105925e-01
-9.87878621e-01 -7.07301497e-01 2.58567452e-01 6.83120936e-02
-1.27025020e+00 -5.59194863e-01 1.17711961e+00 -5.98510981e-01
5.48082411e-01 -9.57401693e-02 4.80371147e-01 1.02834141e+00
2.70633459e-01 7.26731539e-01 1.03710711e+00 -6.59462363e-02
-3.17707211e-01 2.50748903e-01 -1.42856434e-01 8.88948560e-01
4.11840230e-01 2.35603273e-01 -1.14900947e-01 3.51440996e-01
8.68864059e-01 2.50084817e-01 -1.66786581e-01 -9.69442308e-01
-1.21102238e+00 7.16188252e-01 3.63847405e-01 -3.87142092e-01
9.56717040e-03 -1.45796522e-01 6.02809526e-02 -1.57840669e-01
3.77397686e-01 1.79762185e-01 -3.51670176e-01 1.68993294e-01
-4.59430993e-01 3.42101365e-01 4.01669890e-01 1.39144599e+00
1.18427444e+00 1.31235234e-02 4.83533978e-01 4.95996237e-01
5.76501787e-01 1.17316711e+00 -1.39323562e-01 -1.24126256e+00
9.19415057e-01 6.69060409e-01 2.26945311e-01 -1.10794938e+00
-5.87543786e-01 -2.09634468e-01 -6.89310133e-01 3.14961553e-01
6.45111382e-01 -1.30306676e-01 -8.53455484e-01 1.27991283e+00
5.42106450e-01 1.42511979e-01 1.02141919e-02 1.17754781e+00
5.31179786e-01 7.96615481e-01 -5.01660347e-01 3.12914513e-02
1.14280546e+00 -1.17625904e+00 -4.72090155e-01 -1.10241592e+00
6.80423498e-01 -9.29692745e-01 7.12720215e-01 2.02518404e-01
-6.35680914e-01 -7.23251343e-01 -1.02864933e+00 -3.60986233e-01
-2.51654357e-01 5.48536658e-01 4.19768691e-01 4.76710290e-01
-8.52907360e-01 -3.75447780e-01 -5.65530837e-01 -2.18466491e-01
-4.93431576e-02 -2.31456682e-02 -6.60926580e-01 -4.24043894e-01
-9.51174796e-01 1.22119009e+00 2.13224590e-01 3.27846199e-01
-5.80417514e-01 -5.18558502e-01 -1.30505228e+00 -4.61499870e-01
8.57538462e-01 -5.90287626e-01 1.12622213e+00 -6.75896585e-01
-1.38507533e+00 1.02249026e+00 -4.67240125e-01 -9.56216976e-02
7.32854605e-01 -2.10791379e-01 -1.67088076e-01 7.09798858e-02
2.23584726e-01 7.49896646e-01 8.57217848e-01 -1.71653509e+00
-8.86227548e-01 -5.12831628e-01 -2.00334117e-01 4.06612098e-01
4.18949425e-01 -5.33454716e-01 -1.02333355e+00 1.30405854e-02
5.43114364e-01 -1.28833163e+00 -3.80192131e-01 1.71980634e-01
-4.25368577e-01 1.22346364e-01 1.07655108e+00 -7.42535114e-01
4.92881000e-01 -2.12545896e+00 -8.58982056e-02 1.64994016e-01
2.62526035e-01 1.84539273e-01 -5.92859462e-02 1.53988525e-01
1.49333760e-01 -3.07246834e-01 2.37090379e-01 -5.75417459e-01
-1.54786780e-01 2.07795501e-01 -3.18671346e-01 6.20844781e-01
2.11671621e-01 7.73909450e-01 -6.97607815e-01 -3.84268492e-01
7.00549603e-01 3.50179732e-01 -4.07172948e-01 3.34908366e-01
-4.38393233e-03 5.73802888e-01 -4.80767727e-01 5.63707530e-01
1.18092215e+00 7.65587017e-02 -1.91887971e-02 -5.27924299e-01
-4.45424676e-01 -7.61687942e-03 -1.11323607e+00 1.30737245e+00
-5.73297679e-01 7.16423810e-01 1.38675883e-01 -7.33109415e-01
1.13364673e+00 -1.74045533e-01 3.33273828e-01 -6.98998988e-01
2.50748456e-01 3.91448855e-01 -3.04639041e-01 -3.97473961e-01
4.76155400e-01 1.82564750e-01 -4.68538046e-01 -1.64103329e-01
-3.41574728e-01 -6.75387144e-01 3.25991213e-02 4.11097407e-02
5.12623906e-01 2.35065743e-01 3.16891193e-01 2.75957972e-01
5.63402236e-01 1.54796258e-01 8.21464360e-01 3.64631534e-01
-1.52958378e-01 6.51067674e-01 5.25776982e-01 -5.56650698e-01
-1.49608529e+00 -1.00080562e+00 2.01569274e-01 3.22110206e-01
6.52563572e-01 4.77368459e-02 -6.49591088e-01 -5.84951937e-01
3.14115018e-01 6.52606845e-01 -2.55637437e-01 -1.06669046e-01
-7.00595438e-01 -1.31415144e-01 -1.46332886e-02 4.63325620e-01
5.12523055e-01 -1.39038369e-01 -5.46442747e-01 -1.37814224e-01
-2.37922087e-01 -1.75152183e+00 -8.66189480e-01 -8.44761655e-02
-7.57109880e-01 -1.21345806e+00 -5.33181787e-01 -6.17187381e-01
7.99175322e-01 1.13456964e+00 7.93280959e-01 -1.94947109e-01
1.72398090e-01 4.16679122e-02 -1.46521255e-01 -3.35036665e-01
-4.56018269e-01 -2.38343894e-01 1.29129574e-01 1.81918263e-01
2.45360434e-01 -1.92632690e-01 -4.17515934e-01 7.86598802e-01
-2.29463935e-01 7.47809172e-01 1.14949620e+00 5.68421125e-01
5.95537305e-01 -1.72658652e-01 -8.89585912e-02 -7.27437437e-01
-3.40617508e-01 -1.05318017e-01 -1.24208534e+00 -2.12303489e-01
-4.20141459e-01 -8.86212811e-02 7.79545307e-01 -1.90900311e-01
-1.17187214e+00 8.38899612e-01 -4.93134521e-02 -9.51084435e-01
-2.61687160e-01 1.35154441e-01 -5.99516630e-01 -1.30292013e-01
2.11911649e-01 2.40155742e-01 4.69705731e-01 -1.74387679e-01
3.49323720e-01 5.97402453e-01 6.11721516e-01 -2.51598079e-02
1.24888682e+00 6.45792902e-01 2.97789484e-01 -9.06360090e-01
-1.03451180e+00 -8.46738696e-01 -1.00762141e+00 -6.27990782e-01
8.86684000e-01 -1.26464677e+00 -4.84655857e-01 7.55271316e-01
-1.25203228e+00 -1.66143522e-01 4.40637290e-01 4.55890357e-01
-6.30203247e-01 4.62347627e-01 -1.53583542e-01 -6.29513979e-01
1.66854724e-01 -1.48196304e+00 1.54673600e+00 1.61747113e-01
4.16746140e-01 -8.96830380e-01 -2.45066255e-01 8.41701090e-01
-1.02076881e-01 1.29786104e-01 4.71753359e-01 -7.70991519e-02
-1.15449297e+00 -4.62798327e-01 -2.99270183e-01 2.62336165e-01
-1.73560932e-01 6.80317208e-02 -8.52895617e-01 -1.27788603e-01
-1.75986364e-01 5.37599018e-03 7.55572498e-01 3.78048569e-01
5.69403708e-01 -2.41229907e-02 -5.16139150e-01 8.32908988e-01
1.29071569e+00 1.09907754e-01 5.49423516e-01 3.83094221e-01
1.21275151e+00 6.10342801e-01 1.05604756e+00 2.48617213e-02
9.48141694e-01 1.05534244e+00 5.51753640e-01 -2.29177356e-01
-9.47378501e-02 -6.95300341e-01 4.87841636e-01 6.24619365e-01
1.75186783e-01 -9.79093239e-02 -1.01232743e+00 2.46076539e-01
-1.91570139e+00 -8.30526769e-01 -6.24802172e-01 2.18860149e+00
2.66487122e-01 3.90508503e-01 1.39182970e-01 -2.55865425e-01
7.03191459e-01 2.08670527e-01 -6.54444396e-01 -9.51005071e-02
1.47554101e-02 -1.10740566e+00 1.08605123e+00 7.93090284e-01
-1.09178269e+00 1.16636539e+00 4.79934406e+00 4.87709820e-01
-1.20829642e+00 -1.51635632e-01 5.61938763e-01 4.33614045e-01
-2.33696043e-01 2.00357065e-01 -1.45237577e+00 4.13462132e-01
5.18199682e-01 1.87059343e-01 1.74137056e-01 1.05962980e+00
5.31197786e-01 -3.40203315e-01 -1.01088035e+00 1.12911677e+00
4.02749479e-01 -1.03856516e+00 -8.36796686e-02 3.36653471e-01
7.73209453e-01 1.07509032e-01 -3.51116620e-02 1.28870636e-01
2.04264205e-02 -4.55676526e-01 9.68094409e-01 5.37230372e-01
7.11728036e-01 -6.57545626e-01 8.83830547e-01 8.77712369e-01
-1.34566557e+00 -8.79975706e-02 -3.28285366e-01 2.15949222e-01
5.28516769e-01 6.21682346e-01 -1.05600274e+00 4.71474230e-01
3.00292313e-01 9.50340092e-01 -6.88490272e-01 9.84813213e-01
-3.43210220e-01 2.74113063e-02 -3.07322174e-01 2.06931546e-01
3.09301704e-01 -5.62658250e-01 5.38748801e-01 8.77786219e-01
5.10269403e-01 -3.64559237e-03 6.02744818e-01 6.36097968e-01
2.43938446e-01 -4.31506157e-01 -1.09535027e+00 6.78099155e-01
4.95454669e-01 1.28500450e+00 -4.58915502e-01 7.42558949e-03
-7.18561292e-01 6.83086932e-01 5.58488257e-02 2.77625561e-01
-1.03500986e+00 7.47981993e-03 6.36982441e-01 3.31140190e-01
2.05390647e-01 -6.60632551e-01 -2.16545448e-01 -1.14915216e+00
2.43519545e-01 -6.53798461e-01 -2.54957110e-01 -1.13717675e+00
-8.59986186e-01 1.68432310e-01 1.08972326e-01 -1.79719150e+00
-3.13083112e-01 -9.72209632e-01 -3.70119512e-01 7.96321869e-01
-1.72493291e+00 -1.58387363e+00 -4.99739021e-01 2.34892175e-01
7.80337632e-01 9.76674631e-02 6.84113428e-02 1.71487704e-01
-4.48225826e-01 4.73118842e-01 3.38106113e-03 1.09048411e-01
7.81667352e-01 -9.12076116e-01 5.07684529e-01 1.08749032e+00
-2.44151145e-01 9.24963951e-02 6.88948333e-01 -5.92245042e-01
-1.92079532e+00 -1.30493224e+00 8.77768815e-01 -8.02046597e-01
4.35770065e-01 -5.74710250e-01 -6.43016100e-01 6.87035620e-01
-4.30827320e-01 9.11542326e-02 -1.51746556e-01 -3.64680529e-01
-3.30191672e-01 -4.40601259e-01 -6.57098889e-01 6.63852572e-01
1.00787997e+00 -4.18268919e-01 -2.18689993e-01 1.73313096e-01
4.22995389e-01 -8.29639137e-01 -3.38700712e-01 2.91841179e-01
6.21228635e-01 -1.05586326e+00 1.03393912e+00 2.43105665e-01
8.66537318e-02 -7.14584708e-01 -1.74528323e-02 -1.25863969e+00
-4.86116260e-02 -3.44913453e-01 2.47255132e-01 9.09647226e-01
4.46487755e-01 -6.72650516e-01 8.58366668e-01 4.96427804e-01
-5.63285232e-01 -4.32460457e-01 -7.04302847e-01 -7.55746365e-01
-2.56105721e-01 -5.16002774e-01 2.36664236e-01 5.26763916e-01
-5.49850941e-01 6.46574020e-01 -5.83503246e-01 7.43069708e-01
8.45510423e-01 2.54908174e-01 1.52545929e+00 -1.18951750e+00
2.01764330e-01 -2.64504641e-01 -5.64605355e-01 -1.71645534e+00
4.48881537e-01 -5.02066255e-01 4.35194403e-01 -1.36354184e+00
1.22212663e-01 -2.71084964e-01 5.92733264e-01 1.14906877e-01
-1.89905554e-01 1.51494499e-02 2.54296422e-01 2.84683734e-01
-5.49303412e-01 4.04847562e-01 1.46926296e+00 2.62317825e-02
-1.60402656e-02 2.57450104e-01 -3.69162291e-01 9.75137949e-01
6.78175509e-01 -1.71533797e-03 -4.37351257e-01 -5.74580252e-01
8.29900503e-02 3.84406209e-01 4.97631997e-01 -8.39191854e-01
4.05906737e-01 -3.29547018e-01 3.71366948e-01 -1.18025112e+00
7.06920326e-01 -1.09956563e+00 1.67947978e-01 2.63408750e-01
2.76810437e-01 1.76105857e-01 -3.70206982e-02 5.54112017e-01
-5.24808094e-02 4.57902923e-02 8.32918108e-01 -5.40351048e-02
-1.21278763e+00 4.15383577e-01 -2.06956267e-01 -2.94578344e-01
1.26457942e+00 -7.42096722e-01 -3.76036674e-01 -5.21341443e-01
-8.46015960e-02 6.43269598e-01 9.60332513e-01 6.47378862e-01
8.46867740e-01 -1.21327078e+00 -5.27954638e-01 5.84887564e-01
4.01427537e-01 4.53873158e-01 2.91761220e-01 1.04009891e+00
-7.43210971e-01 7.30655015e-01 -4.52573448e-02 -1.13496518e+00
-1.19543672e+00 6.18913114e-01 3.95032257e-01 1.48196191e-01
-5.45277655e-01 2.38878295e-01 4.39043313e-01 -7.29251623e-01
-9.43692401e-02 -3.51337373e-01 -4.28392813e-02 -1.70368806e-01
3.38858455e-01 1.91027775e-01 4.81591001e-02 -1.25348508e+00
-2.29534253e-01 1.20948505e+00 -7.03918710e-02 2.04390123e-01
9.65544999e-01 -5.11357486e-01 3.43252659e-01 3.34341556e-01
1.32753456e+00 1.18185185e-01 -1.95585752e+00 7.88950697e-02
-2.48768777e-01 -8.04758012e-01 1.76423833e-01 -1.77717462e-01
-1.03042579e+00 9.91891265e-01 4.07961160e-01 -3.05708945e-01
7.84436047e-01 -6.61463737e-02 7.58572698e-01 4.45231736e-01
5.69362760e-01 -9.28675473e-01 5.89116998e-02 7.91788876e-01
6.80874646e-01 -1.66919827e+00 -5.92278466e-02 -8.75793219e-01
-7.93623388e-01 1.25119638e+00 1.00173259e+00 -3.43724824e-02
3.28598708e-01 1.97606206e-01 3.70077074e-01 1.18212603e-01
-4.31193441e-01 -1.28490299e-01 3.56269777e-01 6.23665035e-01
-1.68850660e-01 3.84819508e-02 3.77325028e-01 2.04446297e-02
-6.09974712e-02 -4.75800127e-01 6.84583962e-01 5.27415097e-01
-5.61129928e-01 -8.25922132e-01 -6.54621899e-01 1.01211779e-01
4.41634506e-01 3.90810132e-01 -3.21405411e-01 1.00643885e+00
9.58206430e-02 7.21385777e-01 7.21067116e-02 -5.07612050e-01
6.08092964e-01 -1.54031664e-01 2.16490239e-01 -4.48625922e-01
5.52249432e-01 2.11455345e-01 2.31480718e-01 -7.27434695e-01
-1.15317523e-01 -8.42382431e-01 -9.36631382e-01 -3.97280216e-01
-3.91311318e-01 -2.32282802e-01 7.53973842e-01 8.28929484e-01
3.47450048e-01 -1.02994137e-01 1.14525878e+00 -1.50621891e+00
-4.74699348e-01 -4.76125151e-01 -3.58091801e-01 2.34843969e-01
6.18267417e-01 -7.92530358e-01 -4.92321670e-01 4.96459007e-02] | [8.005998611450195, -1.7175087928771973] |
d9f9bf7e-25b4-4430-a9df-ee447cd89ca4 | handling-noisy-labels-for-robustly-learning | 1903.12008 | null | http://arxiv.org/abs/1903.12008v1 | http://arxiv.org/pdf/1903.12008v1.pdf | Handling Noisy Labels for Robustly Learning from Self-Training Data for Low-Resource Sequence Labeling | In this paper, we address the problem of effectively self-training neural
networks in a low-resource setting. Self-training is frequently used to
automatically increase the amount of training data. However, in a low-resource
scenario, it is less effective due to unreliable annotations created using
self-labeling of unlabeled data. We propose to combine self-training with noise
handling on the self-labeled data. Directly estimating noise on the combined
clean training set and self-labeled data can lead to corruption of the clean
data and hence, performs worse. Thus, we propose the Clean and Noisy Label
Neural Network which trains on clean and noisy self-labeled data simultaneously
by explicitly modelling clean and noisy labels separately. In our experiments
on Chunking and NER, this approach performs more robustly than the baselines.
Complementary to this explicit approach, noise can also be handled implicitly
with the help of an auxiliary learning task. To such a complementary approach,
our method is more beneficial than other baseline methods and together provides
the best performance overall. | ['Michael A. Hedderich', 'Mittul Singh', 'Debjit Paul', 'Dietrich Klakow'] | 2019-03-28 | handling-noisy-labels-for-robustly-learning-1 | https://aclanthology.org/N19-3005 | https://aclanthology.org/N19-3005.pdf | naacl-2019-6 | ['auxiliary-learning'] | ['methodology'] | [ 4.45143729e-02 4.41373438e-01 6.42286465e-02 -4.95069802e-01
-1.24056149e+00 -5.81416070e-01 5.18900871e-01 1.02371559e-01
-8.69340241e-01 1.00126398e+00 4.43833590e-01 -2.14847967e-01
5.89524329e-01 -5.68352997e-01 -8.19130480e-01 -5.89752138e-01
4.68059033e-01 2.82961518e-01 -2.12753154e-02 7.73967728e-02
-3.33253175e-01 6.42135646e-03 -1.58866072e+00 2.07824498e-01
1.17182446e+00 6.54907942e-01 2.08095685e-01 4.41025734e-01
-3.48897696e-01 1.07298434e+00 -7.51951814e-01 -3.20841372e-01
3.15453917e-01 -6.25226498e-01 -9.28761423e-01 -4.32719477e-02
7.01809943e-01 -2.25508422e-01 6.77123591e-02 1.19280112e+00
6.66984737e-01 3.32454622e-01 3.24225634e-01 -6.58761322e-01
-3.48939836e-01 9.67558682e-01 -2.24554852e-01 5.54947257e-02
-1.49915710e-01 1.01834219e-02 7.22294211e-01 -8.97940338e-01
6.25835717e-01 1.01774681e+00 9.37258244e-01 7.82261968e-01
-1.46090078e+00 -6.68522954e-01 8.94262716e-02 -7.80241042e-02
-1.11465621e+00 -1.01957834e+00 5.74193299e-01 -1.06874414e-01
8.36812258e-01 6.13282919e-02 2.52898447e-02 1.27682865e+00
-5.52779436e-01 8.72320831e-01 1.30405807e+00 -7.31983781e-01
3.52069616e-01 2.93949097e-01 4.50074285e-01 3.25024813e-01
2.74738044e-01 1.04408562e-01 -3.78155977e-01 4.20603417e-02
3.01765472e-01 -2.20746860e-01 -1.31829813e-01 -7.66894370e-02
-9.70003366e-01 5.67488372e-01 3.08637589e-01 5.69927096e-01
-4.05244619e-01 6.61049709e-02 5.57687998e-01 3.22349697e-01
1.04083383e+00 5.81030250e-01 -7.08002687e-01 -2.75463372e-01
-1.40985429e+00 -8.34607482e-02 1.00917065e+00 8.71585965e-01
8.45920146e-01 3.22349995e-01 -2.49239087e-01 1.03646195e+00
-1.31347805e-01 4.33878124e-01 4.38383758e-01 -1.03871047e+00
5.84905624e-01 1.53979972e-01 2.50972271e-01 -3.59874696e-01
-5.37834108e-01 -6.69624567e-01 -1.04442024e+00 9.64532271e-02
5.06408632e-01 -7.49634326e-01 -1.38785219e+00 2.01382113e+00
2.92652786e-01 4.45318818e-01 2.55766839e-01 6.65652812e-01
1.04269707e+00 3.59370261e-01 3.96426916e-01 -3.42811227e-01
9.57573593e-01 -1.28887045e+00 -1.09241211e+00 -5.56598961e-01
1.01447618e+00 -6.54032648e-01 9.00661051e-01 2.94912100e-01
-1.01381981e+00 -5.55181503e-01 -7.85539031e-01 -3.34329568e-02
-3.99874955e-01 2.49548152e-01 2.08825424e-01 6.58389568e-01
-1.11909759e+00 8.98581386e-01 -9.22541261e-01 -2.50704110e-01
5.66767156e-01 1.59784421e-01 -5.98209262e-01 -2.59406358e-01
-1.14339089e+00 1.21403587e+00 5.68245351e-01 6.00608774e-02
-4.61270034e-01 -5.85691750e-01 -1.18775094e+00 1.75249949e-01
8.23880374e-01 -4.16072190e-01 1.55357289e+00 -1.03667462e+00
-1.32848263e+00 6.31015658e-01 -2.87560999e-01 -4.88725454e-01
4.05490607e-01 -5.96886992e-01 -1.85149297e-01 -1.93270057e-01
1.90138951e-01 5.81519783e-01 7.23070383e-01 -1.58004117e+00
-4.33811963e-01 -2.38861606e-01 -2.96333522e-01 2.14731053e-01
-3.70604068e-01 -1.25244454e-01 -3.71792018e-01 -7.68851519e-01
-3.96249108e-02 -8.38657260e-01 -2.97016799e-01 -8.87195587e-01
-5.65756619e-01 -9.17488262e-02 6.46855772e-01 -8.08175504e-01
1.19860125e+00 -2.18728590e+00 -5.74275181e-02 -2.38038711e-02
1.58804044e-01 9.37784612e-01 -3.49751949e-01 1.88293055e-01
-2.32635751e-01 4.90882814e-01 -3.35536987e-01 -9.37818289e-01
-2.02083230e-01 5.20484209e-01 6.12446666e-02 2.50548899e-01
4.42602545e-01 9.36391413e-01 -1.00652456e+00 -4.93098438e-01
5.41723042e-04 5.10629058e-01 -2.65769213e-01 3.53891134e-01
-6.16116598e-02 5.91775596e-01 6.98181316e-02 3.49161804e-01
7.57255614e-01 1.16345380e-02 1.78582802e-01 -1.31517611e-02
-1.90189406e-02 5.63132763e-01 -1.38819027e+00 1.64447677e+00
-8.38921070e-01 4.92572308e-01 4.73808318e-01 -1.00944924e+00
5.60743749e-01 5.92475951e-01 6.03358187e-02 -6.50103927e-01
9.55316275e-02 1.23061910e-01 -2.25593597e-01 -6.12949371e-01
4.87519354e-01 -3.93623322e-01 2.28348188e-02 6.66611671e-01
4.83738720e-01 -6.01879247e-02 2.61339009e-01 2.38097981e-01
1.28522372e+00 2.60373652e-01 2.85953879e-01 -1.23633280e-01
1.35962605e-01 -1.25888303e-01 7.69672811e-01 1.08696747e+00
-1.87871724e-01 5.56046844e-01 9.95291024e-02 -7.77877197e-02
-1.02283239e+00 -4.48657513e-01 -8.07966664e-02 1.15378845e+00
-2.01543450e-01 -4.72245634e-01 -1.12256539e+00 -1.16021407e+00
-2.30566964e-01 8.43316495e-01 -5.06368101e-01 -5.92181049e-02
-7.27364719e-01 -5.32562912e-01 7.34414756e-01 7.01539218e-01
5.33004105e-01 -1.14579761e+00 -2.27443472e-01 3.17689657e-01
-4.19048339e-01 -1.16608882e+00 -2.75876313e-01 1.07271612e+00
-8.71724367e-01 -7.82283068e-01 -4.81057435e-01 -7.49793053e-01
6.75752461e-01 3.01614106e-01 1.34051442e+00 3.75388473e-01
9.84440669e-02 -1.28821850e-01 -6.66324973e-01 -4.64418262e-01
-7.18282044e-01 3.78986448e-01 1.08562872e-01 -3.00665766e-01
4.20912683e-01 -4.81095612e-01 -4.62882482e-02 -3.19076069e-02
-1.04021895e+00 -1.46422878e-01 6.52012050e-01 1.25251198e+00
2.90232301e-01 2.32336238e-01 7.41786778e-01 -1.50461113e+00
4.35141504e-01 -5.82225800e-01 -2.52026856e-01 8.27723444e-02
-5.09105504e-01 4.28714842e-01 9.20089960e-01 -3.30787390e-01
-1.46834528e+00 2.07537979e-01 -4.24123704e-01 -1.62487954e-01
-8.39219868e-01 5.19293845e-01 -3.76382530e-01 1.54320449e-01
9.56636608e-01 -3.18615615e-01 -2.36988083e-01 -1.00584984e+00
6.53416157e-01 9.58588481e-01 6.78357065e-01 -2.69153118e-01
7.84757137e-01 1.83792040e-01 -4.19903964e-01 -6.25290751e-01
-1.43314087e+00 -6.72345281e-01 -8.72580528e-01 2.59526879e-01
5.52087843e-01 -1.10704482e+00 9.50569212e-02 5.32087743e-01
-1.06872606e+00 -6.26224399e-01 -6.00009859e-01 4.01453376e-01
-1.60712451e-01 6.01120114e-01 -7.57928491e-01 -1.07252491e+00
-3.73195887e-01 -8.57887328e-01 1.08140182e+00 9.94769409e-02
-1.68782696e-01 -9.99278963e-01 1.32220592e-02 2.93251544e-01
5.31633258e-01 -1.75244361e-02 4.14441615e-01 -1.12047577e+00
-6.35233968e-02 -2.24321827e-01 -2.42829874e-01 9.32827294e-01
2.28760600e-01 -4.83071923e-01 -1.51228952e+00 -1.66904658e-01
3.04773837e-01 -7.72027910e-01 1.32864451e+00 1.33015975e-01
8.78966272e-01 -3.33557278e-01 -7.29582831e-02 4.01937246e-01
1.34328043e+00 -2.07594186e-01 4.72140342e-01 2.05208570e-01
8.68461549e-01 7.10032225e-01 5.94669700e-01 1.01881884e-01
3.43914360e-01 4.43002313e-01 2.29312763e-01 -4.32548195e-01
-4.26503688e-01 -3.98831815e-02 1.68097347e-01 9.52243507e-01
1.47752449e-01 -2.68314153e-01 -8.72597158e-01 5.44854701e-01
-1.86325443e+00 -1.04426670e+00 -2.40106910e-01 2.21191645e+00
1.34494543e+00 -2.64827777e-02 -2.70041581e-02 2.22863361e-01
7.44285345e-01 -6.85004145e-02 -3.11547577e-01 -1.37269109e-01
-2.28708774e-01 3.25483680e-01 7.26224482e-01 5.11995912e-01
-1.57593358e+00 1.07982635e+00 6.68387175e+00 9.06000197e-01
-8.24119449e-01 5.68727374e-01 6.19171739e-01 -1.64436132e-01
-1.10242367e-01 -2.01565072e-01 -8.28202903e-01 5.95318079e-01
1.26337266e+00 5.07477462e-01 4.51540291e-01 7.95393467e-01
9.97423679e-02 -4.74235088e-01 -1.09081829e+00 7.84450054e-01
1.04217879e-01 -9.44554567e-01 -6.41279578e-01 -1.43555164e-01
9.87040102e-01 2.52778828e-01 -3.46398860e-01 6.29632592e-01
8.24281216e-01 -9.24430013e-01 7.35621691e-01 2.34837398e-01
7.80743778e-01 -6.18290246e-01 1.39995122e+00 8.56135666e-01
-6.69996619e-01 -3.03099514e-03 -2.32421175e-01 -1.25705034e-01
1.45962432e-01 1.05381453e+00 -5.33826590e-01 5.57661355e-01
6.40137613e-01 4.16069150e-01 -5.97254097e-01 1.00164008e+00
-6.19573236e-01 1.07313645e+00 -5.63791275e-01 4.47442055e-01
1.42488137e-01 1.01725325e-01 2.69571811e-01 1.57440543e+00
-6.40706047e-02 -7.97243789e-03 2.38777235e-01 6.03401542e-01
-3.93217802e-01 7.51860514e-02 -5.36355138e-01 1.77502483e-01
6.13937259e-01 1.34849918e+00 -5.79136491e-01 -7.35439718e-01
-4.29185152e-01 9.60240304e-01 9.31729198e-01 4.21765089e-01
-3.83802325e-01 -2.98950464e-01 2.61778295e-01 -2.39281401e-01
4.42845196e-01 -3.59837562e-02 -5.69648921e-01 -1.44218314e+00
1.14706442e-01 -8.41657817e-01 1.92583576e-01 -3.86906534e-01
-1.39548612e+00 7.16780066e-01 -2.44811878e-01 -8.45102429e-01
-4.85407501e-01 -1.19543336e-01 -5.66479445e-01 1.02130520e+00
-1.83695841e+00 -9.11525846e-01 -2.85813272e-01 1.24840431e-01
5.36530256e-01 2.34327585e-01 1.03661168e+00 4.35305923e-01
-6.46997988e-01 6.77626729e-01 4.43633378e-01 2.49788329e-01
1.18122470e+00 -1.61557472e+00 5.66614568e-01 1.22450054e+00
3.88836980e-01 5.49602389e-01 7.19029546e-01 -9.18503821e-01
-6.11360073e-01 -1.33039427e+00 9.86280918e-01 -5.21613419e-01
3.52619886e-01 -4.84903038e-01 -1.26825511e+00 5.42953551e-01
3.36847961e-01 1.02739103e-01 8.50767553e-01 4.35241759e-01
-5.46702564e-01 1.92848310e-01 -1.08625829e+00 2.78422385e-01
9.52734649e-01 -5.07053614e-01 -6.90362692e-01 3.68840218e-01
8.75082254e-01 -4.59080309e-01 -6.91031098e-01 2.76082158e-01
-1.78330213e-01 -8.37922573e-01 5.40991485e-01 -5.31475246e-01
1.64615005e-01 -1.49650037e-01 1.50463879e-01 -1.86897922e+00
-2.85672307e-01 -4.45767105e-01 -1.16567805e-01 1.63097668e+00
5.43974280e-01 -2.28039905e-01 8.63411486e-01 7.88776696e-01
-2.33466357e-01 -2.51781702e-01 -9.21396971e-01 -9.66724098e-01
1.82901874e-01 -4.60832477e-01 3.69463921e-01 1.11315072e+00
3.01653054e-02 4.64113742e-01 -6.59338474e-01 -1.25712126e-01
6.55105352e-01 -3.63366634e-01 6.38921201e-01 -1.24705577e+00
-1.16185270e-01 2.04655714e-02 1.66086167e-01 -6.75414324e-01
5.54699004e-01 -8.23742211e-01 8.16861331e-01 -1.45330870e+00
2.58215927e-02 -7.25724518e-01 -1.98937654e-01 9.39305246e-01
-7.85681903e-01 5.32436848e-01 2.21741647e-01 2.10293263e-01
-8.32971811e-01 2.81258732e-01 6.63340509e-01 1.30278200e-01
-3.21855456e-01 -1.77588716e-01 -8.97179067e-01 6.82021141e-01
9.11156118e-01 -7.27471769e-01 -5.22042252e-03 -6.33699059e-01
-5.99989817e-02 -3.18906605e-01 9.24869180e-02 -9.51020002e-01
2.70908684e-01 2.86724359e-01 2.07806021e-01 -1.82700351e-01
1.93503216e-01 -9.00765777e-01 -9.87121239e-02 -1.50760990e-02
-3.91036779e-01 -5.17535388e-01 1.91605240e-01 4.80951786e-01
-3.14293712e-01 -6.91620886e-01 8.81381273e-01 -4.43493217e-01
-4.68003422e-01 -2.04782590e-01 -3.96167874e-01 3.59515309e-01
5.57098985e-01 7.77789801e-02 -3.25812101e-01 -5.31801760e-01
-9.75449741e-01 1.52326569e-01 5.45154691e-01 1.84296995e-01
-3.80747877e-02 -1.16962492e+00 -5.59176207e-01 1.71584129e-01
-8.10710415e-02 4.09633130e-01 2.37320721e-01 5.96290827e-01
4.91290689e-02 2.13373944e-01 2.32655033e-01 -2.35777363e-01
-1.20418715e+00 6.68694615e-01 7.77900368e-02 -5.60273767e-01
-4.54168171e-01 8.24870348e-01 -1.85962811e-01 -7.20068336e-01
6.77251995e-01 -1.86115876e-01 -3.91644210e-01 2.01518029e-01
6.44552529e-01 3.44343901e-01 5.59879661e-01 -8.36317360e-01
-1.24690486e-02 -6.42690901e-03 -1.18731581e-01 -1.01412125e-01
1.50157559e+00 -2.96719819e-01 -3.94558460e-02 3.80763292e-01
1.07980609e+00 1.46947548e-01 -1.11478984e+00 -6.49903834e-01
2.59312809e-01 -1.61429435e-01 3.24766129e-01 -1.00288260e+00
-1.05047834e+00 7.92865217e-01 2.23522499e-01 2.34699488e-01
1.00126851e+00 -9.10666138e-02 7.18618095e-01 5.21650076e-01
5.57462983e-02 -1.42910957e+00 -1.72455668e-01 6.19834721e-01
2.71617085e-01 -1.84703994e+00 -2.25999177e-01 -5.44364452e-01
-7.29415596e-01 7.35921144e-01 7.39397824e-01 1.32055312e-01
4.74831074e-01 6.40437722e-01 5.85484028e-01 1.33549944e-01
-5.81836998e-01 -6.27876461e-01 1.31524578e-01 7.78061926e-01
4.73757625e-01 -1.09042346e-01 -4.52872850e-02 8.29682350e-01
8.49324465e-03 5.58600463e-02 5.55375457e-01 1.08594179e+00
-4.55505311e-01 -1.37087095e+00 -6.11056685e-01 6.15330637e-01
-7.59855390e-01 -5.71413577e-01 -2.50983238e-01 4.40003812e-01
3.75236988e-01 1.36434150e+00 -1.06178634e-01 -2.49821588e-01
3.85975569e-01 5.55484712e-01 -5.12056202e-02 -1.11854160e+00
-9.42534208e-01 2.49845862e-01 4.35988635e-01 -4.51668292e-01
-7.42991805e-01 -4.71511841e-01 -9.79843199e-01 9.80302393e-02
-7.83845484e-01 4.01462764e-01 7.70480275e-01 1.19424927e+00
4.13320929e-01 4.40156102e-01 3.57484579e-01 -1.02305913e+00
-7.08177984e-01 -1.33480656e+00 -5.42651415e-01 7.07520366e-01
4.55136925e-01 -4.60722834e-01 -5.44159532e-01 1.21448867e-01] | [9.431920051574707, 4.05098819732666] |
520aa276-957b-4b78-96a4-80f87f86b6f6 | seeking-common-but-distinguishing-difference-1 | 2111.09634 | null | https://arxiv.org/abs/2111.09634v1 | https://arxiv.org/pdf/2111.09634v1.pdf | Seeking Common but Distinguishing Difference, A Joint Aspect-based Sentiment Analysis Model | Aspect-based sentiment analysis (ABSA) task consists of three typical subtasks: aspect term extraction, opinion term extraction, and sentiment polarity classification. These three subtasks are usually performed jointly to save resources and reduce the error propagation in the pipeline. However, most of the existing joint models only focus on the benefits of encoder sharing between subtasks but ignore the difference. Therefore, we propose a joint ABSA model, which not only enjoys the benefits of encoder sharing but also focuses on the difference to improve the effectiveness of the model. In detail, we introduce a dual-encoder design, in which a pair encoder especially focuses on candidate aspect-opinion pair classification, and the original encoder keeps attention on sequence labeling. Empirical results show that our proposed model shows robustness and significantly outperforms the previous state-of-the-art on four benchmark datasets. | ['Shu Jiang', 'Hai Zhao', 'Zuchao Li', 'Hongjiang Jing'] | 2021-11-18 | seeking-common-but-distinguishing-difference | https://aclanthology.org/2021.emnlp-main.318 | https://aclanthology.org/2021.emnlp-main.318.pdf | emnlp-2021-11 | ['term-extraction', 'aspect-based-sentiment-analysis'] | ['natural-language-processing', 'natural-language-processing'] | [ 1.62842304e-01 -1.27733245e-01 -2.05391780e-01 -6.60909414e-01
-9.25276816e-01 -5.19186497e-01 4.82868284e-01 -3.06206550e-02
-2.22469732e-01 3.90250415e-01 4.29517090e-01 -3.56447071e-01
3.45699787e-01 -8.38541150e-01 -6.53900921e-01 -4.89692688e-01
2.64326572e-01 2.49606129e-02 1.71026677e-01 -1.69097036e-01
7.97141418e-02 -2.73460627e-01 -1.25822961e+00 5.35916865e-01
8.34892690e-01 1.26669109e+00 -2.07631394e-01 3.38756531e-01
-4.42544281e-01 1.00185549e+00 -6.14759445e-01 -1.07856476e+00
-3.04692145e-02 -2.94744492e-01 -7.02666163e-01 -1.36256898e-02
-2.34322563e-01 -4.06197488e-01 -1.36506811e-01 1.10011947e+00
5.59405565e-01 -2.71609753e-01 3.19705963e-01 -1.29997849e+00
-8.97469819e-01 8.19072306e-01 -8.37571084e-01 -1.80573016e-01
2.66739458e-01 -5.25920885e-04 1.66200006e+00 -7.46371806e-01
2.40947410e-01 9.56996977e-01 6.93151832e-01 1.74505085e-01
-5.96672475e-01 -6.36666298e-01 7.20001817e-01 1.32645190e-01
-1.01014960e+00 -3.44618827e-01 7.83043087e-01 -2.84517765e-01
1.36870968e+00 8.94469768e-02 9.93372917e-01 7.46759534e-01
2.41825685e-01 1.47899091e+00 9.04248416e-01 -9.01296083e-03
4.31472920e-02 6.21698610e-02 4.98483688e-01 7.89902449e-01
2.92231798e-01 -2.98153698e-01 -7.16544509e-01 7.92483520e-03
-7.44541781e-03 -5.59989251e-02 -1.07613884e-01 -1.58853903e-01
-1.09950590e+00 7.24795163e-01 1.22208282e-01 6.26933277e-02
-4.21515137e-01 1.27644313e-03 7.15123177e-01 2.48205826e-01
8.29026699e-01 2.29101226e-01 -8.79650533e-01 -3.14712912e-01
-6.87228203e-01 1.38405561e-01 9.15101945e-01 1.27509820e+00
7.42889583e-01 6.54099807e-02 -5.11993945e-01 6.96508825e-01
5.54620445e-01 4.79426801e-01 5.19471347e-01 -3.54763061e-01
5.28586268e-01 1.21011019e+00 -2.94036478e-01 -7.13165760e-01
-2.19722569e-01 -5.79536438e-01 -5.65199137e-01 -1.55942112e-01
-2.83564329e-01 -4.58922982e-01 -9.47104514e-01 1.49908125e+00
3.96048158e-01 -4.78508510e-02 3.18880565e-02 6.27260804e-01
1.03818083e+00 6.24375045e-01 -1.19535990e-01 -2.92600721e-01
1.85882318e+00 -1.72770834e+00 -1.01840329e+00 -4.94891942e-01
6.62961364e-01 -1.03677630e+00 8.10511112e-01 8.56605619e-02
-1.11764216e+00 -2.84736603e-01 -1.42505503e+00 -3.38959128e-01
-4.03314203e-01 3.60163033e-01 1.10683191e+00 6.62116289e-01
-7.71099150e-01 1.42199546e-01 -8.64650786e-01 1.95692867e-01
5.26724339e-01 4.02241647e-01 -1.44142732e-01 1.64360315e-01
-1.28823137e+00 4.16233093e-01 -2.22315565e-01 2.70089716e-01
-4.84600782e-01 -6.29499018e-01 -1.13604951e+00 1.99815571e-01
2.43434578e-01 -1.04580355e+00 1.59055173e+00 -1.04964387e+00
-1.82147789e+00 6.17347360e-01 -6.93836033e-01 -2.17027426e-01
8.46343115e-02 -5.55702209e-01 -4.30742621e-01 -3.34000617e-01
2.33439445e-01 4.19803977e-01 7.85386920e-01 -7.93411434e-01
-8.08146477e-01 -3.71840358e-01 6.65983438e-01 2.42691532e-01
-5.65561473e-01 2.32568607e-01 -8.98243368e-01 -7.45192230e-01
-3.27638626e-01 -8.25331330e-01 -2.46082887e-01 -3.85529369e-01
-5.40174246e-01 -3.22950184e-01 5.79179108e-01 -4.99909788e-01
1.52227235e+00 -2.15723252e+00 -8.38181823e-02 -1.57469109e-01
1.70615777e-01 1.71622291e-01 -1.94037378e-01 3.39661896e-01
-2.03612313e-01 1.14268258e-01 -3.41192514e-01 -6.47131205e-01
9.81356800e-02 -2.31735721e-01 -3.33712935e-01 1.38828382e-01
3.34320128e-01 1.22809029e+00 -8.53681147e-01 -4.50063825e-01
-2.96815991e-01 5.21851182e-01 -5.57296157e-01 3.22936028e-01
-2.06994832e-01 -3.82565632e-02 -7.12251902e-01 7.65199006e-01
7.94000745e-01 -4.48508114e-01 6.32129684e-02 -4.57709908e-01
-1.67325690e-01 9.43843603e-01 -9.70035017e-01 1.64192045e+00
-6.30517304e-01 4.83521432e-01 3.92478518e-02 -7.38170087e-01
6.12903595e-01 4.16965842e-01 5.17727852e-01 -6.79309309e-01
3.24404627e-01 2.21823782e-01 5.34848273e-02 -3.65851462e-01
6.67318344e-01 -7.55986273e-02 -9.00268033e-02 7.10381448e-01
8.21843296e-02 6.42222688e-02 3.88184845e-01 1.30260319e-01
9.20116842e-01 2.26932466e-01 4.59178120e-01 -5.25140204e-02
8.18227530e-01 -2.05399320e-01 9.32001412e-01 1.56727299e-01
-1.48549259e-01 4.91085708e-01 8.58040929e-01 -3.75165045e-01
-7.51272500e-01 -4.61004287e-01 1.87050626e-01 9.44393754e-01
3.42943192e-01 -8.99889469e-01 -5.67030132e-01 -1.19277966e+00
-3.50578964e-01 4.62161660e-01 -7.43421495e-01 -1.21316046e-01
-4.39853281e-01 -1.06534445e+00 2.30296552e-01 8.01422119e-01
6.62444472e-01 -9.49303389e-01 -1.61797032e-01 -2.99119391e-02
-2.26168916e-01 -1.08221400e+00 -7.50872791e-01 6.47243485e-02
-7.01725662e-01 -1.00701082e+00 -5.50660312e-01 -9.00484920e-01
5.30520082e-01 5.89845240e-01 1.28969514e+00 -7.38756508e-02
2.36754403e-01 5.37396967e-02 -5.45634508e-01 -7.28008568e-01
1.66334823e-01 4.26302940e-01 -5.04724264e-01 2.83076674e-01
7.58486390e-01 -5.30255437e-01 -8.14437687e-01 1.32072531e-02
-8.36318791e-01 2.05679297e-01 1.05958235e+00 7.69184709e-01
7.55138159e-01 4.45496291e-02 5.57754457e-01 -1.46182024e+00
7.12055624e-01 -3.14427614e-01 -4.81169403e-01 3.38257551e-01
-9.08808351e-01 6.08329102e-02 5.40014863e-01 5.05982004e-02
-1.27487862e+00 -2.06114445e-02 -4.42238241e-01 1.17906965e-02
3.29104185e-01 8.73684466e-01 -5.09517491e-01 3.10413808e-01
-2.87090927e-01 3.54350209e-01 -2.59169698e-01 -2.62089342e-01
2.69859761e-01 8.49799216e-01 -2.73073852e-01 -5.17601147e-02
4.42770392e-01 4.97976869e-01 -3.11003119e-01 -3.88792843e-01
-1.27219582e+00 -5.04748881e-01 -1.73983589e-01 9.16334242e-02
7.45034516e-01 -1.37117076e+00 -7.30264008e-01 7.87405133e-01
-1.31377256e+00 2.80684769e-01 -2.59361088e-01 4.32643354e-01
-2.92360038e-01 3.34146887e-01 -8.45943272e-01 -7.83201337e-01
-9.35469329e-01 -1.60229778e+00 1.36518502e+00 2.85776615e-01
-1.24231845e-01 -6.71730757e-01 1.97784558e-01 6.31525099e-01
4.05910462e-01 -4.19828385e-01 8.68058562e-01 -5.98160863e-01
-6.74687326e-01 -3.20601046e-01 -2.82984108e-01 4.25762802e-01
3.37175250e-01 -3.57786454e-02 -1.27930665e+00 -8.22171718e-02
3.09433937e-02 -2.02348337e-01 1.03878868e+00 1.97924197e-01
1.00602818e+00 -1.64913371e-01 -1.89578280e-01 5.03314555e-01
1.02113628e+00 3.29488546e-01 6.05468571e-01 4.37504739e-01
7.16230392e-01 4.79398459e-01 6.61825418e-01 1.29727125e-01
9.64084089e-01 4.33385044e-01 3.74652982e-01 -1.80217072e-01
-8.78303126e-02 -1.86143428e-01 7.01022863e-01 1.67757094e+00
1.76522195e-01 -2.42701948e-01 -2.67839313e-01 7.98353493e-01
-1.90048206e+00 -4.77417737e-01 -8.44220817e-03 1.80398738e+00
9.83983397e-01 3.14882755e-01 -2.83468775e-02 6.66636676e-02
3.27771068e-01 7.07176805e-01 -6.07899249e-01 -5.75449288e-01
-4.76106778e-02 1.38865605e-01 1.20896719e-01 5.27154326e-01
-1.34989524e+00 6.63599968e-01 6.33503771e+00 8.02385390e-01
-8.17620456e-01 1.40999869e-01 7.43440568e-01 -9.18827578e-02
-8.26689363e-01 2.09276661e-01 -6.78710461e-01 4.37559664e-01
6.66081429e-01 -1.77103937e-01 9.19933096e-02 1.14981687e+00
-3.59697849e-01 2.00941190e-01 -8.66748750e-01 6.67391956e-01
1.79043189e-01 -1.08276296e+00 2.32177973e-01 -2.63672262e-01
7.23650455e-01 -4.79165055e-02 -2.22132206e-02 6.30721271e-01
1.57560945e-01 -5.89771688e-01 5.65703094e-01 2.96894848e-01
4.30185020e-01 -1.01060593e+00 1.19429934e+00 -2.02979028e-01
-1.67445993e+00 2.33807191e-01 -9.78071988e-02 -3.30707543e-02
5.33321619e-01 1.15269291e+00 -1.56048477e-01 9.68920231e-01
5.71699560e-01 1.16271913e+00 -4.18524504e-01 8.33926201e-01
-5.90732038e-01 6.04534924e-01 1.10309534e-01 -2.85392404e-01
2.66463250e-01 -3.77403080e-01 3.95428091e-01 1.29083943e+00
1.33929402e-01 -3.60055804e-01 -8.65672827e-02 4.28045392e-01
-3.00458252e-01 3.67583066e-01 -4.42020953e-01 -3.65937263e-01
1.85555965e-01 1.51349092e+00 -4.14691031e-01 -5.07942021e-01
-1.22175288e+00 9.53520298e-01 3.79209220e-01 1.78466216e-01
-9.13082719e-01 -8.65382969e-01 1.06696475e+00 -3.51202458e-01
7.79315889e-01 1.62225336e-01 -5.75787544e-01 -1.55302715e+00
4.63821948e-01 -1.13821912e+00 2.40450963e-01 -5.14958739e-01
-1.13465083e+00 8.70912790e-01 -5.44726908e-01 -1.34652424e+00
7.88982492e-03 -5.78977168e-01 -7.81673193e-01 8.46370637e-01
-1.87178695e+00 -1.59624481e+00 -8.55144784e-02 2.04487309e-01
7.09588885e-01 8.47694054e-02 6.28777981e-01 4.88237858e-01
-8.29905689e-01 7.79244363e-01 -3.39971036e-01 1.87190965e-01
6.92744255e-01 -1.32487524e+00 7.98370302e-01 8.94034564e-01
-1.18262134e-01 9.71131265e-01 1.53080851e-01 -4.79769140e-01
-1.41721809e+00 -9.94514465e-01 1.37401617e+00 -3.35654497e-01
8.13829660e-01 -4.41551477e-01 -6.86781645e-01 7.42115974e-01
6.86190128e-01 -3.51810217e-01 1.08309436e+00 5.25915921e-01
-6.30066931e-01 -4.10271943e-01 -3.47416162e-01 5.94198227e-01
7.97389269e-01 -7.60628343e-01 -5.12255490e-01 1.44333720e-01
1.17198718e+00 -2.38039777e-01 -6.96498275e-01 7.18151450e-01
7.63018787e-01 -9.81870711e-01 7.01605439e-01 -4.97819602e-01
9.03052330e-01 -5.48366725e-01 8.68552327e-02 -1.21200299e+00
-2.20717967e-01 -4.74076658e-01 -4.62953180e-01 1.64019740e+00
8.68600547e-01 -5.64574838e-01 5.52639782e-01 3.87641191e-01
-1.54072374e-01 -1.44183242e+00 -4.80147392e-01 -2.73807496e-01
-2.57930219e-01 -4.98514384e-01 1.03680301e+00 6.88718557e-01
2.05268621e-01 1.27170825e+00 -4.05364990e-01 6.48506358e-02
1.11859821e-01 8.95316124e-01 5.74074924e-01 -6.37255311e-01
-6.21658146e-01 -5.92412174e-01 -4.92375828e-02 -1.41708827e+00
9.59048569e-02 -6.41128302e-01 -6.83058985e-03 -1.67071819e+00
6.52348638e-01 -4.29250263e-02 -4.40593630e-01 4.15663689e-01
-8.84991229e-01 4.51028198e-02 -9.87712517e-02 1.31584313e-02
-1.05786753e+00 1.02141964e+00 1.32655251e+00 -3.73568505e-01
-3.71914841e-02 1.55175343e-01 -1.27645791e+00 7.67538488e-01
5.16750097e-01 -3.77244115e-01 -6.02800965e-01 -8.59070778e-01
9.50555325e-01 -3.60639006e-01 -4.92980331e-01 -3.91321659e-01
2.39896402e-01 2.81523943e-01 -1.75123885e-02 -6.64661169e-01
2.14396700e-01 -6.17812157e-01 -4.47930396e-01 1.89622074e-01
-2.20039189e-01 3.28091770e-01 1.20502405e-01 6.33051038e-01
-7.91211605e-01 -9.89388674e-02 2.49935910e-01 9.79280993e-02
-4.20042068e-01 6.03305876e-01 -4.06540215e-01 -2.51203356e-03
8.21539581e-01 3.94519091e-01 -2.69059926e-01 -4.25477505e-01
-1.27367288e-01 4.91657704e-01 2.05737665e-01 5.47628462e-01
3.09596211e-01 -1.29419923e+00 -4.31384683e-01 2.39961118e-01
3.56339812e-01 2.51568526e-01 3.46635252e-01 1.01675642e+00
-2.06833154e-01 5.53164303e-01 3.35256577e-01 -5.09700775e-02
-1.18644595e+00 5.98419607e-01 2.38397226e-01 -7.82545924e-01
-1.79290906e-01 1.04166627e+00 6.69945717e-01 -6.29502118e-01
2.97217388e-02 -2.01376542e-01 -5.56046247e-01 2.65309781e-01
7.35183418e-01 8.69291872e-02 2.91857511e-01 -3.99553001e-01
-4.76833552e-01 6.10998213e-01 -5.90114176e-01 1.59762681e-01
1.17303240e+00 -2.28565261e-01 -4.87441391e-01 4.30252969e-01
1.21881652e+00 3.36061448e-01 -8.34380567e-01 -2.42236555e-01
-2.69894093e-01 -2.27889344e-01 1.26376510e-01 -7.63358474e-01
-1.50817001e+00 1.05453241e+00 6.96227001e-03 1.38557076e-01
1.50298226e+00 -2.01653570e-01 1.20335591e+00 3.55134994e-01
3.55599448e-03 -9.00510311e-01 -7.50553012e-02 7.52728462e-01
4.08314466e-01 -1.18575978e+00 1.59545183e-01 -6.87448740e-01
-9.55851972e-01 6.68621480e-01 6.70073390e-01 -2.12539621e-02
8.81436110e-01 5.39154351e-01 2.85939008e-01 -2.50621170e-01
-1.12897229e+00 -4.17799830e-01 2.49122441e-01 1.11241117e-01
9.82171893e-01 -2.25133616e-02 -7.96796203e-01 1.34051645e+00
-1.74182072e-01 -7.04414770e-02 9.02967080e-02 1.14203346e+00
6.25102445e-02 -1.32328510e+00 4.83534843e-01 4.88000989e-01
-8.79311502e-01 -6.90223277e-01 -4.86525118e-01 3.78531873e-01
2.45933123e-02 8.67585480e-01 -1.67470470e-01 -6.46003604e-01
5.39134920e-01 5.71031943e-02 -4.55978103e-02 -3.68908197e-01
-9.04570401e-01 1.52471811e-01 5.00446498e-01 -7.01399148e-01
-7.21243680e-01 -5.39240539e-01 -8.71249735e-01 -9.54992175e-02
-6.59206629e-01 2.95275867e-01 6.27993762e-01 1.17381465e+00
8.73886645e-01 1.08449185e+00 8.34286869e-01 -1.63111359e-01
-1.29071683e-01 -1.11808932e+00 -4.25013602e-01 1.59864113e-01
4.09914047e-01 -4.26571816e-01 -7.65476525e-02 -9.47770849e-02] | [11.529488563537598, 6.580546855926514] |
b38b310d-71f5-414a-824e-3a09c18d5844 | fundamental-limits-and-tradeoffs-in-invariant-1 | 2012.10713 | null | https://arxiv.org/abs/2012.10713v4 | https://arxiv.org/pdf/2012.10713v4.pdf | Fundamental Limits and Tradeoffs in Invariant Representation Learning | A wide range of machine learning applications such as privacy-preserving learning, algorithmic fairness, and domain adaptation/generalization among others, involve learning invariant representations of the data that aim to achieve two competing goals: (a) maximize information or accuracy with respect to a target response, and (b) maximize invariance or independence with respect to a set of protected features (e.g., for fairness, privacy, etc). Despite their wide applicability, theoretical understanding of the optimal tradeoffs -- with respect to accuracy, and invariance -- achievable by invariant representations is still severely lacking. In this paper, we provide an information theoretic analysis of such tradeoffs under both classification and regression settings. More precisely, we provide a geometric characterization of the accuracy and invariance achievable by any representation of the data; we term this feasible region the information plane. We provide an inner bound for this feasible region for the classification case, and an exact characterization for the regression case, which allows us to either bound or exactly characterize the Pareto optimal frontier between accuracy and invariance. Although our contributions are mainly theoretical, a key practical application of our results is in certifying the potential sub-optimality of any given representation learning algorithm for either classification or regression tasks. Our results shed new light on the fundamental interplay between accuracy and invariance, and may be useful in guiding the design of future representation learning algorithms. | ['Pradeep Ravikumar', 'Geoffrey J. Gordon', 'Tommi S. Jaakkola', 'Bryon Aragam', 'Chen Dan', 'Han Zhao'] | 2020-12-19 | fundamental-limits-and-tradeoffs-in-invariant | https://openreview.net/forum?id=9CG8RW_p3Y | https://openreview.net/pdf?id=9CG8RW_p3Y | null | ['information-plane'] | ['methodology'] | [ 6.42384648e-01 1.31718397e-01 -7.46377528e-01 -5.15423298e-01
-7.97185838e-01 -7.38553762e-01 3.28539103e-01 4.58113849e-01
-4.08685416e-01 7.30726779e-01 2.66937554e-01 -4.26694214e-01
-6.60533905e-01 -7.36424208e-01 -4.71251220e-01 -8.27198803e-01
-1.08422726e-01 1.12472959e-01 -5.46582282e-01 2.15798125e-01
2.40780383e-01 7.24990368e-01 -1.49734378e+00 -4.15647812e-02
9.57155526e-01 1.27498305e+00 -6.16599739e-01 3.99853706e-01
2.46852726e-01 4.85416681e-01 -2.53518492e-01 -4.81090993e-01
6.28855884e-01 -4.27684098e-01 -7.65466452e-01 -1.24772206e-01
4.13718790e-01 -1.40729204e-01 -2.06245974e-01 1.28883731e+00
4.15994376e-01 2.16283977e-01 9.28398073e-01 -1.56080031e+00
-7.69851327e-01 3.31656277e-01 -4.89163995e-01 4.15748768e-02
5.45854568e-02 -1.58666059e-01 1.38246429e+00 -1.42409921e-01
4.02024865e-01 9.78821039e-01 4.27562684e-01 7.93030858e-01
-1.49096155e+00 -7.73123980e-01 5.29442132e-02 -1.54072538e-01
-1.33000910e+00 -7.84137368e-01 5.10446727e-01 -5.41920364e-01
1.47652254e-01 6.93186462e-01 2.71873385e-01 7.19579160e-01
2.34279707e-01 8.16501915e-01 1.20621049e+00 -3.93571645e-01
4.14814711e-01 3.57580811e-01 5.09208500e-01 5.99511027e-01
6.53396130e-01 3.29932481e-01 -4.25349981e-01 -5.23504972e-01
6.83258176e-01 1.75178915e-01 -4.77477044e-01 -9.29665685e-01
-5.73169947e-01 1.23333406e+00 3.30485761e-01 -5.30371554e-02
-3.25734735e-01 7.31836334e-02 3.53460431e-01 6.75562918e-01
4.76137668e-01 6.72962844e-01 -3.44371200e-01 2.28931233e-01
-7.46215820e-01 3.20423394e-01 9.17754591e-01 8.18117797e-01
6.76076293e-01 -1.21757656e-01 -3.06547076e-01 5.34818828e-01
-2.45600399e-02 3.33295584e-01 2.62281924e-01 -1.01434577e+00
4.71133351e-01 4.19424385e-01 2.34628171e-01 -9.50893998e-01
-3.46122980e-01 -6.84840441e-01 -8.79181325e-01 5.15619814e-02
6.31889164e-01 -1.61365598e-01 -2.72541404e-01 2.32997680e+00
3.49722542e-02 -3.57372403e-01 1.10942699e-01 8.11896503e-01
4.42446470e-02 3.74457568e-01 2.45008886e-01 -6.13579214e-01
1.23142481e+00 -1.21182382e-01 -4.70235944e-01 -3.64244655e-02
7.35598683e-01 -2.87239164e-01 9.93777514e-01 -1.92814823e-02
-9.57025409e-01 8.32061768e-02 -9.00378942e-01 -2.87884735e-02
-1.17102064e-01 -2.53682166e-01 8.08329821e-01 1.18117332e+00
-7.91805029e-01 4.73912418e-01 -5.74714422e-01 -4.07829434e-01
7.59253442e-01 5.91170132e-01 -4.12662685e-01 -1.33231342e-01
-1.09426379e+00 5.99634051e-01 8.13748762e-02 -3.81528914e-01
-4.34087396e-01 -1.03149605e+00 -7.29629040e-01 3.82515371e-01
3.88737410e-01 -7.91565478e-01 1.05005562e+00 -1.26339436e+00
-9.95118737e-01 1.03053570e+00 -8.16429965e-03 -6.73697412e-01
6.56500697e-01 2.40703914e-02 -2.04777107e-01 -1.34439915e-01
-3.78435329e-02 2.19358355e-01 6.35480285e-01 -8.68013263e-01
-6.63878739e-01 -8.48847210e-01 2.81792969e-01 3.16218525e-01
-6.87042773e-01 -6.95369300e-03 2.51008391e-01 -6.71003520e-01
-1.39139235e-01 -8.53283048e-01 -3.45919579e-01 4.66784984e-01
-2.59591877e-01 -5.99731430e-02 5.97951591e-01 -5.07950187e-01
1.17453802e+00 -2.22867250e+00 -4.39205067e-03 5.07961810e-01
1.63868457e-01 -1.20901354e-02 -2.81762421e-01 2.75202274e-01
-5.44515178e-02 3.67844403e-01 -3.92783374e-01 2.10853647e-02
9.69860479e-02 -4.16905200e-03 -5.97277522e-01 1.10460126e+00
7.05865920e-02 8.19034278e-01 -5.99031985e-01 -2.12162271e-01
6.70294650e-03 2.36366019e-01 -7.42969692e-01 -1.54333720e-02
4.95686084e-02 3.46571326e-01 -7.73713231e-01 5.41243553e-01
5.91946900e-01 -1.09390356e-02 1.68781817e-01 2.30583861e-01
-2.63270587e-02 1.61447853e-01 -9.61639285e-01 1.18270385e+00
-5.09260595e-01 5.89875340e-01 2.71213412e-01 -1.23109853e+00
8.08860064e-01 1.80226229e-02 7.22238481e-01 -5.98789692e-01
4.89572473e-02 6.59281835e-02 -1.44398198e-01 -8.92925709e-02
3.63934487e-01 -4.70628202e-01 -2.72548079e-01 7.37061203e-01
-3.53656203e-01 4.04545486e-01 -4.20922846e-01 -1.03611447e-01
8.34894478e-01 -3.42153639e-01 7.98927724e-01 -7.06104279e-01
3.95544589e-01 -3.62592727e-01 7.06435204e-01 9.43027556e-01
-3.98918241e-01 3.58600020e-01 9.29546893e-01 -2.99951881e-01
-9.22067046e-01 -1.00958765e+00 -5.52411199e-01 1.08240986e+00
4.09749635e-02 -2.33359588e-03 -4.30414706e-01 -6.83778644e-01
5.54459095e-01 7.19564974e-01 -8.55943263e-01 -5.05212247e-01
-1.64813176e-01 -8.77516270e-01 3.60531330e-01 3.04968327e-01
4.23233002e-01 -2.95139760e-01 -7.27933705e-01 -2.80151159e-01
6.23544492e-02 -7.47215152e-01 -6.55085742e-01 1.19221143e-01
-9.83259618e-01 -1.17385197e+00 -4.15485471e-01 -2.07853660e-01
7.08579838e-01 4.04917479e-01 7.33118355e-01 -1.13693215e-01
-4.07293905e-03 6.82945907e-01 5.81940543e-03 -5.32331705e-01
-2.10440412e-01 8.40118453e-02 1.98234960e-01 3.77283424e-01
2.08600447e-01 -6.04225338e-01 -6.59290493e-01 3.24063718e-01
-1.04051173e+00 -3.30733716e-01 4.54340786e-01 6.71955407e-01
5.53061604e-01 1.72780249e-02 5.90419173e-01 -1.10957789e+00
7.63794363e-01 -7.13661611e-01 -8.52170467e-01 5.41342616e-01
-8.28637540e-01 4.10486758e-01 7.38566399e-01 -2.49723420e-01
-7.64619887e-01 1.13392830e-01 2.99946427e-01 -3.12249511e-01
2.41821095e-01 4.12717521e-01 -4.78078455e-01 -2.49393225e-01
6.71705484e-01 1.82690457e-01 1.63708359e-01 -3.40100318e-01
4.32702541e-01 7.57678211e-01 4.39090192e-01 -9.68000174e-01
5.58764100e-01 4.53816414e-01 4.74669904e-01 -7.89274037e-01
-8.87954056e-01 -3.89840692e-01 -3.24761242e-01 2.25963280e-01
4.87423241e-01 -6.52473688e-01 -9.26984549e-01 -1.98630229e-01
-5.13966143e-01 4.64325659e-02 -7.14673102e-01 3.22608858e-01
-9.53701198e-01 3.63478303e-01 8.47506374e-02 -1.32332397e+00
-2.77234316e-01 -8.03676128e-01 5.81523955e-01 6.07261918e-02
-2.12701172e-01 -9.84225392e-01 -6.53815866e-02 3.52971643e-01
4.20285165e-01 3.97312880e-01 1.25819457e+00 -9.51817155e-01
-4.47984993e-01 -5.20564258e-01 -3.08721989e-01 1.77027300e-01
2.20563978e-01 -3.34719121e-01 -1.00793016e+00 -5.49629271e-01
3.00803129e-02 -3.42351496e-01 9.67634320e-01 5.38536012e-01
1.62358940e+00 -9.97793794e-01 -1.69900090e-01 7.98374176e-01
1.35394502e+00 -2.66125780e-02 3.67111295e-01 4.13315296e-02
1.54562429e-01 9.65921760e-01 4.71657991e-01 7.84101605e-01
7.29713887e-02 8.06219578e-01 2.94386625e-01 2.00664699e-01
3.46864760e-01 -4.33667868e-01 1.55232832e-01 -1.63088471e-01
1.13639697e-01 -1.58279151e-01 -4.94319111e-01 3.84011120e-01
-1.90773153e+00 -1.09960759e+00 4.96683568e-01 2.99515295e+00
6.87317133e-01 -3.32325846e-01 5.57302117e-01 1.31113008e-01
7.85978854e-01 5.27000204e-02 -9.89286542e-01 -6.41542375e-01
-1.20892331e-01 1.97555125e-01 8.91809881e-01 3.83749664e-01
-1.10944676e+00 4.02428120e-01 6.66648960e+00 7.29663312e-01
-1.00103498e+00 -1.26208588e-01 1.02365828e+00 -1.95309952e-01
-7.04256833e-01 8.25423896e-02 -4.49797660e-01 1.91799670e-01
8.86246204e-01 -8.72544050e-01 6.36882544e-01 9.74794686e-01
1.28684670e-01 3.08903545e-01 -1.35730183e+00 8.41934562e-01
-2.46539801e-01 -1.23182082e+00 1.85247064e-01 5.90896010e-01
7.19480455e-01 -5.16324043e-01 4.65304106e-01 8.73527750e-02
4.55945075e-01 -1.20875108e+00 4.99818116e-01 2.58919895e-01
1.14756203e+00 -1.10728085e+00 3.84147286e-01 3.46638888e-01
-7.94097126e-01 -4.09081042e-01 -4.21623588e-01 -1.26109108e-01
-5.72227299e-01 5.01797736e-01 -3.09922189e-01 6.25338972e-01
9.66868103e-02 4.53332216e-01 -1.32175654e-01 9.07701194e-01
1.08948320e-01 3.47776771e-01 -2.52304584e-01 7.86592364e-02
-6.63487837e-02 -1.81862697e-01 5.48897266e-01 1.04488444e+00
7.77030364e-02 1.81636244e-01 -1.30139226e-02 8.90128553e-01
-4.97149736e-01 2.98708856e-01 -8.00112307e-01 -2.57181823e-01
7.08618462e-01 9.35069859e-01 -2.63852239e-01 1.85082555e-01
-2.91795433e-01 6.34417534e-01 4.31266963e-01 3.18071574e-01
-4.07105297e-01 -3.35394502e-01 1.43568599e+00 1.53009459e-01
-1.23476230e-01 4.74269390e-02 -7.82577753e-01 -1.24971271e+00
1.03069752e-01 -7.52178729e-01 1.05402839e+00 1.22860670e-01
-1.38445914e+00 -8.16727709e-03 -6.60439432e-02 -1.06510484e+00
-2.58539230e-01 -5.14253080e-01 -4.22975183e-01 9.20267224e-01
-1.40618694e+00 -7.96478629e-01 2.30025440e-01 6.79010212e-01
1.89951267e-02 -1.84909239e-01 9.23352361e-01 -2.98422761e-02
-5.46890199e-01 1.18978429e+00 4.89243597e-01 -9.90393981e-02
3.20506215e-01 -1.05015337e+00 -1.14056520e-01 7.41219282e-01
1.59220412e-01 7.59490430e-01 5.70997715e-01 -2.19250366e-01
-1.68609726e+00 -1.25246108e+00 6.34655595e-01 -3.66119713e-01
4.60566074e-01 -1.86337605e-01 -6.17975175e-01 7.14659870e-01
-6.49734378e-01 1.80896997e-01 1.04768622e+00 4.22085911e-01
-7.26928592e-01 -3.63764197e-01 -1.66709769e+00 6.10429645e-01
1.00930190e+00 -5.37547171e-01 -3.46524804e-03 1.98966861e-01
5.73945880e-01 -7.08722547e-02 -9.44016993e-01 3.11110765e-01
9.31077302e-01 -8.65001857e-01 9.34385896e-01 -1.31586778e+00
2.56080449e-01 1.55308068e-01 -6.87515557e-01 -1.01009262e+00
-4.00470495e-01 -8.78721833e-01 -8.16466212e-02 9.67658877e-01
2.12870106e-01 -1.03928053e+00 8.82459104e-01 1.25323248e+00
4.36018974e-01 -9.13766444e-01 -1.24881744e+00 -1.00126195e+00
4.90588456e-01 -3.92405599e-01 6.96258962e-01 1.17292130e+00
-3.39366123e-02 3.59418727e-02 -5.58430135e-01 1.51276380e-01
8.26175153e-01 3.34846467e-01 6.71808243e-01 -1.31879103e+00
-1.19071163e-01 -7.22557068e-01 -6.69149816e-01 -9.03777122e-01
3.98290008e-01 -1.02738607e+00 -5.31627893e-01 -8.86522114e-01
5.22206962e-01 -7.48636484e-01 -6.63896143e-01 4.71568197e-01
4.17621667e-03 -1.74609855e-01 3.20980966e-01 3.97018373e-01
-3.30040991e-01 5.45353174e-01 7.78255522e-01 5.04185222e-02
-2.63763011e-01 6.21836662e-01 -1.54984808e+00 3.14166307e-01
8.31408203e-01 -5.06275594e-01 -5.17846048e-01 -2.57383231e-02
1.04426377e-01 3.22336286e-01 3.40039551e-01 -4.96521443e-01
-1.79798491e-02 -6.57755077e-01 2.48897210e-01 1.47713751e-01
8.49489346e-02 -9.43493128e-01 -5.63118942e-02 6.90128386e-01
-1.10464132e+00 -2.35215336e-01 -7.07972273e-02 8.69365036e-01
3.05830181e-01 -1.57570630e-01 1.11232865e+00 2.99271911e-01
-2.02492997e-01 6.17256939e-01 -1.44479917e-02 4.90686744e-01
1.06595993e+00 -1.95665836e-01 -4.25114334e-01 -7.52203405e-01
-2.30294019e-01 2.93983996e-01 6.95800364e-01 2.73817033e-01
3.88619930e-01 -1.25983715e+00 -8.64396751e-01 3.10731471e-01
2.88411409e-01 -5.46185791e-01 1.38707999e-02 4.98278171e-01
1.11672923e-01 6.84270978e-01 -2.75540024e-01 -5.21385074e-02
-1.12591982e+00 5.46815395e-01 4.06043231e-01 -3.01922560e-01
-3.26839238e-01 3.40250999e-01 6.85894549e-01 -1.43080518e-01
3.17802459e-01 1.17610425e-01 2.62335837e-01 -1.84694782e-01
5.14860094e-01 5.11788189e-01 -1.86525553e-01 -4.22840685e-01
-3.80495876e-01 2.89386332e-01 -1.37424067e-01 -1.27732053e-01
1.10558879e+00 -9.02786665e-03 4.96711507e-02 4.07855175e-02
1.36758506e+00 -2.80071981e-02 -1.27372169e+00 -4.27210510e-01
5.86066879e-02 -8.81453574e-01 3.13443914e-02 -6.29670620e-01
-1.07831955e+00 6.88165963e-01 5.05267680e-01 3.55269402e-01
1.33967280e+00 -9.26827416e-02 2.05687717e-01 3.55085105e-01
2.83802360e-01 -6.68213844e-01 -4.19272542e-01 -3.77221406e-03
7.83883154e-01 -1.01633263e+00 1.65545061e-01 -2.38836735e-01
-4.71865535e-01 9.35987115e-01 2.03202367e-01 6.87070787e-02
5.00513434e-01 -5.06809391e-02 -4.66293842e-01 2.47390583e-01
-7.48464346e-01 -1.95116946e-03 4.23721343e-01 8.42767954e-01
4.31360364e-01 3.73190254e-01 -4.89742249e-01 7.24097490e-01
-2.92016208e-01 -2.27425978e-01 3.15131366e-01 6.91824555e-01
-4.57438886e-01 -1.02702820e+00 -2.38557503e-01 7.41584837e-01
-6.67967379e-01 1.08590312e-01 -6.43694997e-01 7.12706983e-01
-3.49655032e-01 9.42763448e-01 1.31628111e-01 -5.96867427e-02
2.75214136e-01 -8.65543410e-02 5.78518093e-01 -3.51048440e-01
-1.95976034e-01 -4.42240208e-01 -7.27652162e-02 -4.86993462e-01
-1.06983587e-01 -8.96742344e-01 -7.27765262e-01 -7.36385345e-01
-2.20150664e-01 2.06175193e-01 5.21880984e-01 7.20656872e-01
4.17603046e-01 -1.47703141e-01 1.10432434e+00 -8.90335348e-03
-1.22536600e+00 -2.72006363e-01 -8.20647478e-01 2.95333177e-01
6.03593171e-01 -3.45501751e-01 -3.30995351e-01 -5.53159773e-01] | [6.188374996185303, 6.732506275177002] |
6a08b505-0ec6-4994-b649-150822f443d3 | dip-dual-incongruity-perceiving-network-for | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Wen_DIP_Dual_Incongruity_Perceiving_Network_for_Sarcasm_Detection_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Wen_DIP_Dual_Incongruity_Perceiving_Network_for_Sarcasm_Detection_CVPR_2023_paper.pdf | DIP: Dual Incongruity Perceiving Network for Sarcasm Detection | Sarcasm indicates the literal meaning is contrary to the real attitude. Considering the popularity and complementarity of image-text data, we investigate the task of multi-modal sarcasm detection. Different from other multi-modal tasks, for the sarcastic data, there exists intrinsic incongruity between a pair of image and text as demonstrated in psychological theories. To tackle this issue, we propose a Dual Incongruity Perceiving (DIP) network consisting of two branches to mine the sarcastic information from factual and affective levels. For the factual aspect, we introduce a channel-wise reweighting strategy to obtain semantically discriminative embeddings, and leverage gaussian distribution to model the uncertain correlation caused by the incongruity. The distribution is generated from the latest data stored in the memory bank, which can adaptively model the difference of semantic similarity between sarcastic and non-sarcastic data. For the affective aspect, we utilize siamese layers with shared parameters to learn cross-modal sentiment information. Furthermore, we use the polarity value to construct a relation graph for the mini-batch, which forms the continuous contrastive loss to acquire affective embeddings. Extensive experiments demonstrate that our proposed method performs favorably against state-of-the-art approaches. Our code is released on https://github.com/downdric/MSD. | ['Jufeng Yang', 'Guoli Jia', 'Changsong Wen'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['sarcasm-detection', 'semantic-textual-similarity', 'semantic-similarity'] | ['natural-language-processing', 'natural-language-processing', 'natural-language-processing'] | [-3.58598202e-01 -6.93275258e-02 8.89812782e-03 -5.46277046e-01
-5.21930695e-01 -2.75599211e-01 5.22445679e-01 9.90239233e-02
-5.93896329e-01 6.70520216e-02 6.30912840e-01 4.27531153e-01
3.15836191e-01 -4.61808294e-01 -4.29672331e-01 -6.67816937e-01
5.91013908e-01 3.10249060e-01 -2.02321306e-01 -3.98977965e-01
2.91888356e-01 -2.32436046e-01 -1.22137558e+00 6.45410061e-01
5.01906753e-01 1.20965171e+00 4.29857261e-02 1.41696990e-01
-3.87956440e-01 9.05287683e-01 -3.41429621e-01 -9.33250606e-01
-4.04594392e-02 -5.76893330e-01 -4.26959485e-01 2.28812888e-01
3.39157492e-01 -6.02604225e-02 -3.14554542e-01 1.50748920e+00
6.96898580e-01 -1.49089722e-02 5.22246778e-01 -1.32405782e+00
-1.10765684e+00 5.68438232e-01 -1.16145790e+00 3.35198194e-01
1.77640736e-01 1.24707282e-01 1.04000902e+00 -1.41584730e+00
3.53609115e-01 1.48564970e+00 6.12444818e-01 4.96046931e-01
-9.77271616e-01 -8.14716756e-01 8.18326548e-02 5.07123470e-01
-1.39649761e+00 -4.14344251e-01 1.35940313e+00 -4.30934072e-01
3.39635283e-01 -4.34353538e-02 1.00156701e+00 1.27473962e+00
2.26986229e-01 1.08257973e+00 1.12482297e+00 -1.24787502e-01
-5.91052175e-02 4.79611158e-01 8.36079717e-02 6.35691464e-01
-2.19098121e-01 -3.96393746e-01 -6.94187224e-01 2.38195527e-02
3.45436633e-01 2.08817959e-01 -2.15145439e-01 -3.75866234e-01
-1.17690229e+00 1.13885748e+00 4.83842939e-01 3.27251077e-01
-3.45730215e-01 -3.79702412e-02 7.34970033e-01 2.46846199e-01
5.66708088e-01 1.75177440e-01 -1.01580791e-01 -1.01059988e-01
-7.42508292e-01 -9.41437632e-02 4.20584470e-01 4.15961564e-01
6.07317626e-01 -5.95966242e-02 4.28062379e-02 1.20671737e+00
4.24069285e-01 4.54897374e-01 9.72588480e-01 -4.98065859e-01
5.21351099e-01 7.25998282e-01 -2.91100949e-01 -1.67134213e+00
-4.07351613e-01 -3.45778793e-01 -1.08149707e+00 -9.72983539e-02
5.54285161e-02 -1.81973781e-02 -2.57806212e-01 1.86835325e+00
3.82423997e-01 1.43550143e-01 2.67249197e-01 1.40372860e+00
1.06395996e+00 6.38771474e-01 1.73757263e-02 -2.37531617e-01
1.66105056e+00 -1.19157708e+00 -8.27423215e-01 -4.86151248e-01
4.08076882e-01 -8.92088950e-01 1.50140953e+00 2.34407425e-01
-1.01852643e+00 -5.85408390e-01 -1.11751878e+00 -2.63379276e-01
-2.92228252e-01 3.66662860e-01 3.40576559e-01 1.69550702e-01
-6.01300895e-01 1.08607054e-01 -5.64638615e-01 -2.55405623e-02
3.39352787e-01 -1.16998851e-01 -3.68382186e-01 -1.46460943e-02
-1.48720980e+00 8.62793803e-01 3.92773300e-01 3.50060463e-01
-4.15801555e-01 -4.77625400e-01 -1.00175834e+00 -7.64335021e-02
2.40296125e-01 -5.80594838e-01 7.18109012e-01 -1.61851263e+00
-1.24301958e+00 1.33931637e+00 1.07315749e-01 -1.33368641e-01
2.78507620e-01 -2.21907884e-01 -7.11608291e-01 2.55240500e-01
1.96363911e-01 6.03938997e-01 1.06586945e+00 -1.12226307e+00
-3.29036191e-02 -6.35481954e-01 -7.13519901e-02 8.40678990e-01
-8.42539728e-01 5.38323037e-02 -5.85261762e-01 -7.50064492e-01
2.45951161e-01 -8.59373093e-01 8.54275376e-02 -6.28463086e-03
-4.02810961e-01 -2.09131658e-01 7.26625621e-01 -4.69464749e-01
1.17031693e+00 -2.60559940e+00 3.37456018e-01 -1.71766102e-01
4.00012225e-01 -1.94604084e-01 -2.09859580e-01 2.78167903e-01
-2.63458699e-01 -2.95215279e-01 -1.53170019e-01 -5.55285633e-01
2.65486185e-02 6.84922189e-02 -3.03123116e-01 6.51796818e-01
3.97269987e-02 9.99436259e-01 -6.62317634e-01 -8.59259784e-01
1.65229172e-01 4.97854173e-01 -3.18737805e-01 2.94033438e-01
1.59880251e-01 2.59412050e-01 -4.83892560e-01 3.97712559e-01
8.22076023e-01 -4.90435094e-01 1.13700911e-01 -8.39207590e-01
1.94383889e-01 -9.26685333e-02 -9.68643844e-01 2.08893156e+00
-4.56894219e-01 2.76772588e-01 -2.86777895e-02 -1.28582978e+00
1.09380066e+00 1.18044548e-01 4.08673525e-01 -8.89736295e-01
4.79948014e-01 -2.59357095e-02 -8.33961442e-02 -7.76498854e-01
4.63388264e-01 -6.66888833e-01 -3.96156400e-01 4.36491191e-01
8.05798844e-02 -3.57809812e-01 -2.23714799e-01 3.65266353e-01
4.66299802e-01 -2.25882620e-01 1.05185360e-01 -3.01144958e-01
8.27771366e-01 -1.77382648e-01 6.08697414e-01 -4.64225002e-02
-3.68483007e-01 6.41061604e-01 6.86816633e-01 -3.68231267e-01
-8.27164531e-01 -1.29596913e+00 1.00765802e-01 1.03298461e+00
7.31508851e-01 -3.40104967e-01 -5.03135443e-01 -5.83102584e-01
-1.23823017e-01 5.63015163e-01 -8.46106708e-01 -5.03793657e-01
-3.43710303e-01 -1.06161356e+00 1.86463118e-01 3.32478732e-01
7.21866488e-01 -1.00031674e+00 -3.58015656e-01 -8.72553140e-02
-4.06698674e-01 -1.01939535e+00 -7.24622548e-01 -1.32532865e-01
-3.94355685e-01 -9.16422963e-01 -4.51886177e-01 -9.49546278e-01
5.17480850e-01 1.51186913e-01 1.19652998e+00 -1.20922700e-01
-1.29868165e-01 4.75998938e-01 -1.88745216e-01 1.48231806e-02
-8.66909176e-02 -4.20251846e-01 -2.13126782e-02 3.26141000e-01
8.21966171e-01 -5.42019665e-01 -9.94334817e-01 1.36522010e-01
-1.06544495e+00 3.57866168e-01 4.82996464e-01 1.08591449e+00
7.36305475e-01 -3.04699615e-02 6.59078062e-01 -6.57496750e-01
9.76416528e-01 -8.87978196e-01 1.23380229e-01 1.15825593e-01
-6.40823305e-01 -1.83831602e-01 7.32733011e-01 -7.04796672e-01
-1.06973922e+00 1.78256736e-03 -1.08991817e-01 -8.05824161e-01
1.79551736e-01 6.15840614e-01 -1.64088726e-01 5.62623918e-01
2.17137918e-01 3.67289752e-01 3.93813223e-01 -1.10094815e-01
7.90222347e-01 6.86187863e-01 7.38896549e-01 -4.11580980e-01
4.11949545e-01 8.02675188e-01 -4.65562522e-01 -5.24062634e-01
-1.33402300e+00 -5.66828012e-01 -3.66208047e-01 -3.95219892e-01
1.02342880e+00 -1.24252856e+00 -4.99208957e-01 5.94927430e-01
-1.07850063e+00 2.37056717e-01 -3.46853763e-01 5.47352195e-01
-6.18406594e-01 5.68415403e-01 -8.67021084e-01 -4.44958806e-01
-3.92537862e-01 -1.04496467e+00 9.86885905e-01 3.58405739e-01
-2.22276181e-01 -1.15335369e+00 3.10145944e-01 7.96332538e-01
5.39072268e-02 2.59629972e-02 6.48581922e-01 -6.49031520e-01
2.66519785e-01 -1.47353500e-01 -3.71623456e-01 5.83386004e-01
-6.03209212e-02 -4.14842933e-01 -8.18025589e-01 -2.85245240e-01
6.87547684e-01 -1.07140100e+00 8.33807766e-01 1.32583588e-01
1.15566528e+00 -3.02664280e-01 2.14781120e-01 3.81853998e-01
1.39787662e+00 -3.16802472e-01 5.77047884e-01 1.79237068e-01
8.18765700e-01 7.11621583e-01 7.38946497e-01 6.83425426e-01
8.21449518e-01 4.56488967e-01 4.99167740e-01 -2.18787178e-01
-8.04628283e-02 -3.44593495e-01 5.19130349e-01 1.39177012e+00
5.98602653e-01 -5.22096157e-02 -6.60324514e-01 5.41375101e-01
-1.90260983e+00 -1.13371944e+00 -7.34313652e-02 1.76245296e+00
1.14818859e+00 2.98346747e-02 -1.01290777e-01 -1.98885143e-01
7.94346631e-01 5.45575976e-01 -6.77289844e-01 -3.24080348e-01
-5.42854428e-01 -2.43703008e-01 -3.56059633e-02 3.25512201e-01
-1.02998364e+00 9.59723175e-01 4.52237320e+00 1.18534732e+00
-1.22093832e+00 4.44885463e-01 8.86361778e-01 -3.65309685e-01
-5.78041017e-01 -2.61112332e-01 -3.35315645e-01 7.80952930e-01
6.20211244e-01 -1.59344658e-01 1.45675346e-01 7.72734821e-01
2.69975513e-01 -1.14794120e-01 -6.92271352e-01 1.32775486e+00
8.53620529e-01 -1.02862275e+00 -1.20624632e-01 -5.34084558e-01
4.94347215e-01 1.64334234e-02 4.92388666e-01 3.93007338e-01
4.62631695e-02 -8.72105718e-01 7.51732051e-01 6.53400958e-01
6.01724923e-01 -7.35079646e-01 7.67339885e-01 2.07768559e-01
-1.15387058e+00 1.14864018e-02 -3.42019349e-01 3.54731381e-02
2.88365096e-01 8.25093567e-01 -5.42073734e-02 2.01482713e-01
7.66718566e-01 1.09505415e+00 -6.61153913e-01 2.43040964e-01
-6.90663680e-02 3.03175151e-01 -2.15978518e-01 1.61548294e-02
2.63930023e-01 -5.02224803e-01 2.75176376e-01 1.03798568e+00
5.65394200e-02 -9.56624076e-02 1.81629166e-01 8.63244355e-01
-7.53146932e-02 4.73183036e-01 -3.97798389e-01 -1.51935786e-01
2.04485878e-01 1.65303361e+00 -5.13424933e-01 -4.45388436e-01
-6.37183249e-01 1.55406082e+00 6.30336821e-01 1.79272052e-02
-1.11183977e+00 -6.87062368e-02 3.09459180e-01 -3.14950407e-01
1.15149148e-01 -5.90540059e-02 -4.01645839e-01 -1.44174337e+00
1.69801325e-01 -8.09190035e-01 7.49889255e-01 -1.05107915e+00
-1.88376486e+00 6.17749393e-01 -3.51961285e-01 -1.17038953e+00
1.61843181e-01 -3.15674067e-01 -7.44433939e-01 6.68087780e-01
-1.27030134e+00 -1.33146727e+00 -3.62132221e-01 7.45588362e-01
5.20862818e-01 -7.12417886e-02 5.37534595e-01 3.77096415e-01
-5.62983274e-01 4.88728106e-01 -3.96510363e-02 7.41826892e-02
9.21987236e-01 -1.07960057e+00 -3.48376185e-01 4.66541022e-01
1.02640383e-01 4.04325038e-01 8.01767945e-01 -3.84614468e-01
-1.21816957e+00 -7.11782038e-01 5.70519328e-01 -2.64351666e-01
1.21201706e+00 -2.46015936e-01 -9.10308063e-01 2.86826730e-01
5.29799700e-01 5.78331240e-02 1.01087117e+00 -1.89360045e-02
-6.84560955e-01 -8.79456028e-02 -8.41197729e-01 6.86931551e-01
6.34173810e-01 -7.01194763e-01 -9.12679374e-01 2.88642228e-01
6.33058548e-01 -1.21180959e-01 -8.61442029e-01 2.43252754e-01
4.64804828e-01 -1.18574524e+00 8.63802135e-01 -5.13690948e-01
1.09760439e+00 -2.11219281e-01 -3.10795397e-01 -1.40832114e+00
-1.68723315e-01 5.49345240e-02 1.19974218e-01 1.26501417e+00
1.42073125e-01 -2.74557173e-01 7.47167468e-01 2.10407436e-01
-8.46049041e-02 -1.04676270e+00 -9.73797858e-01 -3.82205069e-01
2.97657877e-01 -1.62126034e-01 2.29346976e-01 1.30222416e+00
3.17806363e-01 8.62595320e-01 -6.00332975e-01 -1.32688850e-01
3.51842314e-01 5.91185391e-01 5.28846085e-01 -6.63137853e-01
-3.55904788e-01 -5.21070063e-01 -3.37219894e-01 -1.00467169e+00
5.79051316e-01 -9.20389473e-01 -1.78172011e-02 -1.13713360e+00
6.53288245e-01 -1.64178714e-01 -6.28980458e-01 1.67226672e-01
-3.19414973e-01 5.38477778e-01 4.71358150e-02 3.32319796e-01
-9.47954834e-01 1.20239007e+00 1.34978998e+00 -3.25332701e-01
1.78879991e-01 -5.14603555e-01 -8.02307189e-01 1.06270146e+00
9.72430170e-01 -2.62591869e-01 -6.16515994e-01 -3.96394879e-01
5.84010005e-01 8.88049006e-02 4.98530239e-01 -7.60374725e-01
2.08501071e-01 -8.67227390e-02 1.63546994e-01 -6.32569849e-01
8.31672192e-01 -8.76298904e-01 -2.03533068e-01 2.93895811e-01
-5.10642529e-01 4.54849690e-01 -7.18721673e-02 7.02183783e-01
-6.15529895e-01 -1.10094093e-01 9.04680252e-01 -7.12541267e-02
-6.34878933e-01 3.20905864e-01 -7.61549501e-03 5.72302639e-01
9.82383788e-01 8.07734281e-02 -4.63890910e-01 -4.43443537e-01
-6.47172213e-01 3.61304760e-01 4.99463141e-01 6.60712957e-01
9.14995909e-01 -1.66365361e+00 -7.10661709e-01 4.27175313e-02
4.60403562e-01 -4.14709300e-01 8.58418524e-01 1.32101250e+00
-9.58480388e-02 -3.55611831e-01 -2.42738649e-01 -5.01138866e-01
-1.24490321e+00 6.72002077e-01 3.51287186e-01 -1.13624312e-01
-5.07906437e-01 8.71957958e-01 4.75906670e-01 -3.56556535e-01
-1.64219588e-01 4.87503916e-01 -4.08012986e-01 4.87720966e-01
4.32705194e-01 -1.35360226e-01 -3.58612984e-01 -1.04126096e+00
-4.34638619e-01 4.96015579e-01 -1.29295319e-01 -1.83504090e-01
1.07469475e+00 -5.48037469e-01 -3.69623154e-01 9.61518586e-01
1.49963605e+00 1.06217034e-01 -9.61681604e-01 -3.31809282e-01
-4.32747543e-01 -3.62838626e-01 9.45526138e-02 -6.13957167e-01
-1.40385818e+00 1.03365326e+00 6.59153283e-01 5.03126346e-02
1.16629934e+00 2.88636297e-01 9.34282959e-01 1.51615804e-02
-3.65635574e-01 -1.50714183e+00 6.64696574e-01 2.33870253e-01
1.01750672e+00 -1.57292879e+00 -5.59348911e-02 -1.10207453e-01
-1.40283990e+00 9.80646133e-01 9.46376622e-01 -3.04722369e-01
8.48317087e-01 2.02622280e-01 3.84595901e-01 -6.83976293e-01
-6.77924573e-01 1.85851559e-01 1.28531888e-01 1.89214408e-01
4.13150460e-01 1.50538739e-02 -7.19686747e-01 9.07156110e-01
-2.67872512e-01 -3.59306246e-01 4.41538811e-01 2.12694034e-01
-3.00843179e-01 -6.26772523e-01 -1.08735159e-01 3.25526029e-01
-3.22740257e-01 -3.59877855e-01 -2.70853609e-01 3.32696646e-01
1.33462206e-01 8.29700589e-01 3.92799467e-01 -5.22559524e-01
8.22933465e-02 -6.54694065e-02 1.46175161e-01 -2.38042250e-01
-4.88621742e-01 -2.36463011e-03 4.89424430e-02 -5.34975410e-01
-6.04281902e-01 -5.23140609e-01 -1.27880955e+00 -2.47904629e-01
-1.65691927e-01 2.83895254e-01 5.10745287e-01 7.76295602e-01
3.21072876e-01 2.64109790e-01 8.54382336e-01 -3.39909047e-01
-6.24436140e-01 -8.81004870e-01 -7.23024249e-01 1.11173451e+00
-8.70700628e-02 -6.73456550e-01 -6.38070524e-01 -1.14694700e-01] | [13.076189994812012, 5.0307159423828125] |
c2ebc69d-a694-48f4-ba49-80bb625594f2 | codetrek-flexible-modeling-of-code-using-an | null | null | https://openreview.net/forum?id=WQc075jmBmf | https://openreview.net/pdf?id=WQc075jmBmf | CodeTrek: Flexible Modeling of Code using an Extensible Relational Representation | Designing a suitable representation for code-reasoning tasks is challenging in aspects such as the kinds of program information to model, how to combine them, and how much context to consider. We propose CodeTrek, a deep learning approach that addresses these challenges by representing codebases as databases that conform to rich relational schemas. The relational representation not only allows CodeTrek to uniformly represent diverse kinds of program information, but also to leverage program-analysis queries to derive new semantic relations, which can be readily incorporated without further architectural engineering. CodeTrek embeds this relational representation using a set of walks that can traverse different relations in an unconstrained fashion, and incorporates all relevant attributes along the way. We evaluate CodeTrek on four diverse and challenging Python tasks: variable misuse, exception prediction, unused definition, and variable shadowing.
CodeTrek achieves an accuracy of 91%, 63%, 98%, and 94% on these tasks respectively, and outperforms state-of-the-art neural models by 2-19% points. | ['Mayur Naik', 'Petros Maniatis', 'Hanjun Dai', 'Yuepeng Wang', 'Aaditya Naik', 'Pardis Pashakhanloo'] | 2021-09-29 | null | null | null | iclr-2022-4 | ['variable-misuse', 'exception-type'] | ['computer-code', 'computer-code'] | [-2.81601608e-01 7.79276341e-02 -6.96380556e-01 -6.71655655e-01
-5.25257587e-01 -5.32330334e-01 3.20570230e-01 6.14482701e-01
-1.56806987e-02 2.43551999e-01 6.72694743e-02 -7.04890072e-01
-8.16400629e-03 -1.19610119e+00 -9.01534617e-01 1.72423616e-01
-2.84458827e-02 1.84035093e-01 5.41334093e-01 -3.38733107e-01
1.19884528e-01 2.07890585e-01 -1.59753573e+00 7.28309035e-01
8.52345169e-01 8.61002505e-01 -9.87066776e-02 5.44264555e-01
-5.00494242e-01 1.36802697e+00 -4.64075327e-01 -7.25347579e-01
-6.12447560e-02 2.01354355e-01 -8.74170482e-01 -6.80363774e-01
2.59671837e-01 -2.33005673e-01 -2.62649477e-01 8.55231464e-01
1.46245331e-01 -1.21167943e-01 2.37129137e-01 -1.22145772e+00
-8.39869022e-01 1.17245257e+00 -4.63343859e-01 4.52103093e-02
3.35456640e-01 2.18490630e-01 1.19754577e+00 -6.69312119e-01
8.87617171e-01 1.10202622e+00 1.02594519e+00 4.25105840e-01
-1.43836379e+00 -5.54773211e-01 6.06525913e-02 7.71575794e-02
-1.26885021e+00 -5.47096372e-01 4.40490991e-01 -7.66071856e-01
1.67707086e+00 4.25854266e-01 4.03003722e-01 8.97579014e-01
3.74805927e-02 5.54486215e-01 6.08743429e-01 -1.86052501e-01
1.15957163e-01 1.74534261e-01 8.10838461e-01 1.07455146e+00
3.92083347e-01 -2.85892934e-01 -3.95095825e-01 -4.32728440e-01
2.80952841e-01 2.06087649e-01 -2.24152654e-02 -5.84567130e-01
-1.01221085e+00 6.50695920e-01 6.84003413e-01 -3.16468161e-03
-8.91528726e-02 5.26508510e-01 9.45752501e-01 3.79328460e-01
-1.72113068e-02 7.31774509e-01 -8.53145957e-01 -3.89438033e-01
-5.98700285e-01 3.61072153e-01 1.03442717e+00 1.49684930e+00
1.05605781e+00 -2.18451070e-03 -1.16273068e-01 9.07111645e-01
4.89606500e-01 2.45262727e-01 3.51274192e-01 -8.66872132e-01
9.16738570e-01 1.25597227e+00 -3.13632220e-01 -9.01347756e-01
-2.73028165e-01 -2.86221176e-01 -3.61949414e-01 1.22959666e-01
9.81886089e-02 1.39301002e-01 -6.01136506e-01 1.56984949e+00
6.77858442e-02 -3.56642425e-01 3.14523019e-02 3.99477571e-01
1.06768310e+00 2.27876708e-01 1.17755659e-01 5.38299799e-01
1.18928874e+00 -9.90994275e-01 -1.92990825e-01 -4.71904635e-01
1.07145739e+00 -3.31799805e-01 1.30161762e+00 1.41365379e-01
-9.07953203e-01 -2.56528020e-01 -1.18856251e+00 -4.85315531e-01
-5.73364019e-01 -1.43733639e-02 1.01143169e+00 5.46046078e-01
-9.60003018e-01 6.11559689e-01 -9.34591770e-01 -2.68632919e-01
4.95642006e-01 2.11049616e-01 -3.70519012e-01 -3.64043601e-02
-7.77754664e-01 7.26445675e-01 4.51435208e-01 -2.75017858e-01
-7.63242662e-01 -1.08146894e+00 -1.04386735e+00 3.60547960e-01
5.19524753e-01 -6.12541914e-01 1.37267268e+00 -4.74470705e-01
-1.00530934e+00 8.11834753e-01 -1.04019545e-01 -4.01549786e-01
2.56947607e-01 -1.94568098e-01 -3.85273546e-01 -4.85847175e-01
1.75546795e-01 -1.05862580e-02 1.53009504e-01 -1.04549789e+00
-3.80180508e-01 -5.07201612e-01 5.19207358e-01 -4.26159352e-01
-1.44842461e-01 2.25747392e-01 -9.10024822e-01 -3.73785675e-01
-1.93545952e-01 -8.06858599e-01 -1.04150280e-01 2.42448121e-01
-5.52610636e-01 -2.63371676e-01 5.36022902e-01 -7.27791727e-01
1.50260115e+00 -2.22430682e+00 1.32668018e-01 1.25100657e-01
5.78963399e-01 1.43490717e-01 3.26955728e-02 3.73696864e-01
7.50286430e-02 4.92973596e-01 -4.16071475e-01 -1.91344023e-02
4.55347955e-01 3.42680752e-01 -3.76158148e-01 -7.62086138e-02
2.92641640e-01 8.86410654e-01 -8.28235745e-01 -4.90131944e-01
-9.84884575e-02 3.37532818e-01 -9.81942058e-01 1.75654143e-01
-9.09837842e-01 -4.59486425e-01 -5.46151578e-01 8.19660842e-01
4.96624738e-01 -3.65109742e-01 4.86247241e-01 -9.73482355e-02
7.13358447e-03 6.79509819e-01 -9.69665945e-01 1.64430118e+00
-8.75064969e-01 6.57502532e-01 -2.79164553e-01 -5.68723083e-01
1.15612841e+00 -1.33640468e-01 -1.06322626e-02 -7.79619157e-01
-4.48053449e-01 1.74598277e-01 -2.36970708e-01 -8.77904892e-01
7.09381104e-01 5.23782849e-01 -5.64586282e-01 5.48090518e-01
-1.12870768e-01 1.30798250e-01 1.83683768e-01 2.80242473e-01
1.58796275e+00 3.95524383e-01 4.44635630e-01 -1.63473397e-01
2.84626603e-01 -1.56932175e-02 8.13785732e-01 8.02156210e-01
2.11969152e-01 1.57755449e-01 1.20045829e+00 -7.86792934e-01
-8.41795206e-01 -1.00604904e+00 -9.49171409e-02 1.42564249e+00
3.04738875e-03 -1.07899225e+00 -4.62806165e-01 -9.10552859e-01
3.75538290e-01 8.58228862e-01 -6.61525428e-01 -1.70689359e-01
-7.04656780e-01 -5.73904395e-01 9.07574534e-01 8.94600034e-01
3.51366609e-01 -8.65649223e-01 -7.08578587e-01 1.50267884e-01
-1.46513144e-02 -8.68292391e-01 -6.17117137e-02 5.16851008e-01
-6.29606247e-01 -1.50209188e+00 3.26765478e-01 -4.05228764e-01
3.65833163e-01 -6.86298609e-02 1.88150632e+00 5.08288085e-01
-1.86129987e-01 -2.96550803e-02 -1.36505678e-01 -7.90692940e-02
-7.16065347e-01 4.00648624e-01 -6.40286326e-01 -7.13374555e-01
6.93384469e-01 -6.83813632e-01 -1.87079459e-01 2.16670766e-01
-8.35660040e-01 1.10867275e-02 2.94487178e-01 6.05672598e-01
4.63897407e-01 -1.03140652e-01 3.11865360e-01 -1.46830702e+00
4.19477463e-01 -8.68133843e-01 -8.15088034e-01 5.72954476e-01
-7.31792271e-01 5.72817624e-01 8.66311669e-01 -7.59932175e-02
-1.00606287e+00 -1.77026123e-01 -1.50379434e-01 -2.50339627e-01
9.14436355e-02 8.15593898e-01 -2.64051825e-01 2.73040477e-02
1.12718880e+00 -5.15666939e-02 -4.08369824e-02 -6.69391692e-01
6.11516714e-01 6.56247795e-01 5.19832671e-01 -1.19258237e+00
5.11391878e-01 7.23473877e-02 -2.89632767e-01 -3.58808011e-01
-3.08441341e-01 -1.16644390e-01 -5.88900208e-01 3.69002998e-01
4.66387302e-01 -7.78884828e-01 -7.26557672e-01 2.28945404e-01
-1.10287881e+00 -6.39114738e-01 -2.28621855e-01 -1.78512543e-01
-3.57507646e-01 1.54124796e-01 -6.69341803e-01 -2.96094745e-01
-4.55210239e-01 -1.67503333e+00 8.07070196e-01 -1.51350275e-01
-3.36065859e-01 -7.87833154e-01 -5.61790317e-02 2.51638412e-01
7.12356329e-01 4.10669953e-01 1.73194420e+00 -7.55822897e-01
-1.13547468e+00 -8.32651109e-02 -4.78399009e-01 5.71389087e-02
-1.51707456e-01 3.05892318e-01 -7.02749133e-01 9.22808796e-02
-6.70197427e-01 -4.02365863e-01 6.39499724e-01 -4.91656065e-01
1.49939215e+00 -4.03991073e-01 -5.29819787e-01 1.05056131e+00
1.61618745e+00 1.46924183e-01 6.17967904e-01 5.88450849e-01
8.83479536e-01 2.74845511e-01 -8.13820213e-02 4.26063567e-01
9.62985516e-01 7.99636781e-01 6.97504580e-01 4.06305581e-01
-1.10084154e-01 -2.50289649e-01 1.01115450e-01 8.20859551e-01
3.73548895e-01 3.07211488e-01 -1.44565010e+00 6.29182935e-01
-1.98314726e+00 -8.04421604e-01 -2.42843986e-01 1.99968338e+00
1.18752265e+00 8.03487226e-02 -5.01189604e-02 -1.68751225e-01
3.74071777e-01 1.50279835e-01 -8.23185146e-01 -7.18797624e-01
1.80108070e-01 1.56492665e-01 4.25563544e-01 1.85727254e-01
-9.35265839e-01 8.81608307e-01 6.07033014e+00 3.10829937e-01
-1.13285661e+00 -8.92053265e-03 2.65657336e-01 1.28048256e-01
-6.70894444e-01 2.79797763e-01 -7.85035253e-01 4.40992653e-01
9.51117992e-01 -3.88162106e-01 8.47969592e-01 1.41745472e+00
-5.13604045e-01 1.85761258e-01 -1.52378094e+00 6.72795475e-01
-1.31699383e-01 -1.50975966e+00 -1.04555927e-01 -2.86328048e-01
4.50601429e-01 4.92328405e-01 -2.14856088e-01 9.04000461e-01
8.91622961e-01 -1.11437583e+00 8.08502734e-01 7.47749805e-01
6.50642633e-01 -4.74316835e-01 4.39464778e-01 -3.14132422e-02
-1.27114975e+00 -2.44478360e-01 -2.72135407e-01 1.31292477e-01
-6.81774259e-01 4.57080394e-01 -8.52068663e-01 4.74822134e-01
9.37672615e-01 8.56774151e-01 -1.10098445e+00 9.47289705e-01
-2.72126496e-01 3.28193337e-01 -2.35107824e-01 7.56549044e-03
-1.88515738e-01 3.84566933e-01 6.57264963e-02 1.54296434e+00
1.83419228e-01 -4.07811850e-01 9.85775441e-02 1.49044955e+00
-5.35194218e-01 -1.07841276e-01 -6.48457825e-01 1.10981502e-02
9.39825773e-01 9.92132008e-01 -1.93792403e-01 -3.44229549e-01
-7.63044715e-01 3.03505391e-01 8.29770029e-01 4.19936776e-01
-7.55744100e-01 -7.93612957e-01 1.04757321e+00 4.04981486e-02
3.91232312e-01 -2.73460224e-02 -5.23734093e-01 -1.32179117e+00
5.17272353e-01 -1.23229134e+00 4.58544344e-01 -7.50328183e-01
-9.99391973e-01 7.21357703e-01 2.00063866e-02 -5.79315424e-01
-3.25935572e-01 -4.46716040e-01 -4.32853222e-01 9.85879660e-01
-1.34912252e+00 -1.16400862e+00 -4.55937803e-01 3.22726965e-01
7.29671568e-02 -3.74615967e-01 8.05239737e-01 4.43065435e-01
-7.32480884e-01 9.54693973e-01 1.17269076e-01 4.94768053e-01
4.09267664e-01 -1.34389198e+00 1.03663766e+00 9.16973770e-01
-2.45102257e-01 1.25291598e+00 3.66464645e-01 -4.05473381e-01
-1.85947704e+00 -1.48822725e+00 6.90823734e-01 -8.10830593e-01
8.40393841e-01 -4.53268558e-01 -1.34351885e+00 1.11744535e+00
-2.26383373e-01 4.72226828e-01 7.04929769e-01 5.41592479e-01
-1.43030131e+00 -3.26107770e-01 -1.02673066e+00 5.93599081e-01
1.06010103e+00 -1.00029612e+00 -5.80062985e-01 3.06890495e-02
1.11818445e+00 -6.49789453e-01 -1.42160118e+00 1.67186543e-01
7.02184916e-01 -1.07205188e+00 1.00337148e+00 -8.74726534e-01
9.34422851e-01 -3.19183648e-01 -5.54683685e-01 -9.83762920e-01
-1.64908037e-01 -2.69691914e-01 -5.59863865e-01 1.30788291e+00
5.68810523e-01 -5.45535088e-01 5.94536602e-01 9.84157145e-01
-2.68457890e-01 -1.00025976e+00 -3.84898275e-01 -5.26429236e-01
9.98423845e-02 -7.71633148e-01 1.48645365e+00 1.21423209e+00
2.11848572e-01 1.11388341e-01 1.14827268e-01 1.65146172e-01
3.88125420e-01 4.80003834e-01 1.01071405e+00 -1.24277604e+00
-6.08604372e-01 -7.24817872e-01 -4.30975348e-01 -7.14869797e-01
3.97398949e-01 -1.34337616e+00 -3.11279655e-01 -1.63915753e+00
1.89492017e-01 -9.36036170e-01 -2.39597738e-01 1.03920460e+00
-1.08214788e-01 -4.35059786e-01 1.54299483e-01 2.53720105e-01
-6.83179617e-01 1.31877303e-01 4.34569329e-01 -4.75450516e-01
-8.83156285e-02 -1.98807016e-01 -1.09570789e+00 6.08112752e-01
4.40890819e-01 -4.39989418e-01 -3.66301984e-01 -1.11715925e+00
6.97956562e-01 3.91714543e-01 3.45931858e-01 -8.67292643e-01
2.39427447e-01 -2.64116675e-01 -1.02161039e-02 -2.69035995e-01
1.02338098e-01 -6.33578300e-01 3.60210389e-01 5.99446520e-02
-6.92478299e-01 3.00574541e-01 3.45020980e-01 4.27280992e-01
3.85086983e-02 -2.71354169e-01 5.75783670e-01 -2.92225003e-01
-1.00497448e+00 2.05374971e-01 -5.55809252e-02 3.76856536e-01
8.11365962e-01 1.84034094e-01 -9.75087225e-01 2.86173999e-01
-3.32453668e-01 2.55962789e-01 8.20646942e-01 7.65726626e-01
3.12625110e-01 -1.17365789e+00 -1.84737399e-01 3.78195286e-01
7.27177441e-01 1.43061027e-01 -9.07607824e-02 3.06154966e-01
-8.21111917e-01 2.86127239e-01 -8.18472058e-02 -3.63630146e-01
-1.03708720e+00 7.59888887e-01 5.28598905e-01 -2.80226260e-01
-7.59226084e-01 5.87607205e-01 -2.17105240e-01 -1.10918915e+00
2.24510744e-01 -7.48363495e-01 9.68811214e-02 -3.34726006e-01
4.50003237e-01 1.74489662e-01 4.27963704e-01 -2.24907756e-01
-5.48670769e-01 3.34721178e-01 -2.89083302e-01 6.21376395e-01
1.42903304e+00 4.20425594e-01 -5.96657217e-01 3.63979846e-01
1.32021821e+00 -6.90300986e-02 -9.31951940e-01 -6.35382354e-01
5.28719246e-01 -5.94452858e-01 -1.27427116e-01 -1.16517103e+00
-1.14411759e+00 8.96479130e-01 -1.25508085e-02 2.89102137e-01
7.40121782e-01 -1.41613316e-02 6.27166033e-01 8.34859729e-01
6.26904070e-01 -5.70542455e-01 -2.35685602e-01 7.03343093e-01
6.75691307e-01 -9.95080173e-01 -4.69235592e-02 -2.65069067e-01
-2.56013393e-01 1.23271215e+00 8.98194730e-01 1.61105439e-01
4.69009876e-01 7.18565822e-01 -1.90083697e-01 -3.56540740e-01
-1.21617889e+00 1.00645438e-01 -1.06203735e-01 6.68581426e-01
8.22284341e-01 1.52641043e-01 2.34604746e-01 9.08649921e-01
-1.14613503e-01 1.83744252e-01 5.57045877e-01 1.05775499e+00
-7.15269819e-02 -1.19259727e+00 -4.03725430e-02 8.49400878e-01
-3.18446100e-01 -2.34397009e-01 -1.72839925e-01 8.75161350e-01
-8.01028386e-02 4.75838780e-01 -7.33911321e-02 -5.98280013e-01
5.49211979e-01 8.59567076e-02 8.91717076e-02 -7.39008248e-01
-9.48767602e-01 -7.86769569e-01 3.71635586e-01 -8.15176189e-01
3.03232968e-01 -4.44021285e-01 -1.26867151e+00 -5.50761819e-01
6.40632063e-02 4.65356885e-03 6.24791443e-01 6.20046020e-01
8.02584708e-01 9.54097450e-01 1.25245571e-01 -1.32597670e-01
-6.51798964e-01 -4.44377542e-01 4.69129570e-02 5.02982736e-01
3.66149396e-01 -4.58958685e-01 4.13373634e-02 -8.20905045e-02] | [7.621532440185547, 7.829018592834473] |
33531134-5b9b-4ddb-a625-86948ef7222c | improving-non-autoregressive-generation-with | 2110.11115 | null | https://arxiv.org/abs/2110.11115v1 | https://arxiv.org/pdf/2110.11115v1.pdf | Improving Non-autoregressive Generation with Mixup Training | While pre-trained language models have achieved great success on various natural language understanding tasks, how to effectively leverage them into non-autoregressive generation tasks remains a challenge. To solve this problem, we present a non-autoregressive generation model based on pre-trained transformer models. To bridge the gap between autoregressive and non-autoregressive models, we propose a simple and effective iterative training method called MIx Source and pseudo Target (MIST). Unlike other iterative decoding methods, which sacrifice the inference speed to achieve better performance based on multiple decoding iterations, MIST works in the training stage and has no effect on inference time. Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results for fully non-autoregressive models. We also demonstrate that our method can be used to a variety of pre-trained models. For instance, MIST based on the small pre-trained model also obtains comparable performance with seq2seq models. | ['Qi Zhang', 'Liangjie Zhang', 'Haizhen Huang', 'Furu Wei', 'Fuzhen Zhuang', 'Deqing Wang', 'Zihan Zhang', 'Shaohan Huang', 'Ting Jiang'] | 2021-10-21 | null | null | null | null | ['paraphrase-generation', 'paraphrase-generation'] | ['computer-code', 'natural-language-processing'] | [ 4.81725395e-01 4.24630016e-01 -5.95755987e-02 -3.53064865e-01
-1.29219544e+00 -4.47356373e-01 9.69088912e-01 -2.29055032e-01
-2.14902498e-02 8.03444028e-01 7.22795069e-01 -6.28437936e-01
3.82972091e-01 -9.13870752e-01 -7.68089712e-01 -3.61711204e-01
5.75483322e-01 7.43446350e-01 3.39522921e-02 -5.18024325e-01
1.69704050e-01 -1.74306393e-01 -1.11417794e+00 5.70580006e-01
1.18064451e+00 6.19106174e-01 1.87234417e-01 9.34949994e-01
-4.80421901e-01 1.15440083e+00 -7.90930688e-01 -6.83208883e-01
-8.34598392e-02 -9.26556945e-01 -8.37386012e-01 -3.32925349e-01
2.37243071e-01 -4.95748103e-01 -1.81024492e-01 5.87698579e-01
5.98219812e-01 1.02653094e-01 8.63347590e-01 -8.21173608e-01
-8.82945418e-01 1.20516407e+00 -3.14596236e-01 1.27098143e-01
4.97741193e-01 -8.86653289e-02 1.01957309e+00 -8.61817718e-01
2.62443990e-01 1.44989407e+00 6.60758555e-01 6.84170187e-01
-1.16194510e+00 -7.46823370e-01 1.77171603e-01 -3.87266651e-02
-8.30523849e-01 -6.41308427e-01 6.24184668e-01 -2.14080155e-01
1.20025539e+00 1.57434314e-01 3.03471714e-01 1.47926521e+00
2.54401058e-01 9.45249975e-01 9.98704314e-01 -5.34789026e-01
3.67253758e-02 -7.01414496e-02 2.19426006e-01 4.70539600e-01
-1.86926704e-02 -9.17702094e-02 -6.40987754e-01 -1.28903478e-01
6.20472074e-01 -3.27136993e-01 -1.97010487e-01 3.22787583e-01
-1.10598898e+00 1.06585932e+00 7.37593621e-02 2.20925570e-01
-4.48332936e-01 3.22711051e-01 3.85403216e-01 2.67910033e-01
7.75847673e-01 5.66677809e-01 -3.32815707e-01 -6.79518938e-01
-1.28753078e+00 2.17637360e-01 8.95476878e-01 1.07070684e+00
4.50427860e-01 5.64473629e-01 -6.94827318e-01 1.00234187e+00
1.92352384e-01 5.07458985e-01 8.72905374e-01 -6.45257056e-01
6.77658975e-01 3.76125127e-01 -1.70147568e-01 -4.81250942e-01
1.32238632e-03 -5.57807684e-01 -1.09874141e+00 -5.12613833e-01
1.79843605e-01 -2.99519032e-01 -1.24984598e+00 1.63756585e+00
-1.78211004e-01 2.29948372e-01 4.46705818e-01 4.84173268e-01
1.00191104e+00 1.11102295e+00 2.15744972e-02 -1.90125570e-01
1.17997003e+00 -1.41936624e+00 -8.65515411e-01 -3.92510563e-01
5.84906161e-01 -8.60868692e-01 1.02155447e+00 1.34555548e-01
-1.43856573e+00 -5.26841402e-01 -7.45929301e-01 -3.18021625e-01
-1.43779933e-01 3.04477572e-01 7.03294218e-01 6.70620024e-01
-1.06581759e+00 3.74016553e-01 -8.66472900e-01 -1.48186520e-01
2.71200445e-02 6.12220392e-02 -5.20969704e-02 1.75538920e-02
-1.33977151e+00 8.95149350e-01 3.52596730e-01 2.08530083e-01
-8.71184289e-01 -7.88557172e-01 -9.74147499e-01 2.23230332e-01
1.14073053e-01 -1.19351149e+00 1.71593845e+00 -7.94984519e-01
-2.25607753e+00 3.26889992e-01 -6.99403346e-01 -8.81801188e-01
2.83788502e-01 -6.84949934e-01 -6.32051155e-02 -1.27735317e-01
1.75763443e-02 5.90729356e-01 7.63594985e-01 -8.33720803e-01
-1.89856350e-01 1.48654007e-03 8.36251602e-02 1.77768961e-01
-2.88285106e-01 1.15893967e-01 -4.11274076e-01 -8.67867112e-01
-2.04038963e-01 -8.65209937e-01 -2.89237469e-01 -9.29327309e-01
-5.37199259e-01 -3.79804164e-01 4.49198127e-01 -8.18937004e-01
1.32740331e+00 -1.32252932e+00 2.48969331e-01 -3.04806709e-01
-1.76208898e-01 4.28393811e-01 -3.19682181e-01 7.64221728e-01
-2.23548971e-02 1.72455207e-01 -3.86907220e-01 -6.23430371e-01
-4.73746322e-02 2.50770867e-01 -9.33702767e-01 -3.64799768e-01
4.75672513e-01 1.27896690e+00 -1.05234063e+00 -3.25598300e-01
1.30151096e-03 3.85410994e-01 -6.58376276e-01 5.53324461e-01
-4.14611191e-01 3.07931006e-01 -4.18135583e-01 3.45346510e-01
4.03538585e-01 -2.96566695e-01 1.70910582e-01 1.13099605e-01
1.28093421e-01 8.87194097e-01 -5.05607009e-01 1.69816971e+00
-8.00019324e-01 5.40756166e-01 -4.36492592e-01 -1.09789705e+00
9.75669980e-01 4.95003670e-01 -1.18920438e-01 -5.81434846e-01
-1.04596123e-01 2.05340937e-01 -2.15466525e-02 -1.75697401e-01
1.00796175e+00 -2.39916012e-01 -6.65532425e-02 6.77492380e-01
3.12858284e-01 -3.89378607e-01 2.94895977e-01 4.51926917e-01
1.04434526e+00 4.04153466e-01 3.06417674e-01 1.09706372e-01
4.51671302e-01 -1.01163879e-01 4.47716653e-01 1.10474658e+00
5.14521122e-01 8.53830218e-01 4.86638814e-01 -2.66471468e-02
-9.85521019e-01 -1.11969066e+00 3.60040486e-01 1.25477040e+00
-3.59805912e-01 -7.74037004e-01 -8.72071266e-01 -5.80702126e-01
-4.94114876e-01 1.29272270e+00 -3.33253205e-01 -2.99567074e-01
-8.03989768e-01 -8.68373573e-01 8.66439402e-01 7.59653687e-01
5.30859888e-01 -1.07195735e+00 -1.32371396e-01 4.53355998e-01
-5.78625083e-01 -1.14569783e+00 -4.87076908e-01 -1.54212251e-01
-9.61554587e-01 -4.16684896e-01 -8.27895999e-01 -5.94848514e-01
4.52635735e-01 1.65346771e-01 1.48599565e+00 -2.11302966e-01
3.64149362e-01 2.98901200e-01 -5.94046593e-01 -5.97817481e-01
-9.76812065e-01 5.84278643e-01 -3.98289680e-01 -2.28825361e-01
1.27469748e-01 -6.79745793e-01 -2.80896664e-01 -3.39795500e-02
-8.80309820e-01 5.34491777e-01 7.68587470e-01 1.09358168e+00
3.75005454e-01 -5.14011145e-01 9.88668203e-01 -1.13129163e+00
1.06456757e+00 -4.90199983e-01 -3.07801366e-01 3.97973567e-01
-5.66961706e-01 4.85321701e-01 9.28534806e-01 -4.02614295e-01
-1.37965751e+00 -2.16230154e-01 -4.66840953e-01 -1.44956052e-01
2.32765704e-01 7.92118788e-01 1.57736853e-01 5.84070265e-01
4.89293158e-01 6.83292329e-01 -2.87346318e-02 -5.67208529e-01
7.15576053e-01 6.87334061e-01 5.24981856e-01 -4.80317324e-01
8.61796439e-01 -6.85577542e-02 -3.03044230e-01 -5.27497649e-01
-9.66744661e-01 -2.47705445e-01 -2.09560096e-01 7.98295438e-02
6.16954088e-01 -1.03100073e+00 -7.59673938e-02 4.95921969e-01
-1.58019114e+00 -3.67904216e-01 -2.74944901e-01 3.33574980e-01
-6.95641100e-01 4.03537303e-01 -7.35410571e-01 -9.29753542e-01
-1.04398358e+00 -9.23216164e-01 1.30975842e+00 1.10058255e-01
-3.59953195e-01 -1.06911004e+00 3.39569092e-01 4.66946810e-01
8.21003854e-01 -2.96761006e-01 1.09737146e+00 -8.32229912e-01
-6.00480855e-01 -2.01815873e-01 7.65333399e-02 3.97374511e-01
9.92401540e-02 -1.46608442e-01 -8.37413728e-01 1.09518781e-01
-5.87722566e-03 -4.88489300e-01 1.16318393e+00 2.61060119e-01
1.07585669e+00 -5.46256900e-01 -5.01561165e-02 4.47261661e-01
8.87866735e-01 -1.87917277e-02 1.11914372e+00 2.32201815e-02
5.81243157e-01 2.96627969e-01 4.06414658e-01 1.84912458e-01
6.63126528e-01 7.13834763e-01 7.88408443e-02 -9.85241123e-03
-1.79068670e-01 -8.13034713e-01 8.14061046e-01 1.38877559e+00
-1.54495269e-01 -5.40135264e-01 -7.37084508e-01 5.54657817e-01
-1.90839326e+00 -1.16291118e+00 -1.92600265e-01 2.18873191e+00
1.16655934e+00 6.44624140e-03 -7.60514438e-02 -2.52182722e-01
5.02718806e-01 2.78750181e-01 -2.32905552e-01 -8.44041526e-01
-9.96102467e-02 6.03875637e-01 1.32732093e-01 4.68046635e-01
-8.07560265e-01 1.31264985e+00 7.04104900e+00 1.05670714e+00
-1.04804349e+00 1.79296404e-01 6.42605364e-01 4.95013744e-02
-6.41832650e-01 1.31085992e-01 -1.05919957e+00 4.77874964e-01
1.50384641e+00 -5.69939554e-01 3.22909862e-01 8.15219998e-01
3.59720021e-01 1.86712801e-01 -1.09143627e+00 6.99391723e-01
2.79997289e-01 -1.40460527e+00 6.20806634e-01 -2.23351091e-01
8.62078249e-01 -6.91568032e-02 -2.95147859e-02 1.00874352e+00
5.94477713e-01 -1.21752119e+00 4.95660186e-01 4.98117387e-01
5.92981279e-01 -4.73397464e-01 6.68308556e-01 6.12276673e-01
-9.37799752e-01 7.04339221e-02 -5.43911040e-01 -1.04975060e-01
6.71989024e-01 6.28501832e-01 -1.13422859e+00 8.84451985e-01
2.45803166e-02 6.08127356e-01 -3.56344014e-01 7.47634888e-01
-6.10959351e-01 1.19768906e+00 -9.19995308e-02 -4.30312082e-02
2.24565178e-01 -2.92114735e-01 5.89328170e-01 1.25948632e+00
5.61493039e-01 2.13716067e-02 -1.75605804e-01 8.47709298e-01
-3.09187949e-01 1.56724229e-01 -6.09768331e-01 -2.83221990e-01
3.04999650e-01 1.08749187e+00 -1.04270920e-01 -7.25381136e-01
-3.06260407e-01 1.05530047e+00 4.27144796e-01 3.77045751e-01
-1.03208184e+00 -3.00880760e-01 2.99387962e-01 9.30556804e-02
2.74194032e-01 -2.71420181e-01 -1.32851660e-01 -1.35975528e+00
-2.92567518e-02 -1.23056173e+00 2.53279746e-01 -9.80588794e-01
-1.16416025e+00 8.70463431e-01 1.46572217e-01 -1.01305878e+00
-1.30273557e+00 -1.59050241e-01 -8.81122887e-01 9.62425947e-01
-1.77188039e+00 -1.31954896e+00 -8.77030790e-02 1.89071238e-01
1.11772275e+00 -2.31318340e-01 1.03613257e+00 -7.55038708e-02
-4.46552962e-01 7.38325655e-01 1.70745134e-01 -1.13357995e-02
7.22316206e-01 -1.25485301e+00 8.48286986e-01 9.42377687e-01
2.49975100e-01 7.96718001e-01 5.81013441e-01 -6.11903667e-01
-1.32911801e+00 -1.31823909e+00 1.22682750e+00 -3.96663994e-01
5.26619017e-01 -4.16009754e-01 -8.47746015e-01 9.22389984e-01
6.48035944e-01 -7.68036902e-01 4.78911370e-01 2.18161255e-01
-3.40134889e-01 1.01123899e-01 -4.73308593e-01 7.52918005e-01
8.58182967e-01 -4.50748593e-01 -8.55048835e-01 4.99088764e-01
1.05427504e+00 -5.18495679e-01 -5.65367103e-01 4.42363530e-01
4.77272183e-01 -7.68028855e-01 7.74787366e-01 -8.80142927e-01
1.14091170e+00 1.87355369e-01 1.67801306e-01 -1.59065986e+00
-1.66932404e-01 -1.08372521e+00 -3.56507093e-01 1.42831612e+00
7.57323146e-01 -6.77798569e-01 6.00166738e-01 4.41624045e-01
-4.45219636e-01 -7.98721075e-01 -6.95365310e-01 -8.18449676e-01
3.72141063e-01 -3.75512183e-01 5.92588246e-01 4.23643112e-01
-9.88698751e-02 9.44894910e-01 -7.22976804e-01 -2.86300510e-01
2.33899489e-01 2.38644019e-01 1.09768784e+00 -8.07284713e-01
-5.60303926e-01 -2.51665622e-01 1.23642206e-01 -1.77495933e+00
4.31636661e-01 -9.20612454e-01 2.38150701e-01 -1.80405188e+00
3.14888000e-01 -6.23023137e-02 1.69396728e-01 4.28369641e-01
-5.78770876e-01 2.11876072e-02 9.29395705e-02 9.91593674e-03
-3.58373344e-01 9.43690956e-01 1.03169703e+00 -3.99092212e-02
-1.87061384e-01 1.53764084e-01 -9.31570053e-01 4.52272773e-01
8.08377504e-01 -3.65016192e-01 -6.69439197e-01 -6.86505079e-01
1.85660183e-01 2.38599122e-01 -3.06504387e-02 -6.94470286e-01
1.98029935e-01 1.70279324e-01 -3.20117213e-02 -6.59585238e-01
5.30819654e-01 -5.72489435e-03 4.67438474e-02 1.93048656e-01
-6.94125533e-01 3.13641846e-01 1.59744978e-01 5.71500242e-01
-3.62461537e-01 -4.95756269e-01 3.73660922e-01 -1.57974720e-01
-1.37058944e-01 3.68289575e-02 -6.74236894e-01 2.82552451e-01
4.15059686e-01 -3.67333740e-02 -5.46941102e-01 -1.03249657e+00
-2.97937244e-01 1.00504145e-01 -1.74613558e-02 5.62442005e-01
6.24726951e-01 -1.09943318e+00 -1.13933361e+00 5.63128255e-02
-2.12653875e-01 -9.16873515e-02 1.01247162e-01 7.32552111e-01
-2.37152666e-01 9.06424165e-01 3.45743686e-01 -4.37679619e-01
-1.12701225e+00 1.59148723e-01 2.00427607e-01 -1.09762633e+00
-3.01231831e-01 6.62788272e-01 3.64667684e-01 -4.98814732e-01
-1.58662230e-01 -2.92194545e-01 -3.23804319e-01 -1.75144091e-01
5.51708877e-01 1.45317301e-01 1.34274974e-01 -4.02782589e-01
1.35387197e-01 2.07943544e-01 -4.74150926e-01 -2.59296298e-01
1.30892920e+00 4.66720499e-02 -1.16518535e-01 4.52767819e-01
9.66167569e-01 2.01582573e-02 -6.43024564e-01 -2.42105410e-01
-2.51552254e-01 -9.60919857e-02 1.06309541e-02 -7.93161631e-01
-7.32363164e-01 1.06822324e+00 -1.39082432e-01 1.69028863e-01
1.06699657e+00 -2.12697104e-01 1.10668755e+00 4.74205166e-01
1.38167873e-01 -7.82903075e-01 2.37204015e-01 1.08310783e+00
1.11033845e+00 -8.45234752e-01 -2.44507238e-01 -5.54335713e-01
-8.98995459e-01 1.04279053e+00 5.79054832e-01 -4.95621786e-02
1.26517788e-01 1.85901344e-01 -1.43583804e-01 2.82907188e-01
-1.32469070e+00 -9.62883607e-02 2.22172588e-01 5.25460720e-01
8.92729044e-01 -1.78702101e-01 -4.38566059e-01 8.03693533e-01
-6.89414561e-01 1.59331307e-01 7.26845086e-01 5.31765103e-01
-1.84202597e-01 -1.43562376e+00 -1.23395868e-01 6.24187052e-01
-6.56208754e-01 -7.62314439e-01 -4.32347953e-01 4.91093338e-01
-7.98936844e-01 1.11923814e+00 9.96769145e-02 -2.24788025e-01
1.73213229e-01 3.12811196e-01 4.35050160e-01 -7.98772752e-01
-7.93380857e-01 2.93601248e-02 5.07755280e-01 -2.59138554e-01
-3.10088009e-01 -2.81419545e-01 -8.17126215e-01 -1.60779104e-01
-5.52011311e-01 4.67239976e-01 5.58303237e-01 9.19206619e-01
6.90038443e-01 6.81865275e-01 5.20596266e-01 -6.61515772e-01
-1.02046621e+00 -1.42451596e+00 2.81107333e-02 1.31072685e-01
1.80887487e-02 -1.86118498e-01 -1.60881668e-01 2.46409267e-01] | [11.840886116027832, 9.084722518920898] |
d13a4d47-5e7b-41eb-8a7f-eb11f2f856e4 | emergent-resource-exchange-and-tolerated | 2307.01862 | null | https://arxiv.org/abs/2307.01862v1 | https://arxiv.org/pdf/2307.01862v1.pdf | Emergent Resource Exchange and Tolerated Theft Behavior using Multi-Agent Reinforcement Learning | For decades, the evolution of cooperation has piqued the interest of numerous academic disciplines such as game theory, economics, biology, and computer science. In this work, we demonstrate the emergence of a novel and effective resource exchange protocol formed by dropping and picking up resources in a foraging environment. This form of cooperation is made possible by the introduction of a campfire, which adds an extended period of congregation and downtime for agents to explore otherwise unlikely interactions. We find that the agents learn to avoid getting cheated by their exchange partners, but not always from a third party. We also observe the emergence of behavior analogous to tolerated theft, despite the lack of any punishment, combat, or larceny mechanism in the environment. | ['Jordan Pollack', 'Jack Garbus'] | 2023-07-04 | null | null | null | null | ['multi-agent-reinforcement-learning'] | ['methodology'] | [-7.80565292e-02 1.31403059e-01 4.39136356e-01 2.29885310e-01
4.54100549e-01 -9.34272647e-01 6.38829947e-01 1.82629600e-01
-9.73212481e-01 1.35316348e+00 -3.27497631e-01 -1.23027638e-01
-3.28496814e-01 -7.42489219e-01 -9.96243134e-02 -8.60699177e-01
-6.68383479e-01 3.19963992e-01 2.16026410e-01 -7.12496817e-01
1.55040637e-01 2.94303387e-01 -1.39352310e+00 -7.40170896e-01
6.26764476e-01 3.55164289e-01 1.25602737e-01 4.91465598e-01
5.16152978e-01 5.86436033e-01 -8.45601916e-01 -5.56127787e-01
6.27604783e-01 -7.76207268e-01 -3.56694728e-01 -1.00560620e-01
-8.42198074e-01 -3.40860128e-01 -4.60344590e-02 7.71291077e-01
3.72393221e-01 3.58755201e-01 2.34153017e-01 -1.34508812e+00
-3.86475772e-01 8.25128317e-01 -6.43843293e-01 1.44138768e-01
3.83518785e-01 1.39444947e-01 8.13722014e-01 -1.94435522e-01
8.91480505e-01 8.04290056e-01 4.10220385e-01 7.57666647e-01
-8.56713057e-01 -6.52675867e-01 -3.11029196e-01 -2.62519419e-01
-1.49871325e+00 -1.85593963e-01 5.36505938e-01 3.14868912e-02
8.61212671e-01 1.87710553e-01 1.16413844e+00 9.01877046e-01
3.30956638e-01 2.47405142e-01 1.09875655e+00 -4.35759902e-01
5.86278856e-01 -1.14645042e-01 -5.13823748e-01 3.78762007e-01
8.22177231e-01 5.28136313e-01 -6.19348705e-01 -6.09159648e-01
9.00634944e-01 -5.87592125e-02 -3.51196736e-01 -2.62590408e-01
-8.19639206e-01 6.77228689e-01 3.38090211e-01 3.85515094e-01
-6.09866202e-01 -5.48347607e-02 -8.11407715e-02 7.49671400e-01
1.54073507e-01 9.03677702e-01 -3.63834202e-01 -5.28429270e-01
-2.49940440e-01 8.93466249e-02 1.11442077e+00 4.63716418e-01
6.16764665e-01 -7.78602064e-02 6.75574064e-01 3.06560010e-01
6.95777759e-02 1.62795559e-01 1.78990826e-01 -1.22541511e+00
-2.42660418e-01 5.33940554e-01 6.69586897e-01 -9.17734563e-01
-4.77708906e-01 -4.42674667e-01 -6.25899851e-01 5.54231524e-01
3.58137816e-01 -7.58425653e-01 5.60641102e-02 1.98580968e+00
4.34720963e-01 -9.26238522e-02 1.31647721e-01 6.95945203e-01
-2.16731817e-01 2.45363235e-01 -3.41731995e-01 -7.08678365e-01
6.62483811e-01 -6.41701043e-01 -3.99647743e-01 -1.41882244e-02
4.48353261e-01 -2.46301934e-01 4.32184339e-01 4.10982102e-01
-1.07539880e+00 3.97922009e-01 -9.53852355e-01 7.50941694e-01
-2.27128342e-01 -1.07768214e+00 7.85683870e-01 7.22583532e-01
-1.23197210e+00 7.98101544e-01 -7.86737978e-01 -6.26891673e-01
1.18481994e-01 4.78416085e-01 -5.74826181e-01 3.48549247e-01
-8.82441401e-01 8.93991470e-01 -7.41412640e-02 2.31573526e-02
-6.03051424e-01 2.49678129e-03 -4.22189653e-01 1.07999824e-01
6.67238533e-01 -6.48100615e-01 8.85524690e-01 -1.25120950e+00
-1.60395038e+00 8.64728689e-01 3.56374443e-01 -4.37926441e-01
5.69891751e-01 1.15532637e-01 1.41989216e-01 3.54488455e-02
2.08326593e-01 4.16736543e-01 3.76978308e-01 -1.00177503e+00
-4.44442451e-01 -3.55885178e-01 3.21273297e-01 5.54043472e-01
-1.83514476e-01 2.02220872e-01 4.70353633e-01 -4.75476593e-01
-3.44747782e-01 -9.16153491e-01 -4.95618552e-01 -2.39175498e-01
6.94238544e-02 -1.38902634e-01 4.09740865e-01 1.22602515e-01
7.38080442e-01 -2.13348317e+00 4.14703310e-01 9.89025012e-02
4.96584773e-01 1.84967201e-02 -1.79003775e-01 1.12427878e+00
5.08377552e-01 5.00251234e-01 -1.94038317e-01 -1.29290357e-01
2.13625245e-02 4.58191484e-01 3.35383981e-01 5.14219105e-01
-6.57249168e-02 5.47400236e-01 -1.17063987e+00 8.70492309e-03
-3.56253713e-01 1.40486211e-01 -6.51873708e-01 2.92301774e-01
2.50784189e-01 5.66531241e-01 -4.53229576e-01 6.00534856e-01
2.94959813e-01 -2.74613231e-01 6.58674002e-01 1.25514162e+00
-6.36327744e-01 1.93948686e-01 -7.94227898e-01 1.14280593e+00
-3.59337479e-02 4.22829896e-01 7.60242105e-01 -7.38062024e-01
5.37700951e-01 2.87668914e-01 5.60274899e-01 -4.03562278e-01
7.23248065e-01 4.30885226e-01 7.03309119e-01 6.94110766e-02
4.38448936e-01 -3.17265391e-01 -2.39784539e-01 1.18968034e+00
-7.72576928e-02 -1.45612329e-01 2.91799635e-01 1.64740384e-01
1.37771153e+00 -1.02096051e-01 6.25376284e-01 -3.00242722e-01
3.16559477e-03 7.59809166e-02 7.62450218e-01 1.09347653e+00
-5.88907242e-01 -1.86960116e-01 2.49864861e-01 -2.88277596e-01
-8.32463205e-01 -9.71966565e-01 1.64876491e-01 9.76982832e-01
7.07319796e-01 -4.58075047e-01 -6.50308192e-01 -2.02710852e-01
-2.53982712e-02 2.64689118e-01 -7.08544731e-01 -4.41810548e-01
-4.80141699e-01 -5.91655850e-01 4.79315192e-01 -3.55128050e-02
6.86599612e-01 -1.31354165e+00 -1.40471840e+00 2.65048832e-01
8.95363837e-02 -4.88792151e-01 -3.78148794e-01 5.44596076e-01
-5.38567126e-01 -9.57268298e-01 -4.60006058e-01 -4.35368031e-01
6.33516073e-01 4.59102064e-01 8.22240114e-01 1.04904461e+00
-3.76026362e-01 4.72722381e-01 -7.09882796e-01 -2.96392381e-01
-1.97358191e-01 -9.23360586e-02 7.15183496e-01 -3.93425763e-01
1.61728740e-01 -1.08591247e+00 -6.10855281e-01 4.59267527e-01
-6.29216135e-01 -3.29004735e-01 2.14418620e-01 8.59803557e-01
-2.59137839e-01 3.43891561e-01 7.28303134e-01 1.16931926e-02
1.07183349e+00 -7.03452468e-01 -6.62418544e-01 -8.48899558e-02
-2.13683322e-01 -2.02069730e-01 5.55941880e-01 -5.81257403e-01
-6.50823653e-01 -2.61797577e-01 5.31120062e-01 2.83725679e-01
5.86521663e-02 3.42296869e-01 1.15259208e-01 -5.69745719e-01
5.76282322e-01 8.78105462e-02 1.26830429e-01 -2.30116934e-01
8.60029161e-02 5.96044302e-01 6.28297329e-02 -4.50681239e-01
8.29829097e-01 4.14808244e-01 -2.21739113e-02 -1.05305123e+00
9.07305628e-02 7.40811452e-02 -3.70794445e-01 -4.07246232e-01
5.37687659e-01 -2.89210975e-01 -1.25335491e+00 7.78481722e-01
-1.01621294e+00 -5.35619259e-01 -4.84911412e-01 4.47446227e-01
-2.68538654e-01 3.02824765e-01 -4.13915992e-01 -1.17814326e+00
1.77143857e-01 -6.00342929e-01 1.03548951e-01 7.14647651e-01
-1.83242068e-01 -6.03891730e-01 3.78660649e-01 5.27526997e-02
7.40535915e-01 1.41828150e-01 2.01324344e-01 -6.78548276e-01
-7.99616396e-01 5.20976679e-03 3.54114890e-01 -2.20296785e-01
5.32897651e-01 -1.97679773e-02 -6.38584793e-02 -4.13754433e-01
1.76312283e-01 -3.85956466e-01 2.38328204e-01 8.89894366e-02
-2.13029489e-01 -3.08248818e-01 -4.44069415e-01 3.29234332e-01
9.15545046e-01 8.52804065e-01 1.60266370e-01 4.76101488e-01
-3.48568082e-01 9.23576653e-01 1.49129838e-01 7.81372190e-01
2.64161557e-01 3.62493783e-01 5.93749881e-01 2.08561853e-01
6.07930005e-01 1.98584963e-02 1.49793759e-01 5.83605826e-01
-6.96493268e-01 -5.18898487e-01 -8.01805735e-01 5.23685992e-01
-1.76667070e+00 -1.01234925e+00 3.74201655e-01 2.24298215e+00
7.48867393e-01 2.73891129e-02 3.14771533e-01 -4.19390090e-02
5.55237949e-01 -3.48977864e-01 -4.38253582e-01 -3.86988163e-01
-2.91601062e-01 1.52801082e-01 6.02169633e-01 7.00021446e-01
-4.55676168e-01 1.04126561e+00 7.46935797e+00 1.16359048e-01
-6.92725956e-01 -1.34616438e-02 3.17612827e-01 -2.74599314e-01
3.68079031e-03 2.15773895e-01 -9.11371335e-02 3.26574683e-01
4.11055237e-01 -7.96133935e-01 1.05026555e+00 3.06811154e-01
1.37665182e-01 -7.84112811e-01 -6.32132292e-01 3.13838601e-01
-1.34511665e-01 -8.17556024e-01 -6.52206123e-01 3.75210106e-01
4.38633114e-01 -1.98713496e-01 -3.00681025e-01 -4.88852896e-02
1.15115416e+00 -9.85536098e-01 4.82391357e-01 1.39778823e-01
6.11803569e-02 -7.12135494e-01 5.37638366e-01 8.81623626e-01
-1.00189495e+00 -4.07239616e-01 -6.56146109e-02 -1.19490230e+00
2.82542586e-01 -1.65270329e-01 -5.05325139e-01 3.23155969e-01
7.60246098e-01 7.15988502e-02 -7.87879452e-02 1.02883303e+00
-3.44352454e-01 1.53637052e-01 -6.20809197e-01 -6.51173174e-01
1.52628109e-01 -6.98773682e-01 8.38711321e-01 5.00226542e-02
2.02727810e-01 6.25651300e-01 -1.16062991e-01 8.49303246e-01
-1.01296306e-01 -2.51985162e-01 -7.87466407e-01 -2.59957910e-01
7.47161448e-01 1.08111489e+00 -9.59462881e-01 1.43691123e-01
1.04242796e-02 1.15082502e+00 3.44610691e-01 1.90995097e-01
-5.57448208e-01 -3.76185060e-01 8.27357769e-01 -8.93810168e-02
1.53452829e-01 -5.55940747e-01 4.59760660e-03 -1.09727848e+00
-9.56321135e-02 -5.61941564e-01 4.80510555e-02 -4.91399378e-01
-1.21580505e+00 5.13281643e-01 -1.60477191e-01 -6.29496753e-01
-3.35861415e-01 6.05992526e-02 -7.94589341e-01 4.57487941e-01
-8.77318621e-01 -3.58993471e-01 1.04355142e-01 4.40836132e-01
-9.39163119e-02 -2.76623309e-01 5.47074676e-01 -1.21116370e-01
-4.52336878e-01 2.44844362e-01 1.14745967e-01 -5.76152280e-02
4.05324936e-01 -8.04189980e-01 1.03651933e-01 7.66743660e-01
6.62280247e-02 8.63142371e-01 8.33546758e-01 -8.60101402e-01
-1.22148514e+00 -2.34085381e-01 7.11093128e-01 -2.66141444e-01
8.91294241e-01 -6.84144378e-01 -2.72436321e-01 4.81666714e-01
5.50432861e-01 -3.79555315e-01 6.88449383e-01 -5.76099195e-02
5.13532646e-02 2.48502403e-01 -1.24218273e+00 1.08021522e+00
1.33137918e+00 -1.59921944e-01 -5.42262971e-01 -3.02877836e-02
6.72631860e-01 2.86935180e-01 -1.07091293e-01 -4.96980175e-02
7.50263393e-01 -1.17740273e+00 5.94862700e-01 -5.58414638e-01
-1.09379543e-02 -3.62231061e-02 5.68069853e-02 -1.37980974e+00
-2.37054542e-01 -1.38419998e+00 7.62613297e-01 8.51697206e-01
3.74982715e-01 -1.04885721e+00 7.72623301e-01 4.96122122e-01
3.17048341e-01 -1.63102597e-01 -1.30417335e+00 -8.98736477e-01
2.49294505e-01 5.21002829e-01 3.10907096e-01 9.84604299e-01
7.37253368e-01 1.63134202e-01 -5.94593346e-01 -2.06450582e-01
7.89758682e-01 -1.00601412e-01 6.51570737e-01 -1.35423660e+00
-5.13232708e-01 -5.38458645e-01 -2.50251323e-01 -6.20453775e-01
-1.40962377e-01 -3.71893615e-01 2.20547631e-01 -8.96985888e-01
6.85851555e-03 -4.24242914e-01 -1.31418154e-01 3.64138961e-01
1.35351315e-01 1.09147087e-01 3.34654748e-01 1.71841294e-01
-8.49812567e-01 5.29316843e-01 9.87116873e-01 3.89631540e-01
-6.03041053e-01 -1.59212500e-01 -8.46692801e-01 5.75843394e-01
9.30391014e-01 -7.46525586e-01 -3.19345713e-01 -5.00768004e-03
5.71641266e-01 4.74758923e-01 1.68597236e-01 -8.03904593e-01
4.66437727e-01 -4.96895969e-01 -4.12288725e-01 3.74863535e-01
3.54267836e-01 -9.39861536e-01 4.68268752e-01 9.30512667e-01
8.15660432e-02 1.27061978e-01 -2.09144115e-01 5.56213677e-01
2.25780487e-01 -9.48585421e-02 5.55789351e-01 -3.60052526e-01
-8.29002336e-02 -1.53397322e-01 -1.13187969e+00 -9.42425355e-02
1.46102440e+00 -3.31192285e-01 -5.34777045e-01 -6.35779440e-01
-3.51401895e-01 4.83671367e-01 1.08066630e+00 4.80641611e-03
1.67134762e-01 -7.40250528e-01 -6.92292988e-01 1.72722384e-01
-5.65030277e-01 -4.54609364e-01 3.65793370e-02 7.24811852e-01
-6.32654428e-01 -2.41976753e-01 -8.40637803e-01 1.37180731e-01
-1.10294139e+00 4.70385373e-01 6.10385001e-01 -1.80377051e-01
-2.98091739e-01 8.79053354e-01 7.80657306e-02 -1.72284424e-01
-1.83681287e-02 3.79276574e-01 1.89834446e-01 -1.38123900e-01
4.12418962e-01 2.01200441e-01 -4.94944662e-01 -4.19959456e-01
-6.40280843e-01 1.07255526e-01 2.44753286e-01 -4.53241944e-01
1.30234766e+00 -2.50263274e-01 -4.35459197e-01 9.60258469e-02
1.60794824e-01 2.80677795e-01 -1.13129115e+00 2.40849078e-01
-1.47862406e-02 -5.37225306e-01 -4.51198936e-01 -6.88461900e-01
-6.63123846e-01 1.94743261e-01 -2.23613739e-01 9.49582517e-01
1.06565809e+00 -9.85274613e-02 3.69557559e-01 5.73034286e-01
1.16655493e+00 -9.73018408e-01 2.29501322e-01 5.90957165e-01
4.63767797e-01 -9.04509187e-01 -3.64500254e-01 -2.24942826e-02
-4.30585742e-01 4.85831797e-01 4.67242420e-01 -3.84374708e-01
6.13565683e-01 6.92418635e-01 -1.24709144e-01 -3.88015173e-02
-1.07828701e+00 -3.57023805e-01 -8.23733091e-01 1.12899435e+00
-2.42379513e-02 4.91803028e-02 -8.62688303e-01 7.89334774e-01
-2.93898582e-01 -2.59300292e-01 1.15577030e+00 1.33998764e+00
-7.44902372e-01 -1.45028925e+00 -1.72198519e-01 -8.50356445e-02
-4.40990716e-01 -1.17104046e-01 -1.20064902e+00 9.16557610e-01
1.47450209e-01 1.30495214e+00 1.25719041e-01 -2.80311853e-01
-1.96313381e-01 -1.78413361e-01 2.99663067e-01 -4.01195168e-01
-1.01801324e+00 -8.19722340e-02 5.64635992e-02 -2.25714132e-01
-6.73158228e-01 -6.43262506e-01 -1.04930675e+00 -7.20713675e-01
-4.39685762e-01 7.62874842e-01 1.72440767e-01 7.36138523e-01
2.24651724e-01 -5.08463122e-02 9.61228251e-01 -6.80209696e-01
-2.17708841e-01 -6.23216689e-01 -1.18097794e+00 -6.12396114e-02
2.80790687e-01 -9.02321577e-01 -9.16998923e-01 -4.04719174e-01] | [3.8922555446624756, 2.1788299083709717] |
6c7a0fb6-fb28-4dfa-bc39-3ca470e66613 | from-synthetic-to-real-image-dehazing | 2108.02934 | null | https://arxiv.org/abs/2108.02934v1 | https://arxiv.org/pdf/2108.02934v1.pdf | From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real Data | Single image dehazing is a challenging task, for which the domain shift between synthetic training data and real-world testing images usually leads to degradation of existing methods. To address this issue, we propose a novel image dehazing framework collaborating with unlabeled real data. First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps, i.e. the latent haze-free image, the transmission map, and the global atmospheric light estimate, respecting the physical model of a haze process. Our DID-Net predicts the three component maps by progressively integrating features across scales, and refines each map by passing an independent refinement network. Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing. Specifically, we encourage the coarse predictions and refinements of each disentangled component to be consistent between the student and teacher networks by using a consistency loss on unlabeled real data. We make comparison with 13 state-of-the-art dehazing methods on a new collected dataset (Haze4K) and two widely-used dehazing datasets (i.e., SOTS and HazeRD), as well as on real-world hazy images. Experimental results demonstrate that our method has obvious quantitative and qualitative improvements over the existing methods. | ['Wei Feng', 'Liang Wan', 'Qing Zhang', 'Jing Qin', 'Huazhu Fu', 'Shunda Pei', 'Lei Zhu', 'Ye Liu'] | 2021-08-06 | null | null | null | null | ['image-dehazing'] | ['computer-vision'] | [ 3.17004770e-01 1.57739922e-01 2.61647463e-01 -3.78001451e-01
-6.39202237e-01 -2.32077822e-01 7.93956101e-01 -4.49366897e-01
-1.17438756e-01 7.49029517e-01 -1.45883977e-01 -7.84777701e-02
-1.05074920e-01 -8.77933025e-01 -9.12093878e-01 -1.38551617e+00
2.27073461e-01 3.30467880e-01 4.93406236e-01 -3.10875803e-01
-1.98391601e-01 -3.33973691e-02 -1.73427761e+00 1.09250717e-01
1.35539448e+00 8.26382399e-01 4.29208353e-02 6.26437724e-01
2.63236821e-01 1.04834235e+00 -7.16126025e-01 -3.75061125e-01
3.15371126e-01 -4.80878055e-01 -3.98383617e-01 2.94719785e-01
1.02131414e+00 -5.77441096e-01 -5.26426256e-01 1.33488357e+00
2.37541541e-01 1.81428954e-01 6.42190993e-01 -1.60032260e+00
-1.35605681e+00 2.04650119e-01 -9.00007427e-01 5.43485098e-02
-4.92319614e-01 2.58945525e-01 5.58603704e-01 -1.01607847e+00
2.29787737e-01 1.19965136e+00 3.84958327e-01 6.29353642e-01
-1.35370803e+00 -1.35427797e+00 2.93677598e-01 2.72391826e-01
-1.40007722e+00 -2.97768116e-01 9.48117197e-01 -5.80044448e-01
2.68639803e-01 1.14347376e-01 6.15087211e-01 9.66838658e-01
2.84542501e-01 7.23413467e-01 1.52106380e+00 -3.04412216e-01
1.06558479e-01 4.31077838e-01 4.33688797e-02 6.84232533e-01
4.48595673e-01 2.70429313e-01 -6.97737753e-01 1.78833842e-01
6.59197569e-01 -2.09795218e-02 -4.99206126e-01 -4.33812141e-01
-1.23787844e+00 7.54286647e-01 5.58914363e-01 -2.24903330e-01
-2.40154207e-01 -8.22574198e-02 -4.09140229e-01 4.78110880e-01
1.15902257e+00 1.83145404e-01 -1.40232801e-01 7.29915917e-01
-1.05358350e+00 2.95547575e-01 3.82304907e-01 8.79124224e-01
1.29293525e+00 2.36492559e-01 1.04341477e-01 6.49659812e-01
5.48739433e-01 8.94383430e-01 1.20215364e-01 -7.82741249e-01
3.05213332e-01 3.61183316e-01 1.75618067e-01 -6.97038054e-01
2.99126029e-01 -3.55794638e-01 -1.18628287e+00 7.88942575e-01
2.47706890e-01 -9.83938575e-03 -1.34235883e+00 1.65431547e+00
6.73136592e-01 8.42129230e-01 1.96256742e-01 1.12443054e+00
9.00017977e-01 9.88868535e-01 -2.21935228e-01 1.29190400e-01
1.21190739e+00 -1.51907158e+00 -7.97082007e-01 -3.51120383e-01
-7.94860721e-02 -6.91975296e-01 7.48052120e-01 7.61101723e-01
-1.04093301e+00 -6.04454100e-01 -1.53269589e+00 -1.37153268e-01
-4.26305801e-01 -3.03074151e-01 1.62685588e-01 5.18590629e-01
-1.13095891e+00 2.13227376e-01 -7.59235740e-01 2.14707270e-01
3.64014566e-01 9.06201154e-02 -3.42115074e-01 -4.65671659e-01
-1.46876907e+00 8.71596098e-01 2.70276397e-01 2.39528105e-01
-1.42497075e+00 -1.14283252e+00 -8.31986547e-01 -1.63371995e-01
2.30444133e-01 -8.90720069e-01 1.05256343e+00 -1.03913474e+00
-1.48099720e+00 7.90782571e-01 2.48195007e-01 -1.81649506e-01
3.91746610e-01 -3.13050389e-01 -6.73959792e-01 2.78525054e-01
-5.36526293e-02 8.58922541e-01 1.64370203e+00 -1.81487846e+00
-5.80685318e-01 -3.45678896e-01 -2.24897619e-02 4.13675636e-01
-2.09398031e-01 -4.23701644e-01 -1.48382306e-01 -7.74773419e-01
7.23643824e-02 -9.11114395e-01 1.90945622e-02 3.09609324e-01
-3.40829283e-01 1.30799785e-01 1.05876160e+00 -7.64035702e-01
8.24603558e-01 -2.29449344e+00 3.30532730e-01 -9.16886330e-02
9.56310809e-01 2.07697555e-01 -2.64665663e-01 -4.21657041e-03
-3.05353612e-01 -1.58642575e-01 -2.75601655e-01 -5.61859608e-01
-1.97224259e-01 4.18248504e-01 -4.87261146e-01 8.06031227e-01
5.02903700e-01 5.95228612e-01 -1.05631804e+00 -4.84609425e-01
3.37027639e-01 7.93947518e-01 -3.26057047e-01 6.13301396e-01
-3.31742167e-01 7.84393489e-01 -1.19262047e-01 2.49274567e-01
1.20983827e+00 -3.15975398e-01 -3.01597506e-01 -1.19378105e-01
-1.66446865e-01 1.48610130e-01 -8.55929077e-01 1.45313227e+00
-4.07243580e-01 6.76168621e-01 2.23561257e-01 -7.67223895e-01
8.32998931e-01 3.50722194e-01 1.85625717e-01 -7.29770243e-01
-2.06250206e-01 -8.28088745e-02 -1.85018897e-01 -4.41685408e-01
2.95100272e-01 -3.75583500e-01 5.10771155e-01 4.94638741e-01
3.85408670e-01 -7.44220793e-01 -3.43913257e-01 3.58157009e-01
5.46409369e-01 1.33260516e-02 -1.02568291e-01 -5.31637013e-01
4.16052103e-01 -5.72560914e-02 4.52593982e-01 6.79151237e-01
-2.75755227e-01 9.03824329e-01 5.44355698e-02 -5.23280084e-01
-1.01080120e+00 -1.49103498e+00 -1.00866131e-01 8.53998482e-01
5.73947430e-01 3.74975093e-02 -8.59160542e-01 -5.91195226e-01
-1.96415991e-01 7.68697441e-01 -9.46080506e-01 -3.32255483e-01
-3.08955163e-01 -8.38803768e-01 2.59786934e-01 -1.40763283e-01
9.93517041e-01 -5.01914978e-01 -8.80146101e-02 -2.15947807e-01
-2.28972942e-01 -1.00914490e+00 -5.14541566e-01 7.88401216e-02
-4.33487415e-01 -9.60853100e-01 -6.73389673e-01 -7.53222883e-01
6.25220120e-01 9.93755817e-01 1.28568828e+00 1.38700470e-01
7.65218437e-02 9.71557945e-02 -1.89092115e-01 -6.42384589e-01
-5.18988788e-01 -2.16204837e-01 -4.83935811e-02 3.13203961e-01
2.19976425e-01 -8.37358892e-01 -9.83759880e-01 4.79058772e-01
-1.39252496e+00 6.37051225e-01 4.83845234e-01 9.03689444e-01
5.11885226e-01 3.41133922e-01 2.14564368e-01 -8.65166306e-01
6.33296371e-02 -7.41656244e-01 -7.38699496e-01 4.25323397e-01
-1.03322303e+00 1.57862693e-01 3.28549355e-01 -6.53191030e-01
-1.46856236e+00 -3.43662471e-01 2.42761225e-01 -8.32727671e-01
-1.90911591e-01 1.43599138e-01 -2.13679835e-01 -3.12469691e-01
7.82634616e-01 3.70151669e-01 4.80452254e-02 -1.65134579e-01
6.11140490e-01 5.15249610e-01 8.10692549e-01 -6.26928568e-01
1.69382346e+00 7.05019653e-01 -3.38850886e-01 -7.93306649e-01
-1.29158533e+00 -4.12769586e-01 -5.00315428e-01 -3.05833101e-01
1.12149298e+00 -1.50143826e+00 -2.26611167e-01 9.37948883e-01
-1.10875404e+00 -4.20250088e-01 -2.42792830e-01 5.21934569e-01
-1.53305009e-01 1.26197681e-01 -5.83312869e-01 -6.07895970e-01
-1.70789137e-01 -1.17943120e+00 1.20795810e+00 3.16686213e-01
6.04872942e-01 -1.00938106e+00 3.30441475e-01 7.12532222e-01
3.78407121e-01 2.34769061e-01 9.70108211e-01 -1.52689040e-01
-9.93164897e-01 3.70534748e-01 -4.27113533e-01 7.56588995e-01
2.26888314e-01 7.05615133e-02 -1.33300579e+00 -2.62895942e-01
3.17397326e-01 -5.24792373e-01 1.15832996e+00 1.30205169e-01
9.12797928e-01 -3.31187576e-01 1.29025534e-01 9.06524837e-01
1.13929081e+00 -9.82679352e-02 7.08502591e-01 3.29248101e-01
9.32006001e-01 8.14790308e-01 3.82296354e-01 -4.82459441e-02
5.65761387e-01 3.12384039e-01 8.31005454e-01 -4.66315627e-01
-4.24999177e-01 -2.74897546e-01 3.58363003e-01 1.23648369e+00
7.26631358e-02 -4.43536937e-01 -6.54540718e-01 4.19899821e-01
-1.72247446e+00 -6.18865967e-01 -1.79131702e-01 1.94838202e+00
8.34535360e-01 -8.38820636e-02 -3.54764163e-01 -1.11574307e-01
6.36970818e-01 6.41317308e-01 -6.76332176e-01 1.40125230e-01
-1.74975425e-01 2.38758251e-01 3.77946228e-01 6.63130820e-01
-1.15157294e+00 7.88560808e-01 5.75061417e+00 7.25400329e-01
-1.03088880e+00 4.10828769e-01 5.62112808e-01 -9.97663513e-02
-6.10347569e-01 -1.51675448e-01 -4.33165431e-01 4.41536397e-01
7.80689001e-01 -9.13574845e-02 6.12495840e-01 5.63021898e-01
7.64880516e-03 -3.29753431e-03 -9.33271170e-01 7.76031494e-01
2.45606273e-01 -1.27387786e+00 2.24790573e-01 -1.75619107e-02
1.23865950e+00 1.81415156e-01 6.16087317e-01 2.06255883e-01
8.17541182e-01 -1.03639078e+00 9.63627100e-01 2.89482296e-01
7.53275394e-01 -3.68389726e-01 4.88719404e-01 4.55850154e-01
-9.34533060e-01 5.18023193e-01 -1.62521511e-01 1.79051280e-01
-3.82222533e-01 7.62152791e-01 -5.33648670e-01 7.33615637e-01
9.44855273e-01 7.94041812e-01 -5.69773853e-01 5.29067695e-01
-5.73389649e-01 9.14733469e-01 -4.04435508e-02 5.34642220e-01
2.47467458e-01 -6.05150759e-01 3.05492848e-01 7.01438069e-01
9.07656103e-02 2.22789645e-01 -2.48333924e-02 1.13179755e+00
1.85726458e-04 -6.09835744e-01 -4.16099280e-01 3.44461292e-01
2.37079993e-01 1.17802882e+00 -3.47043812e-01 -4.36109751e-01
-6.20259523e-01 1.03523207e+00 2.78994054e-01 8.16636622e-01
-1.05229962e+00 -1.02286689e-01 9.67202425e-01 -1.29880697e-01
1.17177010e-01 -1.70076802e-01 1.30157053e-01 -1.56863284e+00
-2.39411175e-01 -8.78518105e-01 1.32096052e-01 -1.25214362e+00
-1.70465028e+00 6.39967322e-01 3.05165023e-01 -1.27319860e+00
1.61068007e-01 -4.70902890e-01 -7.27693319e-01 1.16801143e+00
-2.15724397e+00 -1.38236952e+00 -8.74716640e-01 7.68113315e-01
5.21857440e-01 2.12731317e-01 4.33689028e-01 2.58603126e-01
-6.84262276e-01 3.21527034e-01 3.08378369e-01 -7.48976246e-02
9.90841329e-01 -1.35815787e+00 4.12906647e-01 1.02993417e+00
2.41953865e-01 3.63354743e-01 8.68039906e-01 -3.89560878e-01
-1.02954078e+00 -1.39297044e+00 2.33025864e-01 -5.91275156e-01
8.24150085e-01 -6.75266683e-01 -1.36119401e+00 7.75303364e-01
6.35304093e-01 4.41336840e-01 5.48024774e-01 -3.66083741e-01
-8.59415114e-01 -2.32068047e-01 -9.93161380e-01 5.28382361e-01
7.47762024e-01 -5.59309185e-01 -6.56472266e-01 3.37253571e-01
1.30710387e+00 -4.72765714e-01 -6.95294082e-01 3.00678134e-01
4.93826747e-01 -1.22109473e+00 1.03126132e+00 -3.60963196e-01
6.36012733e-01 -5.05178690e-01 2.43892591e-03 -1.78145003e+00
-3.79621923e-01 -6.01192951e-01 -1.82104200e-01 1.01252913e+00
1.90013453e-01 -7.39846289e-01 8.12584639e-01 3.08500975e-01
-2.24917963e-01 -4.74688619e-01 -7.50426412e-01 -5.75753033e-01
3.51350993e-01 -2.08198875e-01 9.16681111e-01 1.34723961e+00
-7.84900963e-01 3.08845431e-01 -7.40034342e-01 9.65333700e-01
1.24951732e+00 1.09357826e-01 6.96042538e-01 -1.17585242e+00
-2.36921877e-01 7.96651840e-02 -2.13529497e-01 -1.00202525e+00
2.58149981e-01 -5.34467280e-01 3.80712748e-01 -1.15856671e+00
1.85606837e-01 -3.44183803e-01 -4.44680542e-01 2.75283962e-01
-4.90302145e-01 4.13091928e-01 -6.21201731e-02 3.20165485e-01
-3.97976905e-01 1.09119463e+00 1.74610722e+00 -6.64733291e-01
2.00324491e-01 -2.04412431e-01 -5.29506624e-01 5.81268311e-01
6.76759660e-01 -8.44205081e-01 -8.28706563e-01 -7.20400631e-01
5.95743544e-02 -9.63865668e-02 6.73187852e-01 -8.44850898e-01
3.37979078e-01 -4.35750574e-01 3.34337354e-01 -4.24981594e-01
3.85860056e-01 -7.77308941e-01 2.35209763e-01 2.04433784e-01
-1.27109751e-01 -2.63484269e-01 -1.19853780e-01 7.24814773e-01
-4.43488061e-01 1.08449228e-01 9.44504380e-01 6.69708923e-02
-5.35081685e-01 5.88524222e-01 -1.34487838e-01 3.18327323e-02
8.96970987e-01 -1.28537729e-01 -9.90885913e-01 -3.63425404e-01
-4.36689019e-01 4.16602612e-01 3.78587127e-01 4.95987922e-01
8.40651155e-01 -1.18088627e+00 -9.00023699e-01 5.52767456e-01
3.68381202e-01 7.16138899e-01 4.63965893e-01 5.98467290e-01
-5.69088161e-01 -1.98151678e-01 -1.08185992e-01 -6.65933192e-01
-1.13767421e+00 5.43174922e-01 5.22823453e-01 -3.09680980e-02
-6.48392320e-01 9.52562451e-01 1.02159262e+00 -5.65347552e-01
-2.72257496e-02 -2.52384037e-01 6.27776682e-02 -3.24406624e-01
6.81856096e-01 1.13090977e-01 1.10426163e-02 -5.35430908e-01
-5.42082824e-04 4.29992378e-01 -9.58958417e-02 -8.67971107e-02
1.31210113e+00 -3.55523825e-01 -3.76845330e-01 4.23406899e-01
1.00792861e+00 -1.25207156e-01 -1.89883351e+00 -5.03742635e-01
-5.61287940e-01 -6.00885332e-01 4.06280339e-01 -5.98842740e-01
-1.33947778e+00 1.05406034e+00 7.69776106e-01 2.16341808e-01
1.18432724e+00 2.68836934e-02 6.70912743e-01 1.61215186e-01
1.94476262e-01 -3.53545934e-01 4.80904430e-01 1.11568674e-01
6.63185179e-01 -1.47530782e+00 1.05621561e-01 -5.34914494e-01
-5.07273614e-01 6.69751167e-01 1.11555719e+00 -1.57953426e-01
9.41769361e-01 1.04672059e-01 3.62216949e-01 -4.39847261e-01
-9.43889022e-01 5.12394160e-02 5.65288603e-01 6.70692027e-01
-1.23001821e-01 3.42800319e-02 6.94024324e-01 2.44389474e-01
-7.70915896e-02 -3.46886009e-01 5.07240951e-01 5.33554256e-01
-4.45594400e-01 -5.81570923e-01 -5.38977265e-01 4.87909280e-02
2.42598169e-02 -1.15577050e-01 -2.81852245e-01 9.72623467e-01
5.20927012e-01 1.08151126e+00 1.07115343e-01 -5.04634082e-01
5.67612201e-02 -2.05801621e-01 6.22089267e-01 -6.10355258e-01
-3.74823302e-01 -1.30976588e-01 -4.79529023e-01 -2.72827238e-01
-6.61254704e-01 -1.18710756e-01 -7.25518584e-01 -4.48953658e-01
-5.93173385e-01 3.69913399e-01 4.81449455e-01 9.15113986e-01
7.88735077e-02 7.19831169e-01 8.46738756e-01 -1.02560878e+00
-4.35510576e-01 -8.89026999e-01 -7.86283314e-01 3.83338422e-01
9.80090320e-01 -7.65320122e-01 -7.91788936e-01 2.92988986e-01] | [10.943320274353027, -3.142702341079712] |
9e712718-6155-4925-8252-5a3579d54ee2 | roam-random-layer-mixup-for-semi-supervised | 2003.09439 | null | https://arxiv.org/abs/2003.09439v4 | https://arxiv.org/pdf/2003.09439v4.pdf | ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Imaging | Medical image segmentation is one of the major challenges addressed by machine learning methods. Yet, deep learning methods profoundly depend on a large amount of annotated data, which is time-consuming and costly. Though, semi-supervised learning methods approach this problem by leveraging an abundant amount of unlabeled data along with a small amount of labeled data in the training process. Recently, MixUp regularizer has been successfully introduced to semi-supervised learning methods showing superior performance. MixUp augments the model with new data points through linear interpolation of the data at the input space. We argue that this option is limited. Instead, we propose ROAM, a RandOm lAyer Mixup, which encourages the network to be less confident for interpolated data points at randomly selected space. ROAM generates more data points that have never seen before, and hence it avoids over-fitting and enhances the generalization ability. We conduct extensive experiments to validate our method on three publicly available datasets on whole-brain image segmentation. ROAM achieves state-of-the-art (SOTA) results in fully supervised (89.5%) and semi-supervised (87.0%) settings with a relative improvement of up to 2.40% and 16.50%, respectively for the whole-brain segmentation. | ['Shadi Albarqouni', 'Benedikt Wiestler', 'Tariq Bdair', 'Nassir Navab'] | 2020-03-20 | null | null | null | null | ['brain-image-segmentation'] | ['medical'] | [ 2.31434152e-01 3.64757210e-01 -4.04671103e-01 -7.07048118e-01
-9.31963086e-01 -2.42056012e-01 2.10868120e-01 4.68841977e-02
-9.72586811e-01 7.43031561e-01 -1.75370425e-01 -1.24281771e-01
2.68267214e-01 -6.13989770e-01 -7.71287501e-01 -9.27152395e-01
1.21952057e-01 6.33750916e-01 1.77124947e-01 1.24946877e-01
-1.67446151e-01 1.55309513e-01 -1.01288676e+00 1.23894125e-01
1.37619436e+00 9.49740946e-01 3.44678760e-01 9.96705443e-02
-1.61974758e-01 4.64033216e-01 -3.15862834e-01 -1.37748331e-01
3.15527081e-01 -2.30598733e-01 -9.13355947e-01 2.45232537e-01
2.82793492e-01 -1.90569222e-01 -1.86335057e-01 1.15690088e+00
4.31812763e-01 -4.92792763e-03 6.44436300e-01 -1.06217694e+00
-5.99243402e-01 8.32838595e-01 -8.82601023e-01 1.10923097e-01
-3.53525251e-01 1.19145542e-01 6.85832322e-01 -9.11076903e-01
5.79982460e-01 6.81221426e-01 6.54983580e-01 7.97302961e-01
-1.39178300e+00 -8.14222991e-01 1.05864458e-01 -1.30969211e-01
-1.32550406e+00 -2.11347863e-01 8.61058295e-01 -4.65211451e-01
4.32062894e-01 1.80549379e-02 6.15095437e-01 8.72099042e-01
-1.36513010e-01 1.23189592e+00 1.39377475e+00 -2.38354251e-01
3.31759542e-01 2.13498875e-01 3.78846467e-01 7.12783635e-01
3.99719551e-02 -7.56171718e-02 -1.69793040e-01 6.65866658e-02
9.19456065e-01 1.57344386e-01 -2.34198153e-01 -3.93465042e-01
-1.17778873e+00 8.84506047e-01 8.07191133e-01 2.60712236e-01
-4.12146688e-01 -3.22708488e-01 3.00099045e-01 -1.34235783e-03
6.04113162e-01 4.44529474e-01 -5.93744040e-01 7.97219500e-02
-1.21962714e+00 -1.69889927e-01 3.22047800e-01 8.41006398e-01
7.53436804e-01 -8.95316005e-02 -5.84671535e-02 1.17758548e+00
2.45367765e-01 2.92444944e-01 8.29783618e-01 -5.62182248e-01
5.31481445e-01 7.84707904e-01 -1.94819197e-01 -5.02173781e-01
-5.77863634e-01 -8.03495169e-01 -1.12913191e+00 9.85103548e-02
6.57498956e-01 -4.23234344e-01 -1.41547883e+00 1.70775485e+00
2.91182905e-01 2.37486541e-01 -5.65467961e-02 9.43829417e-01
8.91851604e-01 5.42542219e-01 4.75798883e-02 -2.77983457e-01
9.67773676e-01 -1.41598046e+00 -5.77977777e-01 -4.93325770e-01
7.43734419e-01 -4.56149638e-01 1.29121721e+00 4.69292223e-01
-9.39578176e-01 -5.29195011e-01 -8.71246636e-01 8.51959176e-03
-1.06371589e-01 3.14870209e-01 7.82949746e-01 5.09423792e-01
-8.51702273e-01 5.50271690e-01 -1.15252113e+00 1.78859785e-01
1.11470568e+00 4.63049442e-01 -4.20171589e-01 -1.91601604e-01
-8.91903400e-01 4.77271050e-01 4.29733038e-01 2.38571003e-01
-6.54040635e-01 -7.81545103e-01 -8.49615216e-01 -3.12690228e-01
4.93109703e-01 -2.70635009e-01 1.03217506e+00 -1.03938067e+00
-1.20843184e+00 1.00487244e+00 -1.04576312e-01 -6.63035572e-01
9.25471425e-01 -3.04692715e-01 -2.42662117e-01 2.41369739e-01
1.92773372e-01 1.20541096e+00 7.18232930e-01 -1.22103775e+00
-4.43088740e-01 -4.79932129e-01 -3.52493018e-01 2.93689761e-02
-2.72481769e-01 -3.52497250e-01 -4.89926130e-01 -8.21565807e-01
4.15501177e-01 -1.03899288e+00 -5.77038050e-01 2.43246425e-02
-5.56874871e-01 -1.96806818e-01 6.52017891e-01 -4.85332847e-01
9.33506370e-01 -2.04629135e+00 -3.90105583e-02 1.02260798e-01
3.59379947e-01 5.72885096e-01 -4.55782041e-02 -2.82958984e-01
-9.04691517e-02 1.54434681e-01 -7.65026629e-01 -5.56954145e-01
-3.14250916e-01 1.84205443e-01 -1.57457665e-01 4.03116077e-01
1.28369316e-01 1.01674831e+00 -9.72501278e-01 -6.84719086e-01
1.80884868e-01 3.72466624e-01 -5.27464926e-01 3.59184332e-02
-9.87225845e-02 8.21260691e-01 -3.97439152e-01 5.55074751e-01
8.25555086e-01 -5.68931162e-01 -1.85237780e-01 -1.61806848e-02
1.80392563e-01 -4.52606045e-02 -9.78126824e-01 1.90183842e+00
-3.49981636e-01 5.19084036e-01 -3.93775970e-01 -1.14392757e+00
9.66257393e-01 1.56917617e-01 6.07268870e-01 -5.68768561e-01
1.97086781e-01 3.11408728e-01 2.90482845e-02 -4.99811798e-01
7.35861734e-02 -4.92101870e-02 1.94008887e-01 4.11746144e-01
1.64321512e-01 5.17238863e-02 1.07740544e-01 1.38681337e-01
7.60170043e-01 1.28629252e-01 8.74655843e-02 -2.42570788e-01
3.61945033e-01 9.63430181e-02 9.03892457e-01 7.24731684e-01
-3.99441659e-01 8.37151647e-01 4.09270316e-01 -4.08764720e-01
-8.82954359e-01 -8.56020331e-01 -5.44516027e-01 8.17295432e-01
1.58314005e-01 -5.26891463e-02 -1.12812674e+00 -1.07769704e+00
-2.05038667e-01 5.27481139e-01 -8.01683843e-01 -7.05380961e-02
-5.89658678e-01 -1.12877297e+00 3.75119686e-01 8.28838050e-01
8.82465780e-01 -1.13580906e+00 -4.91707116e-01 2.15785488e-01
-1.61667734e-01 -1.25481081e+00 -5.08421957e-01 3.25797290e-01
-1.18803370e+00 -9.04416263e-01 -1.08325922e+00 -9.65915203e-01
1.29307246e+00 8.48542377e-02 8.70260537e-01 1.38916343e-01
-2.22083509e-01 -3.48040462e-01 -2.76917547e-01 -1.64097890e-01
-2.47424856e-01 2.10222244e-01 -1.05237469e-01 4.71521877e-02
3.89567494e-01 -2.72797823e-01 -6.53432429e-01 5.47583997e-01
-7.91073263e-01 4.70811546e-01 6.51344180e-01 1.24611902e+00
1.00529647e+00 -1.07076295e-01 8.64327610e-01 -1.32668161e+00
1.03699833e-01 -3.71589452e-01 -5.24586558e-01 6.07810430e-02
-6.41765893e-01 2.11753324e-02 7.19383061e-01 -7.24976778e-01
-9.00776505e-01 4.33001876e-01 -3.46511185e-01 -3.28923851e-01
-3.33137482e-01 5.18205464e-01 -6.11974336e-02 -1.04165472e-01
6.46979928e-01 1.70342147e-01 8.47645327e-02 -5.14776409e-01
2.86155015e-01 7.61378169e-01 5.66782176e-01 -3.49820763e-01
5.56154251e-01 6.16568565e-01 -2.63493657e-01 -6.13362372e-01
-1.12574828e+00 -5.18599331e-01 -8.77892017e-01 -7.24848360e-02
8.61389279e-01 -8.49544883e-01 -1.16770916e-01 7.09061921e-01
-5.97939909e-01 -8.07077587e-01 -3.46675545e-01 6.32890224e-01
-3.49100143e-01 3.54344159e-01 -6.27098083e-01 -4.08053905e-01
-3.78265738e-01 -1.54847360e+00 8.29964221e-01 3.94957542e-01
-3.36216204e-03 -9.84260678e-01 -3.39113474e-01 6.18148625e-01
1.29790634e-01 3.06763887e-01 6.11617386e-01 -9.05992568e-01
-2.68614680e-01 -2.50896156e-01 -3.16492945e-01 5.46690345e-01
2.69453794e-01 -2.88281828e-01 -1.04774547e+00 -3.28448355e-01
-8.95301849e-02 -6.09372973e-01 1.09594774e+00 6.12998307e-01
1.54191732e+00 3.68513800e-02 -3.91987562e-01 7.55341351e-01
1.16748333e+00 2.57017650e-02 4.42809165e-01 1.96454391e-01
8.17534149e-01 4.82501775e-01 6.57066643e-01 1.63146257e-01
3.38374525e-01 4.13990170e-01 3.10835719e-01 -5.62827945e-01
-4.26967330e-02 -2.35275492e-01 -1.84378743e-01 6.90305948e-01
1.57332987e-01 1.11642726e-01 -1.11526048e+00 5.38345814e-01
-1.89091289e+00 -4.63137090e-01 -1.38287395e-01 2.16588640e+00
1.30085742e+00 4.27780241e-01 2.28369385e-01 2.09599689e-01
7.55864203e-01 -6.84851035e-02 -9.65462029e-01 3.28614175e-01
-1.99483167e-02 2.31675893e-01 6.03928506e-01 3.50297570e-01
-1.42811859e+00 1.06394660e+00 6.14109802e+00 9.34494615e-01
-1.33956826e+00 1.20593823e-01 1.17011893e+00 3.57248634e-02
1.04242541e-01 -4.11041945e-01 -7.14159667e-01 7.60838985e-01
5.44317126e-01 2.70578593e-01 2.57754624e-01 9.47362900e-01
9.37037468e-02 -1.42727539e-01 -1.01993763e+00 1.02470839e+00
-5.34004197e-02 -1.41088295e+00 -1.38936982e-01 -5.42375520e-02
1.05382228e+00 2.55991071e-01 1.14656329e-01 2.90573120e-01
1.55914426e-01 -1.04221308e+00 5.29414058e-01 1.19494587e-01
7.93055296e-01 -6.54317260e-01 9.39857304e-01 6.89488709e-01
-7.61065185e-01 2.66245920e-02 -3.57835114e-01 2.27401733e-01
1.43194884e-01 8.32574010e-01 -7.63050735e-01 1.64767876e-01
6.58794343e-01 7.28692830e-01 -6.28892362e-01 1.24085534e+00
-5.08008122e-01 9.73135233e-01 -4.46428150e-01 2.96177477e-01
4.77481484e-01 -2.44717136e-01 1.29193008e-01 9.99924362e-01
-1.93492338e-01 4.33053300e-02 3.86016726e-01 8.64103496e-01
-2.44643316e-01 1.14530213e-01 -1.21196523e-01 1.69828668e-01
3.29268277e-01 1.29930520e+00 -1.13111019e+00 -3.82619768e-01
-3.30025315e-01 7.33111441e-01 4.34388250e-01 3.92742723e-01
-7.79889286e-01 -2.08170384e-01 2.69119199e-02 -7.80827329e-02
7.39765838e-02 -1.18308768e-01 -7.06951559e-01 -1.09302330e+00
-5.27081592e-03 -5.83357811e-01 4.51932371e-01 -5.12853861e-01
-1.26846564e+00 8.11768055e-01 -1.20895788e-01 -1.20464361e+00
-1.09661609e-01 -4.97602940e-01 -4.35459346e-01 7.32423604e-01
-1.63850653e+00 -1.06670368e+00 -4.08528179e-01 4.16986197e-01
6.21868074e-01 -1.87344745e-01 5.45573354e-01 3.82435113e-01
-7.75660992e-01 7.35544205e-01 3.39917913e-02 5.14186323e-01
7.14558005e-01 -1.42195594e+00 3.72742474e-01 7.48998821e-01
2.31484219e-01 5.64570844e-01 3.50048423e-01 -5.42040288e-01
-8.23135018e-01 -1.18191540e+00 5.03539681e-01 -9.07119140e-02
5.65108895e-01 -3.25626642e-01 -1.28079784e+00 6.36290073e-01
-1.60106614e-01 6.38812840e-01 7.90761590e-01 -5.35051674e-02
-1.11091435e-01 -9.26016923e-03 -1.45870435e+00 5.15267372e-01
8.38366807e-01 -2.60853529e-01 -6.36201143e-01 4.56214756e-01
6.53352737e-01 -6.39932156e-01 -8.09805274e-01 4.91117597e-01
2.12894067e-01 -6.76823735e-01 8.06405246e-01 -5.00728369e-01
4.41527545e-01 -2.59223521e-01 2.73881972e-01 -1.38829923e+00
3.85329011e-03 -5.43597639e-01 5.57838678e-02 1.00252008e+00
6.34138465e-01 -7.67971992e-01 1.14450610e+00 7.67027378e-01
-2.28263050e-01 -1.31454647e+00 -7.01309860e-01 -7.60440588e-01
4.27322686e-01 -4.19222146e-01 5.22624254e-01 1.10247397e+00
-8.13080892e-02 7.95358494e-02 -1.62571192e-01 3.77371199e-02
8.21506500e-01 9.70521644e-02 5.52394509e-01 -1.15288424e+00
-8.87263864e-02 -3.22295606e-01 -1.72038540e-01 -1.28603160e+00
1.56240001e-01 -1.05358601e+00 1.35796130e-01 -1.51406455e+00
2.59702533e-01 -8.73639405e-01 -3.64124626e-01 8.20727766e-01
-4.68231022e-01 5.23477495e-01 -8.81071836e-02 4.14281160e-01
-4.29743081e-01 4.44087654e-01 1.56868851e+00 -1.37720153e-01
-5.05223155e-01 1.45976290e-01 -6.14004791e-01 1.03054738e+00
1.05903590e+00 -4.38321590e-01 -4.47968125e-01 -5.97679079e-01
-3.00767809e-01 -9.70320031e-02 3.05600405e-01 -8.70964825e-01
2.25182861e-01 -3.68491150e-02 5.13068318e-01 -6.37067676e-01
1.05201498e-01 -7.11358786e-01 -2.83027381e-01 3.59273672e-01
-6.06232822e-01 -3.78751695e-01 2.75937039e-02 4.57596481e-01
-2.06068873e-01 -3.74631256e-01 1.13590157e+00 4.83329175e-03
-6.80238128e-01 6.73947573e-01 7.04132542e-02 2.86014378e-01
1.00993931e+00 -1.75721407e-01 -1.23094298e-01 5.13641462e-02
-1.08816612e+00 4.96398717e-01 2.87040442e-01 1.97176948e-01
4.89367306e-01 -1.07462442e+00 -4.89565909e-01 3.03622484e-01
2.31752284e-02 6.09117985e-01 2.32330710e-01 9.16372418e-01
-3.29714715e-01 1.42119512e-01 -1.24555953e-01 -8.99765968e-01
-9.38338101e-01 3.94777566e-01 2.61911124e-01 -1.75614536e-01
-9.76717234e-01 9.74462569e-01 7.66136050e-02 -4.86686379e-01
3.69842172e-01 -5.86265087e-01 -2.36719266e-01 -5.90266809e-02
5.07907152e-01 1.13468170e-01 -4.24795374e-02 -5.42243123e-01
-2.74086982e-01 4.79330510e-01 -4.45184797e-01 1.32115737e-01
1.36120975e+00 1.37126982e-01 1.65606782e-01 3.40717196e-01
1.17874229e+00 -2.26582617e-01 -1.68040895e+00 -6.00545108e-01
-1.76322572e-02 -3.35812956e-01 3.36021870e-01 -9.87932622e-01
-1.50908005e+00 9.91290867e-01 5.78323781e-01 -9.32043940e-02
1.03198457e+00 -2.50550807e-02 1.03460586e+00 3.13711911e-01
4.98162895e-01 -1.14249897e+00 1.77934952e-02 1.51622549e-01
5.60705006e-01 -1.76832414e+00 -3.91580611e-02 -5.53013384e-01
-9.56131995e-01 8.75763118e-01 6.74440145e-01 -1.95603609e-01
7.54095554e-01 3.17744970e-01 2.35092103e-01 6.84023052e-02
-2.82378018e-01 -6.69298545e-02 1.93265021e-01 4.93684173e-01
3.10287774e-01 1.79161370e-01 -1.86916232e-01 8.37519407e-01
-1.06166929e-01 1.82946622e-01 3.01491052e-01 8.86246383e-01
-3.05664361e-01 -9.86803055e-01 -8.63008797e-02 6.97457194e-01
-4.24428165e-01 -7.19698519e-02 3.44923064e-02 7.41683304e-01
1.79634213e-01 7.97837436e-01 3.78189385e-02 -8.15823004e-02
-4.74621914e-03 -7.42061213e-02 2.61464208e-01 -6.21001601e-01
-3.27378839e-01 2.49554619e-01 -3.48481297e-01 -3.29352349e-01
-4.16362613e-01 -6.57952309e-01 -1.82381785e+00 2.45993435e-01
-3.85688454e-01 1.58629149e-01 5.33679903e-01 1.08001971e+00
2.13675141e-01 5.26068568e-01 6.38017952e-01 -6.05778933e-01
-5.31461358e-01 -8.87420833e-01 -4.92204964e-01 4.86941844e-01
2.97221929e-01 -7.14423060e-01 -1.93913862e-01 1.67645827e-01] | [14.621512413024902, -2.1378211975097656] |
6bb01454-2d03-4731-8a45-a3b61dad94d1 | tcgm-an-information-theoretic-framework-for | 2007.06793 | null | https://arxiv.org/abs/2007.06793v1 | https://arxiv.org/pdf/2007.06793v1.pdf | TCGM: An Information-Theoretic Framework for Semi-Supervised Multi-Modality Learning | Fusing data from multiple modalities provides more information to train machine learning systems. However, it is prohibitively expensive and time-consuming to label each modality with a large amount of data, which leads to a crucial problem of semi-supervised multi-modal learning. Existing methods suffer from either ineffective fusion across modalities or lack of theoretical guarantees under proper assumptions. In this paper, we propose a novel information-theoretic approach, namely \textbf{T}otal \textbf{C}orrelation \textbf{G}ain \textbf{M}aximization (TCGM), for semi-supervised multi-modal learning, which is endowed with promising properties: (i) it can utilize effectively the information across different modalities of unlabeled data points to facilitate training classifiers of each modality (ii) it has theoretical guarantee to identify Bayesian classifiers, i.e., the ground truth posteriors of all modalities. Specifically, by maximizing TC-induced loss (namely TC gain) over classifiers of all modalities, these classifiers can cooperatively discover the equivalent class of ground-truth classifiers; and identify the unique ones by leveraging limited percentage of labeled data. We apply our method to various tasks and achieve state-of-the-art results, including news classification, emotion recognition and disease prediction. | ['Shanghang Zhang', 'Lingjing Hu', 'Xinwei Sun', 'Yilun Xu', 'Yuqing Kong', 'Peng Cao', 'Yizhou Wang'] | 2020-07-14 | null | https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6209_ECCV_2020_paper.php | https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123480171.pdf | eccv-2020-8 | ['news-classification'] | ['natural-language-processing'] | [ 3.70716095e-01 2.20260337e-01 -4.88602787e-01 -3.66956592e-01
-1.35173607e+00 -4.87591267e-01 4.19566810e-01 3.43900442e-01
-1.77042708e-01 8.83603692e-01 5.45912012e-02 1.50857434e-01
-2.89639890e-01 -5.07272720e-01 -8.02546382e-01 -1.21236646e+00
2.42110133e-01 3.71512085e-01 -6.46989467e-03 1.99596718e-01
-2.53189832e-01 7.32452720e-02 -1.64439380e+00 5.26918590e-01
7.99936354e-01 1.60465169e+00 -6.88437670e-02 2.10986510e-01
1.01898745e-01 8.92353296e-01 -1.96451530e-01 -4.62218881e-01
-1.65654138e-01 -4.60010171e-01 -7.67353475e-01 2.48722360e-01
3.09909731e-02 9.58251283e-02 -2.12427750e-01 1.36085367e+00
3.05103898e-01 5.68568856e-02 9.26820099e-01 -1.55257905e+00
-3.63186806e-01 6.92166030e-01 -9.09375489e-01 -3.24265324e-02
2.90741205e-01 -4.50483918e-01 1.01931357e+00 -7.55348265e-01
3.97214770e-01 1.10722232e+00 4.63769138e-01 5.19375801e-01
-1.04123914e+00 -5.52370608e-01 2.72656351e-01 1.45805702e-01
-1.58562005e+00 -5.55122375e-01 7.79359877e-01 -2.24734455e-01
8.83911848e-02 3.95985365e-01 2.26594970e-01 9.91031408e-01
-1.52962692e-02 1.24391019e+00 1.38924670e+00 -5.31617045e-01
2.49097392e-01 4.04804289e-01 1.28309965e-01 7.21870720e-01
-1.85483530e-01 -8.11163615e-03 -8.82635117e-01 -3.29243690e-01
1.51414990e-01 2.24404648e-01 -3.95595610e-01 -2.30009571e-01
-1.36683023e+00 6.12339616e-01 2.02265799e-01 2.73590088e-01
-4.88373905e-01 -2.03583956e-01 3.07183594e-01 2.25747690e-01
4.80679005e-01 -3.82799745e-01 -5.34332037e-01 3.25289696e-01
-6.91598356e-01 -2.32337117e-01 5.04299283e-01 9.03781593e-01
8.91201079e-01 -3.63183975e-01 4.35292944e-02 7.83660293e-01
6.32291019e-01 7.19504297e-01 4.04724926e-01 -8.19691539e-01
4.67861772e-01 6.16389096e-01 -4.88521606e-02 -7.21313238e-01
-4.42983627e-01 -1.23924591e-01 -1.20495689e+00 -2.60020405e-01
2.93275744e-01 -3.93002570e-01 -5.62563479e-01 1.93642664e+00
6.74903274e-01 1.38458595e-01 4.33116078e-01 8.65183294e-01
9.30491447e-01 5.78806520e-01 2.24650666e-01 -6.98990941e-01
1.41266334e+00 -5.50295055e-01 -6.96786821e-01 -1.36918709e-01
5.91458857e-01 -5.31064034e-01 5.55041671e-01 3.99782896e-01
-7.16850400e-01 -2.26306394e-01 -9.24447060e-01 5.72692275e-01
-2.19707340e-01 3.81020874e-01 6.51317596e-01 6.99250519e-01
-5.35486639e-01 1.38111979e-01 -6.88343048e-01 -1.35369882e-01
6.25205040e-01 3.49464715e-01 -6.38574779e-01 -3.48056018e-01
-1.17572582e+00 6.51212037e-01 7.61953354e-01 1.96389437e-01
-8.96425068e-01 -3.11966866e-01 -8.75788927e-01 -2.42039829e-01
6.62280083e-01 -5.68035960e-01 9.87999201e-01 -1.20501280e+00
-1.15034389e+00 7.76570618e-01 -2.83183694e-01 -3.18088718e-02
3.77649337e-01 3.54826376e-02 -7.09651411e-01 2.71335483e-01
5.48823774e-02 5.39511383e-01 9.63525712e-01 -1.56548905e+00
-1.07490563e+00 -6.72247708e-01 -1.10617548e-01 4.04646903e-01
-5.86053073e-01 1.41582545e-02 -2.53757000e-01 -4.33197021e-01
5.91661751e-01 -8.11853588e-01 1.64192975e-01 -2.14628145e-01
-7.53637612e-01 -4.06789482e-01 8.66655231e-01 -3.57803583e-01
9.72529411e-01 -2.20725608e+00 3.25829536e-01 2.16900587e-01
3.17114234e-01 -7.22989067e-02 2.24402830e-01 3.14599313e-02
1.50215402e-01 -1.16612606e-01 -1.24683686e-01 -2.89881378e-01
-6.10023066e-02 2.96167254e-01 -3.49550992e-01 6.23473048e-01
-1.00135421e-02 5.95319927e-01 -7.70281017e-01 -9.26960468e-01
2.82480240e-01 2.73515642e-01 -1.35748954e-02 8.71539395e-03
-2.20525935e-01 5.65888286e-01 -7.08579540e-01 1.11247301e+00
5.92328012e-01 -4.73135501e-01 1.59629673e-01 -5.64115703e-01
3.34054947e-01 -3.75791728e-01 -1.35038114e+00 1.64011717e+00
-1.60211891e-01 8.88353288e-02 2.08488449e-01 -1.39822865e+00
5.85787833e-01 7.55630255e-01 7.10996568e-01 -3.09789836e-01
3.45140308e-01 1.77574158e-01 -5.43246567e-01 -5.29980183e-01
-1.22177154e-01 -4.96758431e-01 -3.78388911e-01 6.03549123e-01
3.52250993e-01 3.08724791e-01 -1.34500548e-01 2.14373559e-01
6.29885018e-01 -1.07476048e-01 2.21855193e-01 7.87431549e-04
5.55274010e-01 -1.41228229e-01 6.86641395e-01 7.13326514e-01
-2.21731916e-01 2.09553540e-01 2.78832346e-01 5.90226464e-02
-6.00911558e-01 -1.06096816e+00 -2.79346704e-01 1.18520331e+00
4.11908060e-01 -6.75370842e-02 -4.54377651e-01 -9.66826260e-01
-2.03537598e-01 4.71581042e-01 -6.37913585e-01 -3.73925030e-01
1.24236248e-01 -1.07662082e+00 6.10122561e-01 4.39966381e-01
5.53693891e-01 -5.33217788e-01 -2.80054331e-01 -1.40694097e-01
-5.71333826e-01 -1.02409637e+00 -1.99309573e-01 2.73756564e-01
-7.94429779e-01 -1.16054344e+00 -5.45675457e-01 -5.25802195e-01
7.94164121e-01 1.81262434e-01 7.15101600e-01 -2.41551742e-01
1.54283419e-01 3.94659102e-01 -4.93926436e-01 -5.06350040e-01
-3.12030613e-01 -2.42393911e-01 2.38008425e-01 5.83686471e-01
4.11544770e-01 -2.46150136e-01 -2.95766920e-01 5.92646599e-01
-9.28093553e-01 1.09795414e-01 7.05911696e-01 8.90748739e-01
9.15668130e-01 4.58905935e-01 8.85096908e-01 -8.20230067e-01
2.35552087e-01 -6.02427423e-01 -2.60429680e-01 8.52084994e-01
-4.09741163e-01 -8.43130201e-02 4.29326385e-01 -5.36118686e-01
-1.28535879e+00 2.21091449e-01 2.58027405e-01 -5.23485243e-01
-3.20509791e-01 8.93324614e-01 -4.91008341e-01 1.36508480e-01
4.59714949e-01 2.69819647e-01 -1.37004763e-01 -3.18255931e-01
4.40044314e-01 9.42859471e-01 5.44350684e-01 -6.93111658e-01
5.40393114e-01 7.02153504e-01 1.41477704e-01 -5.88854432e-01
-1.40517724e+00 -3.68704766e-01 -5.42976379e-01 -5.22620678e-01
6.79709494e-01 -1.16258633e+00 -8.98131311e-01 4.71127272e-01
-6.81284010e-01 4.13708657e-01 5.54528087e-02 8.61844957e-01
-2.98248649e-01 4.57701772e-01 -3.36745471e-01 -1.08880699e+00
-1.61080495e-01 -9.31525350e-01 1.16124606e+00 5.24475336e-01
2.19664887e-01 -9.40913975e-01 -3.12565774e-01 7.36254394e-01
-1.51562810e-01 3.28771442e-01 8.51296484e-01 -7.85447061e-01
-2.61756480e-01 -6.26719773e-01 -2.97911316e-01 4.22929704e-01
1.18727967e-01 -2.59401351e-01 -1.30413628e+00 -1.87697098e-01
5.74163208e-03 -9.57581460e-01 9.43627298e-01 3.91897351e-01
1.13561249e+00 -3.07773471e-01 -5.93610525e-01 1.05845943e-01
1.09073079e+00 2.63424758e-02 1.06633361e-02 -2.81466097e-01
5.87648511e-01 6.27699018e-01 8.07793915e-01 5.93182206e-01
5.61178863e-01 4.17716444e-01 3.51006657e-01 1.28551096e-01
3.68900150e-01 -1.08734593e-01 3.26310545e-01 8.07027102e-01
2.40972312e-03 -3.53455156e-01 -6.40751600e-01 3.01455289e-01
-2.19461560e+00 -7.64122486e-01 2.79563665e-01 2.25723076e+00
8.75527143e-01 -8.72176439e-02 7.99490064e-02 3.20971787e-01
1.02899396e+00 -1.10003375e-01 -7.12023318e-01 4.59389657e-01
-4.67045695e-01 -3.75646889e-01 1.60518557e-01 8.62882286e-02
-1.51815236e+00 3.66502732e-01 5.35001659e+00 1.21628499e+00
-8.91985893e-01 4.42848533e-01 7.23102570e-01 -1.38284862e-01
-2.36672133e-01 -1.73239745e-02 -6.99716032e-01 4.44662511e-01
7.04291165e-01 -2.47301087e-02 3.25351864e-01 6.32721663e-01
-2.31839493e-01 -4.32460487e-01 -1.15874851e+00 9.63608205e-01
3.17460060e-01 -1.00612879e+00 -1.24753058e-01 -1.13909587e-01
8.33703220e-01 -1.23258464e-01 -7.03568161e-02 3.12803030e-01
3.04896593e-01 -7.82906711e-01 8.09251130e-01 6.70240819e-01
7.81866252e-01 -6.94061756e-01 8.23302507e-01 7.71745980e-01
-1.15966606e+00 -2.23553255e-01 -1.53415054e-01 3.95087957e-01
8.31488669e-02 8.09211791e-01 -1.58658892e-01 1.06190765e+00
6.06573522e-01 6.81667805e-01 -3.23434323e-01 6.99659824e-01
-4.50985357e-02 5.58579803e-01 -6.04237795e-01 6.20234013e-02
-2.40505859e-02 8.42387080e-02 3.24936301e-01 7.11613834e-01
2.43563801e-01 2.90429503e-01 5.72057366e-01 2.83879310e-01
-3.28758329e-01 2.63736565e-02 -1.76602513e-01 -1.67870834e-01
7.44586706e-01 1.26560223e+00 -6.78399265e-01 -3.31705272e-01
-4.94018853e-01 5.75237989e-01 2.09519535e-01 2.45473057e-01
-8.39293301e-01 -1.08702518e-01 -9.48052555e-02 -6.11589849e-01
-8.42156559e-02 5.04931688e-01 -2.88093209e-01 -1.38807058e+00
1.17378738e-02 -6.22640908e-01 1.12771499e+00 -7.66494989e-01
-1.67134500e+00 3.59778047e-01 1.40288040e-01 -1.40955079e+00
3.94051261e-02 -3.85241896e-01 -2.37838164e-01 6.31897688e-01
-1.26133716e+00 -1.47344828e+00 -2.64690399e-01 1.02291727e+00
1.70257706e-02 -3.10072303e-01 8.75618935e-01 4.32297617e-01
-6.63123965e-01 6.18053854e-01 2.52402842e-01 3.95908244e-02
7.02498853e-01 -1.10233867e+00 -9.85868990e-01 5.92888832e-01
1.45732373e-01 1.64849296e-01 5.03724337e-01 -4.38299000e-01
-1.51729774e+00 -9.80071306e-01 6.53522968e-01 -2.09777325e-01
5.13120711e-01 1.39116004e-01 -7.33515441e-01 5.95997632e-01
-9.67587680e-02 2.19815508e-01 1.01319385e+00 3.36952180e-01
-4.07040328e-01 -2.65706331e-01 -1.20696652e+00 2.52658278e-01
5.06558239e-01 -6.94529235e-01 -4.82094139e-01 6.62706077e-01
4.38373357e-01 -2.73469180e-01 -1.17293537e+00 6.36264324e-01
4.95019048e-01 -6.74572110e-01 7.53478289e-01 -6.46290660e-01
3.78260046e-01 -4.11678374e-01 -5.67871809e-01 -1.07472301e+00
2.65831470e-01 -2.41678193e-01 -4.81575996e-01 1.37427199e+00
4.80049372e-01 -6.18385792e-01 5.75414717e-01 6.90071046e-01
6.03101887e-02 -7.20145762e-01 -1.43318188e+00 -4.51949447e-01
-1.95789173e-01 -5.11377990e-01 2.93742716e-01 1.13253582e+00
3.65848422e-01 2.61394024e-01 -5.18077493e-01 4.38625962e-01
8.49846900e-01 4.11796093e-01 2.10657254e-01 -1.30625451e+00
-2.09691346e-01 -2.18891844e-01 -2.07447380e-01 -7.77709603e-01
2.84781486e-01 -8.36386621e-01 1.42359138e-01 -1.21158338e+00
6.95325553e-01 -6.47673547e-01 -7.51395583e-01 8.43630493e-01
-9.26435962e-02 3.35996389e-01 -5.54566979e-02 5.08391976e-01
-1.12905383e+00 5.62320232e-01 1.09317183e+00 -1.55403957e-01
8.36192071e-02 2.36243650e-01 -7.26906955e-01 8.55506778e-01
3.75997037e-01 -5.45139015e-01 -3.83415729e-01 -1.46232113e-01
3.03247660e-01 5.75271070e-01 5.40507674e-01 -6.90627217e-01
3.62566113e-01 -2.83266574e-01 4.54551369e-01 -7.34393239e-01
6.08770251e-01 -8.87789428e-01 2.15242356e-01 8.95613357e-02
-4.30340886e-01 -6.19062364e-01 -9.26107317e-02 9.77281272e-01
-3.53575319e-01 -2.81009436e-01 7.64463484e-01 7.09394217e-02
-5.08754671e-01 2.57523775e-01 -2.12140262e-01 -3.81915532e-02
1.21995127e+00 1.91576570e-01 -4.87961859e-01 -3.05075884e-01
-8.81154120e-01 3.51210117e-01 8.30188543e-02 2.08740845e-01
4.11663532e-01 -1.50518000e+00 -5.72151184e-01 -6.61491156e-02
4.06078100e-01 1.82099771e-02 7.07248569e-01 1.15596437e+00
2.98924983e-01 2.75674671e-01 1.19149916e-01 -8.77303123e-01
-1.20479953e+00 5.56952596e-01 1.79439634e-01 2.11510677e-02
-8.73413160e-02 9.21649992e-01 4.08114903e-02 -4.72623229e-01
2.71140367e-01 2.98498511e-01 -1.66394085e-01 4.53509837e-01
4.09236968e-01 2.32088134e-01 4.02322598e-02 -8.60523403e-01
-5.13970435e-01 3.44917685e-01 -1.03861883e-01 -1.34506553e-01
9.52886403e-01 -4.11664218e-01 -1.99873462e-01 6.45112336e-01
9.95266974e-01 -3.90390635e-01 -1.08876610e+00 -8.78829122e-01
-1.76688194e-01 -2.52277911e-01 4.14656729e-01 -1.01880741e+00
-1.09293580e+00 7.50647783e-01 6.50594115e-01 1.82363480e-01
1.45340967e+00 5.25383711e-01 4.97916490e-01 4.66082036e-01
4.90707397e-01 -1.22897589e+00 -5.21170795e-02 -6.44504139e-03
3.74179542e-01 -1.50978851e+00 1.83260869e-02 -3.98710281e-01
-9.05802190e-01 9.38364387e-01 3.15505505e-01 6.26777649e-01
1.00190163e+00 -4.50636353e-03 -6.74279481e-02 -2.44507670e-01
-7.50184476e-01 -2.02108875e-01 5.22754788e-01 3.23106140e-01
1.31811351e-01 3.25862557e-01 9.20430273e-02 9.65066850e-01
4.39758420e-01 5.79165155e-03 -4.15679179e-02 1.05399120e+00
-4.97897685e-01 -8.11972976e-01 -5.76933682e-01 7.75071263e-01
-4.13486123e-01 1.97287321e-01 -1.86300352e-01 3.70019436e-01
3.09471607e-01 1.32843578e+00 -4.54837352e-01 -5.52046776e-01
-1.12208478e-01 1.73280373e-01 4.92210329e-01 -2.44214892e-01
5.95711805e-02 4.22151804e-01 1.20509090e-02 -4.78109419e-02
-1.00588036e+00 -1.11121428e+00 -1.14829445e+00 -8.17185119e-02
-8.06543112e-01 1.85639799e-01 4.29145932e-01 1.52798796e+00
1.40426487e-01 2.74239123e-01 7.55911767e-01 -5.91381192e-01
-6.36363268e-01 -9.62085485e-01 -8.68509650e-01 3.87246937e-01
1.57364935e-01 -9.24568892e-01 -3.69342327e-01 2.75418758e-01] | [12.878022193908691, 4.872745037078857] |
c99fc710-1bde-4934-b23c-067fe8df19c9 | improving-eeg-decoding-via-clustering-based | 2012.06813 | null | https://arxiv.org/abs/2012.06813v1 | https://arxiv.org/pdf/2012.06813v1.pdf | Improving EEG Decoding via Clustering-based Multi-task Feature Learning | Accurate electroencephalogram (EEG) pattern decoding for specific mental tasks is one of the key steps for the development of brain-computer interface (BCI), which is quite challenging due to the considerably low signal-to-noise ratio of EEG collected at the brain scalp. Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy. However, existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution, and hence can only yield a suboptimal decoding accuracy. To uncover the intrinsic distribution structure of EEG data, we propose a clustering-based multi-task feature learning algorithm for improved EEG pattern decoding. Specifically, we perform affinity propagation-based clustering to explore the subclasses (i.e., clusters) in each of the original classes, and then assign each subclass a unique label based on a one-versus-all encoding strategy. With the encoded label matrix, we devise a novel multi-task learning algorithm by exploiting the subclass relationship to jointly optimize the EEG pattern features from the uncovered subclasses. We then train a linear support vector machine with the optimized features for EEG pattern decoding. Extensive experimental studies are conducted on three EEG datasets to validate the effectiveness of our algorithm in comparison with other state-of-the-art approaches. The improved experimental results demonstrate the outstanding superiority of our algorithm, suggesting its prominent performance for EEG pattern decoding in BCI applications. | ['Andrzej Cichocki', 'Guoxu Zhou', 'Hongru Zhu', 'Hua Xie', 'Wei Wu', 'Tao Zhou', 'Yu Zhang'] | 2020-12-12 | null | null | null | null | ['eeg-decoding', 'eeg-decoding'] | ['medical', 'time-series'] | [ 5.38940191e-01 -5.79809070e-01 1.56493887e-01 -4.38232094e-01
-6.02127552e-01 -1.40179649e-01 -1.31973699e-01 5.18972389e-02
-7.50895739e-02 8.09655905e-01 -8.78043100e-02 -3.41821797e-02
-8.88415158e-01 -3.32358539e-01 -7.17180669e-01 -1.13909459e+00
-9.56225246e-02 4.28800464e-01 -2.27161348e-01 1.64075315e-01
5.08985221e-01 1.07351713e-01 -1.53867209e+00 5.98369300e-01
1.19069338e+00 1.20110893e+00 4.85571325e-01 2.05127940e-01
1.01143189e-01 2.89586931e-01 -6.60130024e-01 -2.02791411e-02
-1.17492743e-01 -5.36635041e-01 -4.44480300e-01 1.35579690e-01
-3.51577759e-01 2.36829117e-01 -3.38241249e-01 1.26412106e+00
5.02425015e-01 -1.24491900e-01 8.46337020e-01 -1.29864132e+00
-4.84028816e-01 3.73362571e-01 -7.97630727e-01 4.46301430e-01
2.36628011e-01 -2.59669662e-01 8.07940364e-01 -8.15066576e-01
-2.58707136e-01 4.95608836e-01 1.26949534e-01 2.76671767e-01
-1.37010241e+00 -1.27563214e+00 9.94255468e-02 7.88588822e-01
-1.95903349e+00 -3.31475407e-01 9.33662295e-01 -4.72662657e-01
6.47536159e-01 2.34486938e-01 9.36398566e-01 1.07696962e+00
6.28065526e-01 8.61797750e-01 1.44529450e+00 -9.40907300e-02
2.95625865e-01 1.65186837e-01 3.48949522e-01 5.20526290e-01
9.54860225e-02 -2.53620416e-01 -9.93171990e-01 -2.10515007e-01
4.53432620e-01 1.28580138e-01 -7.27561474e-01 -2.16624781e-01
-1.35422122e+00 4.22346294e-01 1.01858713e-01 3.13673496e-01
-5.81842661e-01 -2.21074745e-01 1.44132122e-01 2.86737204e-01
3.23280811e-01 3.12808931e-01 -4.67975169e-01 -2.27516547e-01
-9.29432154e-01 1.36952683e-01 5.43454289e-01 8.53171051e-01
9.67180371e-01 -2.78990924e-01 -3.04569811e-01 1.12020469e+00
1.76918745e-01 4.08249974e-01 6.55260563e-01 -3.71237785e-01
4.40030992e-01 6.09736562e-01 -1.66501656e-01 -1.06505680e+00
-5.66241801e-01 -6.87267601e-01 -1.08203721e+00 -3.01159441e-01
8.44904408e-02 -2.37001389e-01 -4.84599262e-01 1.48819625e+00
-1.25597462e-01 6.17333889e-01 -1.23083010e-01 7.96761394e-01
2.74094462e-01 6.50530815e-01 -2.30255783e-01 -3.63505453e-01
1.26679265e+00 -5.02075613e-01 -6.09828949e-01 -2.21222356e-01
4.30379927e-01 -2.92147994e-01 8.79426718e-01 8.78013015e-01
-5.63762486e-01 -4.05147880e-01 -1.11043453e+00 8.32431972e-01
1.56639069e-01 2.24913448e-01 6.44456506e-01 6.58900559e-01
-6.83669209e-01 3.17718714e-01 -7.50341535e-01 2.56549269e-01
7.56164789e-01 7.94282854e-01 -3.03196967e-01 -7.67867193e-02
-9.28338230e-01 5.84805012e-01 4.94136393e-01 2.03938559e-01
-6.59050226e-01 -6.74832642e-01 -4.86272454e-01 2.27569282e-01
2.16894343e-01 -3.38002741e-01 6.11047626e-01 -8.94257545e-01
-1.44192135e+00 3.54171604e-01 -5.41307867e-01 -4.28734310e-02
-2.99822360e-01 1.99402452e-01 -4.97965544e-01 6.11927062e-02
-6.92149326e-02 4.68750596e-01 1.05973554e+00 -1.26332390e+00
-9.40204680e-01 -6.53310895e-01 -4.92837697e-01 2.03757271e-01
-9.24017072e-01 -9.18296427e-02 -2.47012705e-01 -4.95689094e-01
2.45580435e-01 -7.36584246e-01 1.97148383e-01 -6.03838921e-01
-3.61102402e-01 -3.55739623e-01 5.10123014e-01 -4.67850447e-01
1.45301330e+00 -2.30552030e+00 6.07470334e-01 7.33888388e-01
3.76364410e-01 -4.41443063e-02 -1.01783104e-01 -1.19238779e-01
-1.71249017e-01 -3.73658538e-01 -4.01477665e-01 -5.57297207e-02
-2.56371319e-01 1.90997440e-02 -6.51060790e-02 5.97526312e-01
1.07861208e-02 7.48991251e-01 -7.64170706e-01 -1.81077272e-01
1.19339943e-01 3.12418342e-01 -4.43417758e-01 3.75280529e-01
2.62398452e-01 8.89379501e-01 -6.04129970e-01 5.62136114e-01
4.59737867e-01 -4.26539421e-01 -1.28327729e-02 -2.94272304e-01
9.09797549e-02 -1.90545097e-02 -9.67533648e-01 1.74886000e+00
-2.52496153e-01 5.44859111e-01 -3.07412684e-01 -1.50367141e+00
8.82097125e-01 3.30903620e-01 8.48366201e-01 -7.46122897e-01
2.64270574e-01 3.64058673e-01 6.62941396e-01 -6.67090774e-01
-2.70913273e-01 -1.80096045e-01 2.64021568e-02 5.47579646e-01
1.51812375e-01 2.78960913e-01 -4.29706722e-02 -2.71884471e-01
1.00924850e+00 -2.89664656e-01 1.18964866e-01 -5.54361165e-01
5.97068071e-01 -4.32293922e-01 6.23938024e-01 5.72926819e-01
-3.49587612e-02 4.46726412e-01 4.32649702e-01 -2.73838073e-01
-5.58547497e-01 -7.73949444e-01 -5.82727730e-01 7.87802696e-01
2.58905202e-01 -3.13491344e-01 -8.78676593e-01 -2.94747889e-01
-1.18923977e-01 5.99618196e-01 -5.46834946e-01 -5.36757588e-01
-2.41455004e-01 -1.44428384e+00 4.29717809e-01 2.88781703e-01
3.22059393e-01 -9.86773372e-01 -5.55404186e-01 3.76910806e-01
-3.82700354e-01 -8.00164580e-01 -1.56566292e-01 4.40730482e-01
-5.88802516e-01 -9.42902505e-01 -7.36158967e-01 -8.93866777e-01
6.80968583e-01 2.31083661e-01 3.56389552e-01 2.65696421e-02
-1.26145199e-01 1.50805056e-01 -4.42752123e-01 -4.82346952e-01
1.39921412e-01 1.35252878e-01 2.89166212e-01 6.49403214e-01
7.21650124e-01 -9.71855402e-01 -7.15520918e-01 4.59201485e-01
-6.22636914e-01 2.24443763e-01 8.36854100e-01 1.02649546e+00
6.10783458e-01 5.56214154e-01 9.61659253e-01 -5.77011585e-01
7.58870840e-01 -6.64604962e-01 -3.18833590e-01 5.32687128e-01
-4.30635005e-01 9.73626878e-03 6.27262235e-01 -4.96755809e-01
-6.72518373e-01 6.92811608e-02 -8.71134996e-02 -3.76502246e-01
-2.73296744e-01 6.89828575e-01 -4.32770103e-01 -4.46538031e-01
2.45060682e-01 8.83721590e-01 -1.84413835e-01 -2.19858453e-01
-2.86495119e-01 1.04841828e+00 3.83569926e-01 -7.45423198e-01
2.31994241e-01 6.53133690e-02 -2.19770789e-01 -8.66071403e-01
-6.31987333e-01 -3.86793852e-01 -5.99714339e-01 -2.47172773e-01
7.23024547e-01 -7.28649914e-01 -9.06661212e-01 6.98858023e-01
-9.93528724e-01 -1.16544075e-01 4.92761075e-01 6.78824008e-01
-4.89914745e-01 2.67612755e-01 -2.83692002e-01 -7.88650215e-01
-3.04022521e-01 -1.58461487e+00 9.00608242e-01 4.53818478e-02
-2.64721036e-01 -6.47200346e-01 -1.78000778e-01 2.34068900e-01
6.41052946e-02 -2.10846841e-01 1.44793487e+00 -7.77880549e-01
-3.86919767e-01 -6.13112673e-02 -4.52027798e-01 7.79533237e-02
3.41363072e-01 -5.55504501e-01 -9.28777635e-01 -3.85343790e-01
2.31187329e-01 -1.90022275e-01 5.65001190e-01 4.51073319e-01
1.89003766e+00 -1.81048457e-02 -5.49103200e-01 8.53482604e-01
1.20259583e+00 6.92370892e-01 5.54697812e-01 2.69048095e-01
7.42230415e-01 5.38319409e-01 1.40702561e-01 7.91528940e-01
4.67295259e-01 5.38789034e-01 1.56873703e-01 3.14152390e-01
4.04496014e-01 1.82974353e-01 6.09913468e-02 1.17422819e+00
-3.76004986e-02 -2.50523984e-01 -9.22747493e-01 3.69516015e-01
-1.74894559e+00 -4.78300363e-01 7.42237419e-02 2.15504265e+00
7.89909661e-01 -3.45857069e-02 -5.12399897e-02 5.25484800e-01
6.73656464e-01 -3.01826477e-01 -6.20205760e-01 1.52669013e-01
-4.62133326e-02 5.48204958e-01 1.37854636e-01 -7.41353557e-02
-9.40993130e-01 5.58116019e-01 5.52690220e+00 9.99962747e-01
-1.17456853e+00 1.93730786e-01 5.66599429e-01 -2.91942328e-01
-1.16569720e-01 -4.28680986e-01 -7.30438352e-01 9.96624470e-01
9.10924673e-01 -2.85399616e-01 8.97210419e-01 2.18576834e-01
1.77469701e-01 7.44132251e-02 -1.17664754e+00 1.61876607e+00
3.33261728e-01 -1.13759327e+00 1.15924716e-01 1.26774669e-01
4.64384019e-01 -1.28631890e-01 9.58135650e-02 6.80647343e-02
-4.79658365e-01 -1.04751503e+00 7.69226372e-01 5.48579276e-01
8.50756288e-01 -9.40719008e-01 5.83738387e-01 4.58010256e-01
-1.05469716e+00 -4.91669238e-01 -4.72298831e-01 3.25398780e-02
-5.08540347e-02 5.62066317e-01 -1.90045401e-01 4.65408802e-01
7.85043299e-01 1.03684819e+00 -5.34326494e-01 1.46967769e+00
-3.94987352e-02 6.70497596e-01 -7.79519379e-02 -3.44324529e-01
-1.26643050e-02 -4.56129849e-01 4.85141098e-01 1.05868566e+00
6.63624048e-01 4.79043335e-01 1.82178300e-02 7.30754077e-01
2.05532741e-02 2.33802572e-01 -3.58965099e-01 9.06218365e-02
5.18751025e-01 1.09831333e+00 -7.75116503e-01 -7.47935474e-02
-4.97568697e-01 1.10716426e+00 4.96953517e-01 3.72164100e-01
-7.01502860e-01 -6.57309532e-01 6.02368355e-01 -3.26642334e-01
9.75195691e-02 -6.93816990e-02 -7.51292944e-01 -1.21023285e+00
1.75723314e-01 -1.02883577e+00 2.27635190e-01 -4.94593382e-01
-1.24460459e+00 6.96429491e-01 5.31919338e-02 -1.14157367e+00
1.54599816e-01 -6.30156279e-01 -6.61831439e-01 6.87872529e-01
-1.35224545e+00 -6.92900300e-01 -2.62484908e-01 9.17695045e-01
5.59338808e-01 -4.88145590e-01 8.64934266e-01 5.48055649e-01
-9.43059087e-01 7.41741896e-01 4.03321415e-01 -1.56988263e-01
4.65449661e-01 -8.82146299e-01 -3.86734277e-01 5.34479618e-01
3.08172792e-01 5.03440142e-01 2.73543805e-01 -3.62495154e-01
-1.69150639e+00 -8.93521011e-01 3.66119593e-01 -5.10160252e-02
7.72228539e-01 -5.43506324e-01 -1.15964580e+00 3.85372490e-01
9.21962336e-02 -5.41316628e-01 1.25705624e+00 1.58980697e-01
1.73705593e-01 -4.46596891e-01 -6.39696360e-01 3.88920724e-01
9.35468912e-01 -3.44237119e-01 -5.96991301e-01 4.40972805e-01
1.97623923e-01 -2.35669818e-02 -8.52649510e-01 3.91761929e-01
7.26630390e-01 -6.57094717e-01 7.19860554e-01 -2.64425844e-01
3.35477293e-01 -2.91144729e-01 -1.21326946e-01 -1.83225286e+00
-6.69186771e-01 -3.68013859e-01 -1.81000680e-02 8.95973504e-01
5.80849290e-01 -8.68420839e-01 5.75396240e-01 4.06345338e-01
-3.31846774e-01 -1.16158438e+00 -9.34625506e-01 -4.57620263e-01
-1.67771205e-01 -6.01012111e-01 8.82384181e-01 6.07763231e-01
4.82100517e-01 2.42280513e-01 -4.50685233e-01 3.50832373e-01
7.37235427e-01 3.23997080e-01 3.07031751e-01 -1.18456638e+00
-3.62768531e-01 -6.27755582e-01 -5.64294100e-01 -1.02897894e+00
5.35908937e-01 -1.14403689e+00 2.71038890e-01 -1.23228240e+00
5.97725749e-01 -6.47131383e-01 -9.85795081e-01 5.16362190e-01
-4.32970732e-01 2.87270129e-01 -2.28726640e-01 4.04094428e-01
-4.86258835e-01 6.96850538e-01 9.25345004e-01 -2.34244674e-01
-2.69562632e-01 1.93820044e-01 -8.43124211e-01 5.15669882e-01
7.75602341e-01 -7.04162896e-01 -5.89602292e-01 -6.40325367e-01
1.00424469e-01 8.82308185e-02 1.11404069e-01 -1.28350282e+00
4.46651042e-01 3.62264365e-02 6.73883975e-01 -3.84446442e-01
2.74865210e-01 -7.47791231e-01 1.72106624e-01 2.25908250e-01
-1.94715649e-01 -1.26127452e-01 1.22742511e-01 6.85700357e-01
-2.21297190e-01 -1.77014366e-01 6.00780904e-01 3.67641151e-01
-5.81333935e-01 4.99819934e-01 -7.09645212e-01 -2.31894821e-01
1.03188789e+00 -2.97439605e-01 6.51830211e-02 2.20624823e-02
-5.11878610e-01 2.46764541e-01 -9.43356007e-02 3.35634112e-01
1.05921912e+00 -1.23138738e+00 -7.65428424e-01 8.60809743e-01
3.59641016e-01 -2.97915310e-01 2.78963536e-01 1.11873269e+00
-6.28477335e-03 3.76043409e-01 -5.44336975e-01 -8.94556344e-01
-1.06221473e+00 2.63760328e-01 1.68037698e-01 1.61975741e-01
-7.28294611e-01 8.72479498e-01 5.05695522e-01 1.13901496e-01
2.53879637e-01 2.63194507e-03 -4.34883356e-01 -7.03733414e-02
7.31218219e-01 1.25485316e-01 3.10112834e-01 -4.57142889e-01
-4.93538648e-01 5.45864344e-01 -9.47306752e-02 7.40873814e-02
1.55358922e+00 2.09225621e-02 -4.23198938e-01 3.57567996e-01
1.24679542e+00 -5.69476366e-01 -1.03949034e+00 -6.83908984e-02
1.08338460e-01 -6.84507072e-01 1.63743421e-01 -5.15060961e-01
-1.10721445e+00 1.00706160e+00 5.29850662e-01 -1.26907542e-01
1.46432388e+00 -1.05516769e-01 8.38962674e-01 4.24533427e-01
8.92580032e-01 -8.24294567e-01 -3.73536721e-02 1.19983494e-01
6.44650519e-01 -9.55172420e-01 -2.08756313e-01 -1.15946867e-01
-6.35132551e-01 1.16664827e+00 5.02308905e-01 -7.23375082e-02
8.02831113e-01 3.00812095e-01 -4.25134510e-01 -3.15902829e-01
-5.53490818e-01 2.69193977e-01 5.63712120e-01 5.52967012e-01
8.74863490e-02 2.37740055e-01 -1.83000833e-01 1.15500915e+00
-8.52668211e-02 2.85463985e-02 7.69110471e-02 5.77116787e-01
-5.27153909e-01 -9.71809149e-01 -2.45064080e-01 1.15035832e+00
-3.68520707e-01 -1.63793504e-01 -9.38795507e-03 1.48108900e-01
7.47028068e-02 1.12375474e+00 -3.14909779e-02 -9.11698222e-01
2.33794644e-01 2.10901603e-01 8.22508931e-01 -5.16466320e-01
-2.86067486e-01 1.98964939e-01 -5.46117306e-01 -2.91039199e-01
-1.50786072e-01 -7.63355076e-01 -1.13259208e+00 1.42581776e-01
-2.85559446e-01 3.16554755e-01 5.65087259e-01 1.32006967e+00
4.80918705e-01 6.81562126e-01 8.40137720e-01 -9.36711967e-01
-1.59317970e-01 -7.96837866e-01 -8.91505897e-01 1.62170216e-01
1.79777026e-01 -1.04150152e+00 -1.86843410e-01 -1.01910777e-01] | [13.133993148803711, 3.468426465988159] |
2a090fd6-d756-41c7-93ee-a4c952901bb7 | action-localization-through-continual | 2003.12185 | null | https://arxiv.org/abs/2003.12185v1 | https://arxiv.org/pdf/2003.12185v1.pdf | Action Localization through Continual Predictive Learning | The problem of action recognition involves locating the action in the video, both over time and spatially in the image. The dominant current approaches use supervised learning to solve this problem, and require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to continuously learn the parameters of the models. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS'13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and obtain state-of-the-art results in unsupervised gaze prediction. | ['Sudeep Sarkar', 'Sathyanarayanan N. Aakur'] | 2020-03-26 | null | https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/2129_ECCV_2020_paper.php | https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123590290.pdf | eccv-2020-8 | ['eye-tracking'] | ['computer-vision'] | [ 2.96405762e-01 1.61176056e-01 -4.45181102e-01 -5.82202852e-01
-6.03598714e-01 -1.51947737e-01 5.40035248e-01 2.42572606e-01
-6.70555711e-01 5.22856116e-01 3.89707178e-01 1.23821408e-01
1.69090420e-01 -5.46864033e-01 -1.10001564e+00 -5.75758457e-01
-2.53914922e-01 1.66137695e-01 6.89316928e-01 5.51034175e-02
3.00532579e-01 2.22326592e-01 -2.05258512e+00 7.30736136e-01
4.09426421e-01 1.08563900e+00 3.03015590e-01 7.31836081e-01
1.74920887e-01 1.56110501e+00 -2.81541884e-01 -1.52014703e-01
2.11379435e-02 -4.41645384e-01 -9.55651999e-01 4.72304553e-01
6.02714241e-01 -5.41715384e-01 -4.62776214e-01 6.54508948e-01
1.32588997e-01 3.92536610e-01 4.46004003e-01 -1.21384048e+00
-2.09803790e-01 1.59631535e-01 -4.85394627e-01 6.45208776e-01
4.43099618e-01 1.21725472e-02 9.19585705e-01 -8.00339162e-01
8.23661983e-01 1.08299172e+00 5.27361095e-01 5.53978443e-01
-1.04678428e+00 -3.38296115e-01 5.04158318e-01 7.77659357e-01
-1.14683366e+00 -6.27353072e-01 6.19845450e-01 -5.31799138e-01
1.27974951e+00 -1.92366585e-01 7.97858715e-01 1.17267156e+00
1.61553457e-01 1.06425416e+00 8.75581682e-01 -7.18657196e-01
2.15904921e-01 -1.51706532e-01 1.97087154e-02 1.00943577e+00
-3.71601611e-01 2.11370409e-01 -1.08822727e+00 2.88058847e-01
8.88440967e-01 2.89486319e-01 -2.25880519e-01 -5.15425026e-01
-1.28605294e+00 6.93872094e-01 4.27087069e-01 1.96883246e-01
-3.44505757e-01 4.42977756e-01 5.23882926e-01 -3.30568501e-03
7.31263995e-01 -2.99538523e-02 -3.77693355e-01 -3.26873004e-01
-1.15131915e+00 7.88612962e-02 4.37831759e-01 7.75983989e-01
8.01027596e-01 -1.99853465e-01 -2.93358177e-01 4.62418646e-01
3.46473873e-01 1.03384331e-02 5.97728968e-01 -1.22347915e+00
3.30721825e-01 5.42607367e-01 2.05317333e-01 -9.14991975e-01
-5.46342731e-01 9.71215069e-02 -2.60405183e-01 4.48090285e-01
5.58766842e-01 -1.55298654e-02 -9.67994809e-01 1.77444410e+00
2.76843190e-01 7.04109728e-01 -6.64914995e-02 8.32297146e-01
6.09830678e-01 5.63241243e-01 2.89984584e-01 -3.29612464e-01
1.16657078e+00 -1.28638542e+00 -7.80739009e-01 -1.63091674e-01
7.44259059e-01 -4.07238662e-01 9.71357226e-01 3.84539872e-01
-1.18447614e+00 -7.45571911e-01 -8.79500806e-01 -2.40307137e-01
-3.61362994e-01 3.34810317e-01 5.45968473e-01 2.01706246e-01
-1.17707527e+00 6.41560435e-01 -1.21356702e+00 -7.54040420e-01
5.90702355e-01 3.66498709e-01 -4.10981447e-01 1.16363332e-01
-8.11818957e-01 8.12169790e-01 6.17530704e-01 -7.31718689e-02
-1.15589571e+00 -3.02217185e-01 -1.09589601e+00 1.35909423e-01
4.94720846e-01 -3.18913788e-01 1.38528299e+00 -1.48383093e+00
-1.42859924e+00 9.72227633e-01 -5.87253511e-01 -8.06522131e-01
2.42575735e-01 -5.59795022e-01 -2.14929268e-01 6.57796502e-01
1.97132230e-02 1.03901374e+00 9.18957114e-01 -9.86805797e-01
-9.98441160e-01 -1.87451616e-01 4.24081624e-01 2.94431180e-01
-4.13071811e-01 2.56059140e-01 -5.88037312e-01 -5.00811934e-01
-1.45369887e-01 -8.45723331e-01 -6.80966005e-02 6.74589723e-02
-1.65527184e-02 -5.38059711e-01 7.49654472e-01 -4.33715731e-01
1.07456887e+00 -2.26063395e+00 1.89732946e-02 -2.00451061e-01
2.19926480e-02 5.57690971e-02 1.59774534e-02 2.44405955e-01
-2.88962483e-01 -2.58602917e-01 1.05307169e-01 -6.46377444e-01
-2.24961266e-01 3.73453677e-01 -4.03729260e-01 5.14194250e-01
4.01215136e-01 8.62682462e-01 -1.06467104e+00 -8.39843750e-01
4.68435109e-01 4.29762483e-01 -6.26844823e-01 2.85346776e-01
-5.10442138e-01 5.00407100e-01 -9.55284685e-02 5.33366740e-01
-5.59478849e-02 -4.73077595e-01 6.76286519e-02 -2.50132471e-01
-2.50886053e-01 2.97793001e-01 -9.16936636e-01 1.93401706e+00
-1.37456566e-01 9.11384046e-01 -5.51545143e-01 -1.30624270e+00
4.81872767e-01 4.46865410e-01 6.47789538e-01 -5.02679884e-01
1.28614217e-01 -2.13057876e-01 -3.05854857e-01 -8.24840605e-01
3.40081006e-01 3.44129279e-02 1.10942133e-01 4.47724581e-01
6.11768246e-01 5.52038431e-01 6.19140148e-01 1.17568970e-01
1.05158746e+00 8.45124185e-01 2.76529878e-01 1.39842063e-01
5.41926265e-01 1.23540245e-01 6.16978943e-01 6.20431781e-01
-3.65268975e-01 5.72556794e-01 5.07728696e-01 -5.70803225e-01
-7.76740253e-01 -6.79999352e-01 1.86085418e-01 1.53982651e+00
1.52115852e-01 -6.25641882e-01 -8.32852781e-01 -8.49475443e-01
-4.88560140e-01 5.37399292e-01 -8.93078387e-01 -8.76063332e-02
-6.35613561e-01 -2.32949212e-01 2.32659638e-01 9.75529015e-01
4.84258831e-01 -1.41382670e+00 -1.00184286e+00 1.12649038e-01
-4.04626667e-01 -1.27963305e+00 -3.53775114e-01 2.32741311e-01
-9.09105897e-01 -1.31713176e+00 -4.13535744e-01 -8.07891667e-01
7.65933633e-01 1.61244273e-01 1.09665966e+00 4.54774983e-02
-1.99163258e-01 7.46807396e-01 -5.40757477e-01 -4.28344637e-01
5.23340814e-02 -2.96737820e-01 -1.66685749e-02 3.66379231e-01
6.77285373e-01 -3.42908204e-01 -6.34245038e-01 3.02134961e-01
-7.17801571e-01 1.31393358e-01 3.77090067e-01 7.98824131e-01
7.79786646e-01 -8.76109526e-02 3.41104627e-01 -6.53007090e-01
-1.53028280e-01 -2.90570050e-01 -4.51899499e-01 2.54193187e-01
-2.39112362e-01 -1.82887465e-01 3.25111181e-01 -4.00913745e-01
-1.26364315e+00 5.04568100e-01 2.32035547e-01 -7.63619184e-01
-4.75715995e-01 3.43366653e-01 1.10353082e-01 -5.43696061e-02
5.70993781e-01 1.77876398e-01 -1.11511767e-01 -2.75037140e-01
3.20180535e-01 3.51352185e-01 6.69297874e-01 -1.36915281e-01
2.66085476e-01 8.41644466e-01 -1.52152359e-01 -5.89285910e-01
-1.35323524e+00 -6.49216115e-01 -1.10146248e+00 -6.98287904e-01
1.19437420e+00 -1.11272025e+00 -8.17394912e-01 3.66365731e-01
-1.05000234e+00 -6.89523876e-01 -5.04513383e-01 7.30798185e-01
-1.12713981e+00 2.97455996e-01 -5.41487098e-01 -7.65255153e-01
1.82874337e-01 -8.15772355e-01 1.17216825e+00 2.64776200e-01
-2.14039698e-01 -1.06151175e+00 9.90055576e-02 4.60864455e-01
-1.62917510e-01 2.51214772e-01 5.06856024e-01 -5.82904220e-01
-7.49602199e-01 -8.08574185e-02 -1.02537982e-01 3.14522117e-01
-1.10027067e-01 -1.42782256e-01 -1.03386056e+00 -1.15197122e-01
-9.40067768e-02 -7.38246620e-01 1.03339660e+00 5.85830271e-01
1.43058002e+00 -9.17131919e-03 -4.90401298e-01 5.84666669e-01
1.18098569e+00 8.71857703e-02 8.18864048e-01 3.45322579e-01
5.34235120e-01 6.78153098e-01 9.85254109e-01 4.61033225e-01
6.37555361e-01 6.59217298e-01 5.78724682e-01 -1.42591760e-01
-1.94891825e-01 -3.38619709e-01 6.38743222e-01 2.20633924e-01
-5.10005474e-01 -2.59141594e-01 -6.87304616e-01 6.42794132e-01
-2.33678341e+00 -1.39740300e+00 3.36040482e-02 2.18795586e+00
6.53912902e-01 9.64066684e-02 3.62378240e-01 1.08608477e-01
6.07509673e-01 2.05689043e-01 -4.64598417e-01 -1.81218654e-01
1.66464344e-01 9.21303034e-02 3.42392415e-01 2.79093623e-01
-1.56588900e+00 1.10599136e+00 6.72557974e+00 3.35823715e-01
-1.10067952e+00 3.21184754e-01 5.09102166e-01 -4.66197610e-01
5.42242289e-01 4.20583272e-03 -7.69495010e-01 3.64979625e-01
1.12797213e+00 2.92741179e-01 1.24203451e-01 6.80816948e-01
4.83056068e-01 -4.60324943e-01 -1.38005781e+00 9.53357756e-01
5.72657764e-01 -1.41850340e+00 -3.76506805e-01 -1.31320879e-01
5.00524282e-01 1.50494009e-01 -2.47099116e-01 2.36468196e-01
9.47797075e-02 -8.72643173e-01 8.38207304e-01 7.93759823e-01
5.16409636e-01 -6.29603863e-01 5.11961877e-01 3.46059144e-01
-1.08683932e+00 -3.73022974e-01 -2.93054372e-01 -3.09748799e-01
2.97810793e-01 -4.87454459e-02 -6.60336971e-01 1.04467586e-01
1.09476030e+00 1.26572704e+00 -6.15680337e-01 1.07615626e+00
-3.34271222e-01 6.90799892e-01 -1.43574968e-01 2.84302235e-01
2.22399250e-01 2.51983255e-01 2.51800448e-01 1.09703493e+00
1.73167303e-01 1.66440755e-01 3.92930686e-01 4.41595942e-01
5.67546599e-02 7.44225979e-02 -4.64915186e-01 3.97345684e-02
-1.03008121e-01 1.00437784e+00 -8.38536322e-01 -4.91503686e-01
-7.22057402e-01 1.00324571e+00 6.14256978e-01 4.48142380e-01
-9.63072836e-01 -3.98422666e-02 2.86084890e-01 3.24783862e-01
7.59595931e-01 -2.24022716e-01 2.93522686e-01 -1.25719607e+00
-8.82581249e-02 -5.73643923e-01 6.22471690e-01 -1.09347713e+00
-9.30800974e-01 4.31072265e-01 1.26636207e-01 -1.45659769e+00
-5.05190909e-01 -6.37899876e-01 -4.80719060e-01 2.49777004e-01
-1.64838374e+00 -1.29004419e+00 -4.10664380e-01 9.79245424e-01
8.30613911e-01 -6.45309985e-02 8.05584311e-01 2.06390873e-01
-5.29267311e-01 2.60582447e-01 -2.31145725e-01 2.92467028e-01
9.59711134e-01 -1.24053371e+00 -8.38151872e-02 9.32016253e-01
5.68969309e-01 2.09328309e-01 5.23669600e-01 -5.06879151e-01
-8.96862924e-01 -1.13484359e+00 1.07503045e+00 -6.08291507e-01
6.08781517e-01 -3.43985200e-01 -6.74529016e-01 1.10979199e+00
3.96633923e-01 4.73824263e-01 8.26900780e-01 1.11635260e-01
-2.06480488e-01 -5.08794934e-02 -7.23847866e-01 2.83636808e-01
1.23133349e+00 -5.31751990e-01 -7.97436476e-01 6.23256385e-01
4.15742964e-01 -5.24180353e-01 -6.09121621e-01 2.95086205e-01
4.13278013e-01 -1.26970160e+00 8.06516886e-01 -8.65720868e-01
5.68977833e-01 -3.69179666e-01 6.97791427e-02 -7.48485923e-01
-1.75221726e-01 -4.52725530e-01 -5.30857921e-01 1.02960181e+00
1.24674633e-01 -6.79902583e-02 9.05049980e-01 3.69710326e-01
-1.51307538e-01 -6.85558617e-01 -7.69082248e-01 -4.42874640e-01
-4.60120380e-01 -5.25955319e-01 -1.24814689e-01 6.03753090e-01
2.50583947e-01 1.93872675e-01 -5.71020901e-01 1.54261842e-01
4.73319978e-01 1.07614011e-01 6.61378324e-01 -1.03811979e+00
-1.96372345e-01 2.45995224e-02 -7.96667516e-01 -1.17977154e+00
5.95351458e-01 -5.83648205e-01 2.97944456e-01 -1.32523441e+00
2.35833272e-01 1.31369665e-01 -4.79526341e-01 8.36174190e-01
6.82555065e-02 5.42355359e-01 1.58441797e-01 3.42455119e-01
-1.31469882e+00 3.62950385e-01 7.35247314e-01 1.23951927e-01
-1.57187521e-01 -5.46612889e-02 -1.46558121e-01 1.17208672e+00
5.17677426e-01 -3.91625255e-01 -5.12665570e-01 -3.98998052e-01
-3.11375745e-02 3.77893113e-02 7.50051856e-01 -1.25929284e+00
5.14511049e-01 -6.65241107e-02 5.42860866e-01 -7.01365769e-01
4.59576488e-01 -7.75936425e-01 -4.99986410e-01 1.49525583e-01
-5.91856539e-01 -1.01133294e-01 1.02882050e-02 8.95374477e-01
-4.40619856e-01 -1.92659512e-01 6.31576955e-01 -2.28738964e-01
-1.27818370e+00 2.14707568e-01 -5.01240373e-01 -8.29599351e-02
1.34177899e+00 -4.19939846e-01 -1.33005366e-01 -5.43348491e-01
-1.21114457e+00 2.59929359e-01 5.03483117e-01 4.59229439e-01
6.21640444e-01 -1.12817419e+00 -3.54366541e-01 1.48569658e-01
2.63800740e-01 -1.52808994e-01 3.44836265e-01 1.06624115e+00
-3.19596529e-01 3.46276820e-01 -2.56495029e-01 -9.41514969e-01
-1.34861970e+00 7.22568214e-01 3.05781871e-01 -1.32904977e-01
-6.92803562e-01 7.99159110e-01 3.11547637e-01 2.05064878e-01
5.59357941e-01 -3.15000325e-01 -5.38403392e-01 1.68399051e-01
7.92991638e-01 9.02203470e-02 -1.37702793e-01 -9.47739065e-01
-2.64516652e-01 5.27485073e-01 4.98905964e-03 -5.45746163e-02
1.36055410e+00 -3.90208215e-01 4.92721982e-02 6.89409018e-01
1.00327361e+00 -4.32864219e-01 -1.83294368e+00 -3.33505362e-01
1.62082016e-01 -4.89915520e-01 1.68840826e-01 -6.17452621e-01
-9.22180176e-01 1.00768805e+00 7.58677483e-01 1.66472811e-02
1.27702391e+00 2.07318172e-01 5.59441984e-01 3.53326321e-01
2.69343227e-01 -1.23929584e+00 5.87753177e-01 4.79679316e-01
5.74496329e-01 -1.48129761e+00 -9.52308401e-02 -2.71997750e-01
-6.91661835e-01 1.15902781e+00 8.39616179e-01 -3.07295412e-01
5.28223813e-01 3.92781273e-02 9.46556125e-03 -2.70133764e-01
-1.04576075e+00 -6.44574940e-01 4.40051317e-01 5.95818639e-01
4.99261200e-01 -5.45895576e-01 8.35629553e-03 2.97210753e-01
3.26259255e-01 4.73105520e-01 4.46889013e-01 1.09930003e+00
-4.97754842e-01 -8.94424021e-01 -1.66102424e-01 3.10217351e-01
-5.29809713e-01 7.35686719e-02 -6.05475754e-02 7.19653785e-01
4.41107363e-01 9.31677938e-01 5.05276084e-01 -1.75917953e-01
1.34727240e-01 3.85391921e-01 7.12655067e-01 -8.61849546e-01
-3.16144288e-01 2.18518496e-01 7.83561319e-02 -1.08303916e+00
-1.29612160e+00 -9.11169112e-01 -1.39490044e+00 3.20141762e-01
-3.28959733e-01 -1.83889434e-01 1.71063274e-01 1.23552787e+00
3.23758096e-01 4.84281480e-01 3.73570412e-01 -1.18494046e+00
8.98868675e-05 -7.90606320e-01 -3.97385269e-01 5.12106836e-01
3.65750402e-01 -1.03507781e+00 -1.28954515e-01 8.18690062e-01] | [8.479859352111816, 0.5899574756622314] |
0d7c255b-80b6-4b1f-9b14-88aa2ba720f3 | sood-towards-semi-supervised-oriented-object | 2304.04515 | null | https://arxiv.org/abs/2304.04515v1 | https://arxiv.org/pdf/2304.04515v1.pdf | SOOD: Towards Semi-Supervised Oriented Object Detection | Semi-Supervised Object Detection (SSOD), aiming to explore unlabeled data for boosting object detectors, has become an active task in recent years. However, existing SSOD approaches mainly focus on horizontal objects, leaving multi-oriented objects that are common in aerial images unexplored. This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework. Towards oriented objects in aerial scenes, we design two loss functions to provide better supervision. Focusing on the orientations of objects, the first loss regularizes the consistency between each pseudo-label-prediction pair (includes a prediction and its corresponding pseudo label) with adaptive weights based on their orientation gap. Focusing on the layout of an image, the second loss regularizes the similarity and explicitly builds the many-to-many relation between the sets of pseudo-labels and predictions. Such a global consistency constraint can further boost semi-supervised learning. Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark. The code will be available at https://github.com/HamPerdredes/SOOD. | ['Xiang Bai', 'Xiaoqing Ye', 'Zhikang Zou', 'Xiaolong Liu', 'Jingyu Li', 'Dingkang Liang', 'Wei Hua'] | 2023-04-10 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Hua_SOOD_Towards_Semi-Supervised_Oriented_Object_Detection_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Hua_SOOD_Towards_Semi-Supervised_Oriented_Object_Detection_CVPR_2023_paper.pdf | cvpr-2023-1 | ['semi-supervised-object-detection', 'pseudo-label'] | ['computer-vision', 'miscellaneous'] | [ 9.80517343e-02 6.60539139e-03 -4.44777429e-01 -5.64847648e-01
-5.61410725e-01 -4.19895887e-01 4.92998004e-01 2.26462781e-01
-2.22568259e-01 3.47693413e-01 -5.34703434e-02 -1.02754153e-01
-1.30089328e-01 -5.83717406e-01 -7.65349984e-01 -8.91169667e-01
-4.89419959e-02 2.04499811e-01 6.39847100e-01 -3.30672637e-02
-3.40337791e-02 1.92825466e-01 -1.50876224e+00 3.22530776e-01
7.01062262e-01 1.38003314e+00 3.58450204e-01 2.45296225e-01
9.10416842e-02 7.53685415e-01 -1.29740581e-01 -3.69482279e-01
5.36475062e-01 -1.72915801e-01 -6.55886114e-01 4.39413995e-01
8.41550708e-01 -1.57215878e-01 -9.19154063e-02 1.29974365e+00
4.23866183e-01 -2.56802201e-01 5.49732029e-01 -1.38581860e+00
-6.63161218e-01 6.26429558e-01 -8.07101548e-01 3.58514577e-01
-2.88321733e-01 9.89085138e-02 1.31551707e+00 -1.00550318e+00
3.94831926e-01 1.13227296e+00 7.44861543e-01 3.78650934e-01
-1.28157055e+00 -5.53061306e-01 5.97623229e-01 2.87332118e-01
-1.43478739e+00 6.36018217e-02 8.99227738e-01 -6.10895038e-01
2.83989877e-01 2.11825088e-01 4.87623453e-01 8.92827809e-01
-1.14571594e-01 1.07931745e+00 1.16612065e+00 -4.51137334e-01
2.61672616e-01 3.14306319e-01 6.36649311e-01 8.41485620e-01
3.38736475e-01 1.74126253e-01 -3.30054194e-01 1.00891121e-01
2.71601647e-01 2.11741194e-01 -2.80233443e-01 -9.98759091e-01
-9.34367895e-01 6.62813008e-01 1.02548862e+00 -6.46671206e-02
-2.19277978e-01 -9.78476554e-02 2.87163287e-01 -2.18587786e-01
6.65015042e-01 9.53470320e-02 -4.30148542e-01 5.15784740e-01
-5.92157304e-01 2.89346844e-01 2.29534939e-01 9.98450756e-01
7.60494351e-01 -2.58736044e-01 -4.30391848e-01 8.61258328e-01
5.51479697e-01 4.28371459e-01 2.63103843e-01 -4.22197819e-01
6.04789674e-01 9.38580751e-01 1.82137668e-01 -8.89089525e-01
-5.27486205e-01 -8.64273190e-01 -7.27235079e-01 3.02166760e-01
4.81007665e-01 1.00146560e-03 -9.13740158e-01 1.59116042e+00
8.89864564e-01 -5.17372899e-02 -3.04239362e-01 1.25735998e+00
8.11046422e-01 5.23972809e-01 2.35110983e-01 8.49406570e-02
1.52225494e+00 -1.46228552e+00 -3.23398530e-01 -6.82004452e-01
6.13771558e-01 -7.03330576e-01 1.10753417e+00 1.74190924e-01
-7.21545279e-01 -7.53611863e-01 -1.20409775e+00 9.77699235e-02
-2.19964802e-01 6.38470829e-01 4.13564831e-01 5.56026518e-01
-5.70756733e-01 4.21934605e-01 -8.62674713e-01 -2.71834791e-01
8.20096016e-01 1.64547905e-01 3.01441755e-02 -2.33598784e-01
-8.23891342e-01 5.81537843e-01 4.06569779e-01 2.05266938e-01
-9.40914035e-01 -5.48248529e-01 -6.70957446e-01 -7.81715363e-02
5.99889696e-01 -4.73272651e-01 1.13833106e+00 -1.00835824e+00
-9.67772722e-01 1.16119456e+00 1.00289740e-01 -5.28881192e-01
6.13417685e-01 -2.88849831e-01 -1.90479651e-01 -5.60785346e-02
3.31975162e-01 8.58418345e-01 9.89873409e-01 -1.32825398e+00
-1.00450432e+00 -7.59471953e-01 2.66069412e-01 3.80854219e-01
-4.52401489e-01 -3.24702039e-02 -3.62354100e-01 -7.55318820e-01
3.18305105e-01 -1.03185666e+00 -1.80092424e-01 6.01453602e-01
-6.48902833e-01 -4.28914696e-01 8.90711188e-01 -3.22765052e-01
1.07017851e+00 -2.25693464e+00 1.16247728e-01 -2.63352752e-01
1.16759069e-01 3.38061541e-01 -1.94005407e-02 -2.11789086e-02
-9.94797051e-02 -3.70944500e-01 -3.46376866e-01 -4.29251999e-01
-3.24944779e-02 -2.26384923e-01 -2.63446838e-01 6.06599510e-01
3.00511867e-01 7.00445175e-01 -8.96575868e-01 -4.97597963e-01
1.78101301e-01 2.96722949e-01 -3.14289957e-01 2.43323281e-01
-2.34481514e-01 2.14827120e-01 -4.96923774e-01 7.90134728e-01
1.02394569e+00 -5.41031420e-01 -8.36359151e-03 -2.56547809e-01
-4.47972231e-02 1.69095933e-01 -1.18642175e+00 1.36718309e+00
-2.65005916e-01 2.73863316e-01 -8.24928656e-03 -1.07875645e+00
9.85887527e-01 -1.50274754e-01 1.45343974e-01 -4.07361925e-01
6.87167048e-02 9.47278813e-02 -1.53310046e-01 -2.59741634e-01
1.81545258e-01 -7.03920797e-02 2.82789499e-01 6.59247637e-02
4.12103422e-02 8.31045285e-02 3.38224769e-01 1.78753898e-01
5.96553206e-01 4.03931826e-01 2.96070963e-01 -4.48476344e-01
4.81570095e-01 1.66216031e-01 6.66175604e-01 5.96892059e-01
-3.55082363e-01 5.99037528e-01 3.84732634e-01 -5.66766620e-01
-7.69743145e-01 -9.38928485e-01 -5.88501036e-01 1.21771979e+00
5.98370552e-01 -2.19731241e-01 -7.10052669e-01 -1.24908853e+00
1.31931379e-01 4.69885051e-01 -7.77148664e-01 -9.73951351e-03
-2.38312691e-01 -1.02543485e+00 -5.23527414e-02 6.63467407e-01
5.75471997e-01 -8.89051139e-01 -5.47587931e-01 -1.41323870e-03
-4.57248539e-02 -1.07406700e+00 -5.56068599e-01 5.91178417e-01
-8.83260787e-01 -1.09818661e+00 -8.16185832e-01 -9.89748240e-01
8.32558751e-01 7.64023304e-01 9.94319201e-01 -8.33114758e-02
-3.81303787e-01 -4.99051325e-02 -5.25491655e-01 -5.67299962e-01
4.25937288e-02 7.93373585e-02 -1.61838531e-02 3.11000675e-01
3.95804197e-01 -1.47189274e-01 -7.36187100e-01 7.15929389e-01
-6.48672640e-01 2.49040142e-01 5.23556828e-01 8.40082407e-01
7.53066540e-01 -1.12363495e-01 2.64445692e-01 -8.31352830e-01
-2.83931226e-01 -4.28258330e-01 -9.83315885e-01 3.35576922e-01
-7.05291867e-01 2.17504203e-02 5.94546735e-01 -4.61573511e-01
-9.00138497e-01 3.27994198e-01 3.34577560e-02 -3.48257005e-01
-1.92085192e-01 1.28683701e-01 -2.94759244e-01 -2.51946338e-02
6.95853651e-01 -1.91542413e-02 -4.33935136e-01 -5.55833340e-01
1.37560889e-01 6.65392578e-01 2.14057639e-01 -2.78630883e-01
7.73022830e-01 7.52578020e-01 2.02039573e-02 -5.62406659e-01
-1.60106814e+00 -8.40155482e-01 -6.32274091e-01 -1.34661511e-01
7.33215392e-01 -1.10229909e+00 -2.20910162e-01 5.58380902e-01
-8.38727415e-01 -4.02978122e-01 -3.81494284e-01 4.66880679e-01
-1.95559859e-01 3.47780347e-01 -3.68643641e-01 -7.92198598e-01
-2.68083572e-01 -1.12346315e+00 1.24621427e+00 2.70435065e-01
2.88290650e-01 -6.25044286e-01 -1.06395938e-01 4.71618474e-01
1.81523766e-02 -1.04054742e-01 6.64684296e-01 -5.41278481e-01
-6.71328962e-01 -2.77828753e-01 -6.06542706e-01 6.12516940e-01
-4.10864223e-03 -2.90690750e-01 -9.99253452e-01 -3.24873269e-01
-1.04167908e-01 -6.42356932e-01 1.09700739e+00 4.56504852e-01
1.20984733e+00 -2.31031463e-01 -4.27264512e-01 5.99453568e-01
1.24504113e+00 -1.61075860e-01 1.03028238e-01 4.51530069e-01
7.85678983e-01 7.59636045e-01 1.00020003e+00 4.62250710e-01
4.26405936e-01 9.79233623e-01 8.41660678e-01 -2.39470199e-01
-2.92792916e-01 -3.73273611e-01 1.19330429e-01 2.97887295e-01
1.47503227e-01 -1.94278419e-01 -8.00807238e-01 4.94134724e-01
-1.91240633e+00 -5.54854810e-01 -3.99147868e-01 2.20185637e+00
6.37472987e-01 4.40056294e-01 2.20079169e-01 1.29972562e-01
9.49571431e-01 3.28684181e-01 -6.38593853e-01 2.78515399e-01
-1.23365737e-01 -2.67024666e-01 5.78249097e-01 1.98357671e-01
-1.72769892e+00 7.12677658e-01 4.58050299e+00 9.34167504e-01
-9.82275069e-01 2.06326112e-01 7.82029092e-01 1.66309252e-01
2.90502936e-01 -1.32386256e-02 -1.41570497e+00 6.02012157e-01
1.56377628e-01 2.58831650e-01 1.17348328e-01 1.50237632e+00
7.44995335e-03 -3.33224870e-02 -9.79805708e-01 7.00070143e-01
5.56294844e-02 -9.55744028e-01 -2.89992765e-02 -1.75869659e-01
8.33414853e-01 1.09725311e-01 1.35015056e-01 2.06194267e-01
6.04938418e-02 -4.66207474e-01 1.16242576e+00 -2.45240163e-02
4.15030450e-01 -3.76020849e-01 7.71628559e-01 4.65730131e-01
-1.47396207e+00 -3.63320827e-01 -4.63030547e-01 -3.63833942e-02
4.05996405e-02 7.00985491e-01 -4.99771297e-01 4.18878824e-01
9.84148920e-01 8.98925304e-01 -9.30049419e-01 1.18690157e+00
-5.12144923e-01 8.05877626e-01 -2.78388411e-01 -1.12517394e-01
3.80082250e-01 -1.37362435e-01 4.97356385e-01 1.06182957e+00
-5.45441732e-02 -1.12493262e-01 4.69350189e-01 6.89203501e-01
-4.09995168e-02 1.27494007e-01 -2.58530140e-01 3.38931918e-01
2.15719521e-01 1.53593504e+00 -8.84648442e-01 -3.19157332e-01
-3.57336432e-01 7.27296710e-01 4.62116957e-01 6.33557364e-02
-9.28529620e-01 -1.77753821e-01 2.93335408e-01 3.66813332e-01
5.51862538e-01 2.31879145e-01 -3.47768158e-01 -1.00411105e+00
3.05603743e-01 -6.39890432e-01 5.76697886e-01 -7.11152792e-01
-1.38415718e+00 6.25492096e-01 5.92830889e-02 -1.50784385e+00
4.93971050e-01 -8.00961554e-01 -5.05064189e-01 4.30503160e-01
-1.59876108e+00 -1.45182729e+00 -6.11400127e-01 1.07065387e-01
7.71997213e-01 1.41815230e-01 3.67464840e-01 3.21648389e-01
-7.84746230e-01 3.89391541e-01 -4.56187688e-03 7.29273632e-02
5.64257503e-01 -1.33141232e+00 2.53440291e-01 8.97355318e-01
3.35702151e-01 2.56697595e-01 5.81385732e-01 -3.33130211e-01
-8.55760872e-01 -1.41916573e+00 7.58283019e-01 -2.87015200e-01
5.20221710e-01 -4.88443583e-01 -9.32270944e-01 5.51850200e-01
-8.13331380e-02 6.22327149e-01 2.44530931e-01 4.70845476e-02
-4.12194937e-01 -4.15096968e-01 -7.83416867e-01 3.36202890e-01
1.16465592e+00 -9.27891731e-02 -2.95866489e-01 8.15065145e-01
6.68505013e-01 -3.30015182e-01 -2.25758284e-01 7.82014370e-01
3.63257796e-01 -1.01835752e+00 1.04702032e+00 -5.29721975e-01
5.25926530e-01 -6.46508694e-01 -9.30954292e-02 -1.01764643e+00
-5.29667497e-01 -1.12111829e-01 -8.77452567e-02 1.18403578e+00
3.45918447e-01 -3.63903522e-01 8.72344732e-01 1.37888968e-01
-1.43471092e-01 -1.10844445e+00 -7.03028679e-01 -1.01484632e+00
-2.77340204e-01 -1.83491722e-01 2.65145093e-01 7.09564686e-01
-2.68224388e-01 5.62631667e-01 -3.53660554e-01 5.18127322e-01
9.62273896e-01 4.32501823e-01 6.15335703e-01 -1.13037467e+00
-4.26960021e-01 -3.28974992e-01 -4.36361879e-01 -1.41374874e+00
-1.60879865e-01 -9.57063377e-01 2.20782310e-01 -1.33645058e+00
4.50843304e-01 -7.61402190e-01 -3.50382745e-01 6.27447724e-01
-5.61405420e-01 5.97091615e-01 1.79186255e-01 1.82263151e-01
-9.20781255e-01 7.78580129e-01 9.39755678e-01 -3.42496097e-01
-5.33815697e-02 2.97324985e-01 -5.09362459e-01 9.44617391e-01
8.22202921e-01 -7.31145382e-01 -1.86900288e-01 -3.48583460e-01
-1.45402849e-01 -4.08653229e-01 6.54181838e-01 -1.06501627e+00
6.14264794e-02 1.39743113e-03 2.37956598e-01 -7.46718824e-01
1.43836468e-01 -7.83158004e-01 -3.29271674e-01 6.15214765e-01
-4.55199987e-01 -2.78029084e-01 2.20994391e-02 8.32867920e-01
-1.45038500e-01 -3.59019488e-01 1.17399931e+00 1.70302093e-01
-6.89761579e-01 3.67268533e-01 2.24367782e-01 1.98646307e-01
1.20323873e+00 4.45408709e-02 -2.54339755e-01 2.08320752e-01
-4.96125579e-01 4.15377349e-01 2.81417102e-01 4.61045444e-01
3.94032031e-01 -1.23087192e+00 -6.54806852e-01 2.18238868e-02
5.84381461e-01 2.55377024e-01 2.51907706e-01 8.82347584e-01
-2.48874664e-01 4.53588486e-01 -4.15642001e-02 -8.96315753e-01
-1.41531241e+00 8.51190805e-01 2.86721319e-01 -4.34302956e-01
-5.88781118e-01 1.20672071e+00 7.90188909e-01 -4.87168789e-01
5.63580573e-01 -2.48988405e-01 -1.68413922e-01 2.68877037e-02
4.27030653e-01 3.48370314e-01 1.03131868e-01 -5.28478265e-01
-5.28219044e-01 5.89538097e-01 -2.16545746e-01 3.37499827e-01
1.17007899e+00 -5.45154214e-02 2.23746002e-01 4.01063621e-01
1.01663411e+00 -3.60338032e-01 -1.68536520e+00 -5.59818804e-01
-1.89402569e-02 -5.50536990e-01 2.41671830e-01 -7.17500210e-01
-1.04073751e+00 9.17541564e-01 9.61064875e-01 6.42505288e-02
9.73510087e-01 1.97411105e-01 4.48428690e-01 1.81396097e-01
4.03952330e-01 -7.93363690e-01 3.48407626e-01 1.55160815e-01
7.03098953e-01 -1.64945054e+00 1.40582696e-01 -7.44196653e-01
-8.55989099e-01 7.59447873e-01 8.51711929e-01 -4.52515110e-02
6.42991245e-01 -5.27524464e-02 6.72661290e-02 -9.46888328e-02
-4.20320868e-01 -4.18387502e-01 6.27644360e-01 3.35602522e-01
2.62714922e-01 1.38879657e-01 -2.74510801e-01 5.76937854e-01
3.53745818e-01 -5.07253781e-02 -5.70440479e-02 9.20713603e-01
-4.68567431e-01 -9.02776718e-01 -4.31956798e-01 4.24927413e-01
-2.91341156e-01 -9.02546570e-02 -2.34361321e-01 4.87123013e-01
3.88424158e-01 7.03450501e-01 -7.85949454e-02 -1.97808787e-01
3.94274890e-01 -2.91136861e-01 2.64897555e-01 -7.14767396e-01
-2.96380430e-01 -5.08704083e-03 -2.62205184e-01 -3.39945167e-01
-5.37065208e-01 -6.53252900e-01 -9.10996675e-01 2.91209608e-01
-8.63436460e-01 6.24696054e-02 5.62199354e-01 5.82341075e-01
2.20451668e-01 3.81648123e-01 7.80455351e-01 -8.39623094e-01
-9.62098897e-01 -9.57003951e-01 -7.23383784e-01 3.94861549e-01
2.85154760e-01 -9.79724050e-01 -4.20358330e-01 7.12023005e-02] | [9.21463680267334, 1.13712477684021] |
72dff537-3221-43a0-8a34-d377656de9be | learning-rich-representation-of-keyphrases-1 | 2112.08547 | null | https://arxiv.org/abs/2112.08547v2 | https://arxiv.org/pdf/2112.08547v2.pdf | Learning Rich Representation of Keyphrases from Text | In this work, we explore how to train task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 8.16 points in F1) over SOTA, when the LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks. | ['Rajarshi Bhowmik', 'Ravneet Arora', 'Debanjan Mahata', 'Mayank Kulkarni'] | 2021-12-16 | null | https://aclanthology.org/2022.findings-naacl.67 | https://aclanthology.org/2022.findings-naacl.67.pdf | findings-naacl-2022-7 | ['keyphrase-generation', 'keyphrase-extraction'] | ['natural-language-processing', 'natural-language-processing'] | [ 4.04317468e-01 5.16906202e-01 1.16250187e-01 1.77619427e-01
-1.62944973e+00 -7.52443910e-01 1.05863047e+00 5.34850836e-01
-7.50116646e-01 1.00506461e+00 7.52139568e-01 -3.53871852e-01
-1.89744443e-01 -8.06270719e-01 -9.46832538e-01 -5.28652847e-01
1.74774043e-02 5.24652123e-01 1.66694000e-01 -5.72932184e-01
2.07741573e-01 3.51087987e-01 -1.13971674e+00 6.62200511e-01
8.65032852e-01 6.83137596e-01 1.73654124e-01 1.17396486e+00
-5.44089019e-01 1.01286602e+00 -1.09373260e+00 -5.57365417e-01
1.51390452e-02 -4.30201501e-01 -1.17942095e+00 -1.53997809e-01
6.85263455e-01 -2.47614197e-02 -4.07203257e-01 6.62095785e-01
6.29077435e-01 1.37692124e-01 7.68087268e-01 -7.78074503e-01
-5.28364480e-01 1.19275784e+00 -3.38967860e-01 4.91276264e-01
5.15710592e-01 -2.59394675e-01 1.32646132e+00 -9.28314447e-01
6.74101412e-01 1.24311411e+00 4.79511619e-01 3.32045078e-01
-1.25554860e+00 -4.17620867e-01 -1.17591098e-01 2.00577065e-01
-1.24763000e+00 -4.76702362e-01 3.38435143e-01 -4.25002389e-02
1.37498927e+00 5.07383466e-01 2.30533704e-01 1.21340346e+00
2.47435063e-01 1.06541216e+00 9.29105163e-01 -7.75324702e-01
-7.53413290e-02 2.45871231e-01 1.58034906e-01 3.14007312e-01
1.65216953e-01 -3.46235335e-01 -5.56838393e-01 -2.72332042e-01
4.05212671e-01 -5.43560207e-01 -2.66421169e-01 2.80817866e-01
-1.43353975e+00 8.09578240e-01 4.56380397e-02 6.63470268e-01
-6.06113195e-01 1.41677484e-01 6.22740626e-01 6.04939282e-01
3.83231968e-01 9.19799030e-01 -8.59903157e-01 -7.93687478e-02
-1.26909542e+00 5.07914901e-01 9.74017143e-01 1.01452732e+00
6.44989014e-01 4.56756987e-02 -1.07614446e+00 8.54524493e-01
-2.70900428e-01 5.32682776e-01 7.35704303e-01 -6.08999550e-01
9.21052158e-01 5.40059209e-01 -2.24569663e-02 -5.10227561e-01
-2.76949823e-01 -6.74327672e-01 -1.07421446e+00 -6.46795511e-01
1.30822048e-01 -3.67471069e-01 -1.23424733e+00 1.46319175e+00
6.52004853e-02 -1.37671515e-01 5.12274504e-01 6.37226850e-02
1.08038926e+00 1.18267143e+00 -5.88371307e-02 -2.84748346e-01
1.73227048e+00 -9.77392912e-01 -8.63022685e-01 -2.54019409e-01
7.89729834e-01 -1.05745602e+00 1.09899187e+00 4.35551405e-01
-1.09740305e+00 -5.70181847e-01 -7.89734423e-01 -3.40119958e-01
-6.01370633e-01 5.60712397e-01 1.46106228e-01 2.66454786e-01
-1.11732483e+00 4.85356122e-01 -3.30171198e-01 -4.97492492e-01
1.39781818e-01 9.17035863e-02 -4.25561070e-01 1.37346551e-01
-1.37736952e+00 1.01003981e+00 8.23406696e-01 -2.54290998e-01
-7.86293447e-01 -9.92762923e-01 -8.57916474e-01 1.26292109e-01
7.34527588e-01 -8.82527173e-01 1.34430742e+00 -1.92103878e-01
-1.44336569e+00 8.73132885e-01 -1.16977334e-01 -9.29840028e-01
2.74605423e-01 -7.10397363e-01 -3.44751239e-01 1.26539335e-01
1.72995374e-01 6.72559738e-01 9.69424903e-01 -9.76444960e-01
-6.45573139e-01 8.62287655e-02 -2.85160225e-02 1.33397609e-01
-2.96365112e-01 2.48675972e-01 -2.66054600e-01 -1.16263497e+00
-3.76270294e-01 -5.98769307e-01 -1.28654346e-01 -1.00483990e+00
-8.72010946e-01 -4.38055992e-01 5.42590678e-01 -1.12030637e+00
1.68587863e+00 -1.63855076e+00 1.95372492e-01 8.37690160e-02
-1.13887705e-01 4.86203074e-01 -1.48447782e-01 9.81131136e-01
-1.56684950e-01 2.96628714e-01 -3.92175883e-01 -2.52299219e-01
4.61013578e-02 2.74901718e-01 -1.00540543e+00 -1.94736153e-01
5.47542691e-01 1.32144749e+00 -7.48529553e-01 -5.72055757e-01
-6.83343485e-02 1.88327402e-01 -2.92809576e-01 4.53411847e-01
-3.35581303e-01 1.50383234e-01 -3.56257051e-01 1.02045506e-01
3.29264522e-01 -6.36076629e-02 -7.29753673e-02 -3.28723013e-01
5.47804944e-02 8.00257266e-01 -1.19388616e+00 1.58475852e+00
-8.33946228e-01 5.72088122e-01 -1.91127315e-01 -8.54661524e-01
7.03759313e-01 5.60265422e-01 1.01981349e-01 -5.72994351e-01
7.15399673e-03 1.56368628e-01 -2.14161605e-01 -3.15273970e-01
9.57975805e-01 2.46374719e-02 -3.32412452e-01 4.92665410e-01
6.40306413e-01 -5.55821598e-01 5.22446275e-01 6.93092644e-01
1.26997650e+00 -1.52191356e-01 6.25555158e-01 -1.56091183e-01
8.52619827e-01 -6.64240122e-02 -1.52699575e-01 9.52280879e-01
6.73829257e-01 6.91527843e-01 5.99119127e-01 9.02891532e-02
-1.08466506e+00 -7.72162974e-01 2.67340392e-02 1.20834398e+00
-5.44009328e-01 -1.04210079e+00 -8.90417993e-01 -8.41257036e-01
-1.33479431e-01 1.17977536e+00 -5.49376249e-01 -3.74458015e-01
-1.06689489e+00 -6.90757871e-01 1.10436749e+00 3.96848410e-01
5.03662109e-01 -1.23625934e+00 -2.42165208e-01 4.00617599e-01
-3.33495796e-01 -1.38354659e+00 -5.58868051e-01 5.23895502e-01
-7.30105579e-01 -6.72611713e-01 -1.01972520e+00 -6.32974029e-01
3.41512650e-01 -2.15006709e-01 1.35986257e+00 -2.21462682e-01
-3.86228412e-02 4.84898418e-01 -5.08673966e-01 -2.77970046e-01
-8.23461235e-01 5.52628994e-01 -2.89411724e-01 -8.66696388e-02
-9.14453939e-02 -4.16888922e-01 -8.68727937e-02 -3.23170125e-01
-1.29573560e+00 1.92052554e-02 9.28397715e-01 8.15745413e-01
4.40636575e-01 7.55724013e-02 4.35226679e-01 -1.02247918e+00
1.05167878e+00 -3.20149034e-01 -1.97336957e-01 5.67215264e-01
-4.32545096e-01 7.83420563e-01 8.09997916e-01 -5.10033250e-01
-9.58462775e-01 -5.71205020e-01 -4.07817274e-01 -8.05864669e-03
-1.60064697e-01 4.24632847e-01 -1.84745386e-01 4.82363641e-01
8.29453349e-01 4.85532194e-01 -6.69477582e-01 -8.50414455e-01
8.66696358e-01 6.49243832e-01 7.69294202e-01 -6.81605339e-01
1.06129682e+00 6.03509955e-02 -1.88354760e-01 -9.01199520e-01
-1.05072141e+00 -5.61447680e-01 -4.64691907e-01 5.26908875e-01
7.37700403e-01 -8.81855428e-01 -2.13466167e-01 2.45163381e-01
-1.35708702e+00 -1.67502314e-01 -6.77486658e-01 1.76179558e-01
-3.43282610e-01 4.89606410e-01 -6.36859417e-01 -6.08339667e-01
-1.15552175e+00 -6.21287704e-01 1.30699098e+00 9.74285081e-02
-4.65798199e-01 -9.16491985e-01 1.62853166e-01 2.89669186e-01
3.62419993e-01 6.06465228e-02 1.26784265e+00 -1.17768955e+00
-2.46126965e-01 -1.92481965e-01 -1.41151935e-01 6.27750993e-01
1.35524645e-01 -2.60520905e-01 -9.54216897e-01 -2.05959082e-01
-1.03346698e-01 -3.58990997e-01 1.26345503e+00 8.46954137e-02
7.97141790e-01 -7.67636359e-01 -8.06133375e-02 2.84418076e-01
1.01053298e+00 -2.64365315e-01 8.01612318e-01 3.30699205e-01
6.42449498e-01 5.78066349e-01 4.69460130e-01 1.68587029e-01
4.18760657e-01 6.41627729e-01 -1.64042428e-01 -8.07930455e-02
-3.48522514e-01 -5.89088917e-01 6.18328273e-01 9.68383908e-01
1.70872718e-01 -4.12054449e-01 -7.28586137e-01 7.23988235e-01
-1.58948946e+00 -7.88540125e-01 -1.37354866e-01 1.93642032e+00
1.46212196e+00 2.52042592e-01 7.87357520e-03 2.55117178e-01
4.15935218e-01 2.64469445e-01 5.95678762e-02 -4.81272906e-01
-3.66554439e-01 9.17576313e-01 5.34532726e-01 5.33974111e-01
-1.12450266e+00 1.30628145e+00 5.57446623e+00 1.39212322e+00
-8.57906818e-01 1.49166375e-01 3.80826950e-01 2.94726819e-01
-2.84465939e-01 1.07219994e-01 -1.19739306e+00 1.10598445e-01
1.34956467e+00 -3.59050691e-01 1.84502468e-01 4.86565411e-01
-9.12642702e-02 -2.21895218e-01 -9.99013066e-01 9.10762548e-01
1.23773664e-01 -1.45792580e+00 4.34193075e-01 -1.81671083e-01
6.23714983e-01 -1.36541158e-01 -3.25852275e-01 7.07303762e-01
4.46327418e-01 -1.00557148e+00 7.21645176e-01 3.71093422e-01
7.20513105e-01 -6.51629567e-01 7.74676919e-01 5.21154821e-01
-1.02585351e+00 1.94081977e-01 -3.09168100e-01 3.24915528e-01
1.66663706e-01 7.10012317e-01 -1.30888367e+00 1.05083740e+00
4.82362807e-01 2.44687855e-01 -8.65081549e-01 6.69736624e-01
-4.96497691e-01 8.74853015e-01 -4.73163396e-01 1.39873356e-01
3.12022179e-01 1.73922807e-01 6.75554693e-01 1.79438841e+00
2.47307166e-01 -1.06491424e-01 -1.56852722e-01 6.16719961e-01
-4.53661263e-01 4.30996478e-01 -3.55560184e-01 -4.01950747e-01
2.98822910e-01 1.55303288e+00 -6.44209743e-01 -7.83570588e-01
1.48929387e-01 1.17787576e+00 1.89917311e-01 3.11473995e-01
-5.61094046e-01 -7.11475730e-01 2.10571155e-01 2.51034889e-02
6.79559231e-01 -1.02342144e-01 1.43575147e-01 -1.26461220e+00
1.27021790e-01 -1.21790802e+00 6.04703546e-01 -6.86443865e-01
-1.06463075e+00 8.23451102e-01 2.79333502e-01 -7.00040340e-01
-6.98999226e-01 -2.96957910e-01 -6.26342118e-01 8.99310410e-01
-1.51536036e+00 -1.28663027e+00 1.84397861e-01 3.23707432e-01
6.90177619e-01 -7.83408955e-02 9.35018957e-01 1.78653494e-01
-3.33945602e-01 7.01156557e-01 7.24971443e-02 2.26704136e-01
7.93845117e-01 -1.63625598e+00 8.33771348e-01 9.42309201e-01
7.55328238e-01 8.01330566e-01 7.37739027e-01 -5.99955440e-01
-1.34033406e+00 -1.24135518e+00 1.24532163e+00 -7.10314929e-01
8.05364847e-01 -5.83464265e-01 -1.08262610e+00 6.18330002e-01
5.99478483e-01 -3.86193037e-01 2.84790844e-01 -1.88202009e-01
-2.96397507e-01 -5.68784960e-02 -7.87474036e-01 5.03072917e-01
5.83008289e-01 -7.37854123e-01 -1.09332609e+00 3.78601253e-01
1.08660710e+00 -4.34826195e-01 -8.58369172e-01 3.87671053e-01
-3.37018184e-02 -4.14842159e-01 1.11227536e+00 -8.05570245e-01
2.40133032e-01 -1.86020777e-01 -1.13002904e-01 -1.36266232e+00
8.10863357e-03 -1.20479977e+00 -4.53673333e-01 1.77539480e+00
5.92746615e-01 -3.95660073e-01 2.80044377e-01 -1.64957613e-01
-5.59944399e-02 -7.36259222e-01 -7.45744586e-01 -6.14654958e-01
2.73065716e-01 -4.21044230e-01 4.41594154e-01 4.96889621e-01
-3.83810401e-01 1.14795899e+00 -3.35853219e-01 -3.85921858e-02
1.18483923e-01 -9.75729302e-02 9.32874739e-01 -8.18060517e-01
-3.87007385e-01 -2.11076975e-01 1.09909117e-01 -1.18756878e+00
-5.35591925e-03 -9.47946250e-01 -2.27741793e-01 -1.76882589e+00
-3.29299690e-03 -2.13550068e-02 -7.99180716e-02 5.83404303e-01
-4.80852991e-01 5.88499662e-03 2.65865952e-01 1.05349325e-01
-4.36258733e-01 5.32985389e-01 1.00481665e+00 -6.40103370e-02
-2.31901005e-01 1.10005163e-01 -8.90275657e-01 4.17847693e-01
5.67071438e-01 -6.45685315e-01 -1.84704140e-01 -9.68253538e-02
4.09558177e-01 -7.36160725e-02 3.04166555e-01 -7.47570097e-01
1.32514745e-01 1.59809858e-01 2.04405084e-01 -8.96445990e-01
1.50343254e-01 -3.05546552e-01 -1.38405606e-01 1.86210215e-01
-5.04489243e-01 1.60608500e-01 5.27783692e-01 2.36881271e-01
-2.69412488e-01 -4.27765727e-01 3.62203658e-01 -1.73614547e-01
-2.45320335e-01 -1.34019211e-01 -3.96384090e-01 6.90535784e-01
2.99184710e-01 1.38806015e-01 -2.31337905e-01 -4.67337400e-01
-4.16283488e-01 7.25171119e-02 -1.05458133e-01 3.31919432e-01
3.67163181e-01 -9.95634317e-01 -1.03210747e+00 2.53746621e-02
-4.15910855e-02 1.53877646e-01 5.33823948e-03 9.12517488e-01
-3.47325057e-01 9.81913328e-01 3.83158267e-01 -1.11296907e-01
-1.12922406e+00 3.47786665e-01 5.06901629e-02 -1.19014716e+00
-6.94880545e-01 8.86273026e-01 2.66826786e-02 -5.57607651e-01
2.20243275e-01 -9.88459408e-01 -3.90296519e-01 4.60988641e-01
5.25046468e-01 2.83554196e-01 7.02562749e-01 -2.95821190e-01
-1.45445123e-01 3.29048961e-01 -4.79965210e-01 -3.35205078e-01
1.27595687e+00 9.05341431e-02 -2.20136479e-01 3.60878766e-01
1.27158558e+00 5.70112348e-01 -4.75267708e-01 -5.34588933e-01
5.91212988e-01 3.77191693e-01 1.19371630e-01 -8.83799791e-01
-4.39330667e-01 6.99922144e-01 4.96635586e-02 2.26946369e-01
1.04107666e+00 2.54063994e-01 1.22251892e+00 7.91946888e-01
-1.46494890e-02 -1.04990947e+00 1.05646454e-01 8.51361513e-01
1.17977345e+00 -8.14993322e-01 1.14589788e-01 -1.25044391e-01
-7.77262807e-01 1.13708699e+00 5.25865890e-02 -1.09993950e-01
2.93829858e-01 2.69158840e-01 -3.47055010e-02 -2.20393881e-01
-8.82751584e-01 -4.04127777e-01 7.03347206e-01 2.17093125e-01
3.70545834e-01 -1.63905606e-01 -1.91195041e-01 7.16282487e-01
-8.04371953e-01 -3.93153459e-01 4.58919019e-01 8.34105074e-01
-2.91483551e-01 -1.25508237e+00 -4.56056118e-01 5.58399916e-01
-7.86388993e-01 -6.93242133e-01 -6.47623181e-01 8.28461349e-01
-1.35137811e-01 8.19321215e-01 -1.92699328e-01 -2.64163017e-01
4.80783939e-01 4.81747895e-01 4.62506682e-01 -9.41843867e-01
-1.06613517e+00 1.32777527e-01 4.31406707e-01 -1.34295225e-01
-5.96421510e-02 -2.35904425e-01 -1.18657303e+00 6.79378957e-02
-5.12099028e-01 5.66770434e-01 3.97583842e-01 1.12900531e+00
3.48032862e-01 6.99439824e-01 3.50570679e-01 -4.25043970e-01
-6.79642975e-01 -1.51420546e+00 -1.19335651e-01 2.40556926e-01
3.88363272e-01 -8.60311091e-02 -3.14959079e-01 3.07938695e-01] | [12.299161911010742, 9.030123710632324] |
458802f8-31bf-407e-a4e8-dcfeca0ec2a6 | learning-in-imperfect-environment-multi-label | 2304.10539 | null | https://arxiv.org/abs/2304.10539v1 | https://arxiv.org/pdf/2304.10539v1.pdf | Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels | Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: \textbf{CO}rrection $\rightarrow$ \textbf{M}odificat\textbf{I}on $\rightarrow$ balan\textbf{C}e, abbreviated as \textbf{\method{}}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed \method{} significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets. | ['Yueting Zhuang', 'Siliang Tang', 'Beng Chin Ooi', 'Lingze Zeng', 'Changshuo Liu', 'Wenqiao Zhang'] | 2023-04-20 | null | null | null | null | ['philosophy'] | ['miscellaneous'] | [ 3.41859370e-01 -2.27576613e-01 -4.85226482e-01 -8.32802474e-01
-1.27283084e+00 -5.43143690e-01 1.75440386e-01 3.08817536e-01
-4.65663821e-01 1.01566470e+00 -3.59055251e-01 -4.32393312e-01
-2.43099853e-01 -4.15392488e-01 -7.05980301e-01 -8.36859226e-01
3.68928343e-01 7.20966280e-01 1.69483960e-01 1.45331711e-01
1.70027971e-01 2.12035790e-01 -1.60885680e+00 5.92527092e-01
9.06287491e-01 1.12445772e+00 2.01106574e-02 5.99000394e-01
-5.25243431e-02 8.69150817e-01 -6.74355984e-01 -6.63207769e-01
1.95097819e-01 -3.82272214e-01 -6.01512253e-01 -1.10086463e-01
6.02115571e-01 -3.99399661e-02 4.78838533e-01 1.00492275e+00
7.38961935e-01 -1.86553240e-01 1.11458778e+00 -1.72036004e+00
-1.51527077e-01 6.48500919e-01 -1.36937535e+00 -2.35326700e-02
-1.38565168e-01 -1.90301668e-02 1.15562034e+00 -9.69353914e-01
2.05403894e-01 1.26488292e+00 1.01454318e+00 5.46585798e-01
-1.12656581e+00 -1.28096235e+00 3.72482508e-01 -6.65369332e-02
-1.44253111e+00 -1.89165711e-01 5.78886628e-01 -3.42309535e-01
5.11692464e-01 4.12681341e-01 -1.43931121e-01 9.06660140e-01
2.36099929e-01 1.03981268e+00 1.53683376e+00 -6.26652360e-01
1.49935305e-01 2.61491865e-01 4.98934746e-01 6.25797272e-01
2.37293288e-01 -8.95149931e-02 -3.20981681e-01 -3.63403976e-01
4.97439466e-02 5.44251241e-02 6.62843511e-02 -9.40733030e-02
-8.20958316e-01 8.72653186e-01 -1.00998431e-01 -6.58640778e-03
-1.69184860e-02 3.62970471e-01 5.32644272e-01 2.45316207e-01
6.19701624e-01 -1.69243127e-01 -9.44602549e-01 2.74497241e-01
-9.66472149e-01 3.77939016e-01 4.97453213e-01 1.13957238e+00
7.62925446e-01 -2.76543349e-01 -5.20561278e-01 1.23124516e+00
2.68940926e-01 7.67419279e-01 5.75068831e-01 -8.13639462e-01
6.45215929e-01 4.53439087e-01 1.77530516e-02 -7.08934247e-01
-6.65531576e-01 -8.41798484e-01 -9.75719988e-01 2.30624110e-01
3.55642587e-01 -2.32601434e-01 -7.88835585e-01 2.04918528e+00
4.54629391e-01 1.90783411e-01 -1.60686061e-01 4.45060223e-01
5.09801865e-01 3.18068475e-01 4.93274093e-01 -3.98600668e-01
1.33522964e+00 -9.79177833e-01 -6.18196070e-01 -3.52592200e-01
1.02039278e+00 -7.21492529e-01 1.28465748e+00 4.41679865e-01
-7.07642257e-01 -4.70135182e-01 -9.95032072e-01 2.14619398e-01
-2.74930090e-01 3.59990895e-01 3.35162610e-01 9.49173152e-01
-6.06916666e-01 3.63149077e-01 -3.46768558e-01 1.66138977e-01
5.27665257e-01 3.65140706e-01 -1.54905885e-01 -3.58769625e-01
-1.04163134e+00 5.60944498e-01 5.21854579e-01 -1.05714671e-01
-7.56777167e-01 -6.88344181e-01 -6.04601562e-01 -1.59593523e-01
5.30271351e-01 -3.39710921e-01 1.28915012e+00 -9.32979465e-01
-1.06427491e+00 1.05993772e+00 -1.07876122e-01 -1.48839727e-01
7.19861150e-01 3.55820335e-03 -3.83078843e-01 -2.98151255e-01
4.52841789e-01 7.08084464e-01 7.66672194e-01 -1.66776919e+00
-1.19227242e+00 -4.56376821e-01 -5.34348011e-01 9.96680781e-02
-2.00586259e-01 3.75702754e-02 -2.36749202e-01 -8.96583438e-01
1.64572015e-01 -8.93408179e-01 1.17784157e-01 -3.31281036e-01
-4.72839117e-01 -4.84618098e-01 8.28602850e-01 -2.89691269e-01
1.48041964e+00 -2.10558820e+00 -4.41820949e-01 2.42169172e-01
8.77251551e-02 2.40798131e-01 -2.33065993e-01 -2.85239611e-03
-2.92740166e-01 1.79735467e-01 -2.48558149e-01 -7.72162735e-01
-3.44050229e-02 3.70659024e-01 -7.76827559e-02 5.39849222e-01
-1.10478088e-01 6.25517309e-01 -6.88400209e-01 -7.29593277e-01
-1.28875464e-01 -1.65293038e-01 -6.05895221e-01 2.02133097e-02
-3.69336754e-01 2.23937213e-01 -3.37072521e-01 8.86153340e-01
9.44582105e-01 -3.84332776e-01 1.69415727e-01 2.36532744e-02
2.95063645e-01 -3.85396391e-01 -1.34413683e+00 9.64559436e-01
-3.75868082e-01 -2.38269940e-01 1.08489275e-01 -1.12493932e+00
9.22003746e-01 2.44457394e-01 4.44646925e-01 -5.58032155e-01
2.62033641e-01 5.80606878e-01 -3.25028449e-01 -1.14335611e-01
1.39560774e-01 -6.29094064e-01 -3.80579352e-01 6.77300632e-01
-2.31576711e-02 5.38589172e-02 4.26416062e-02 9.93755367e-03
8.28799903e-01 -2.96657719e-02 3.16162080e-01 -2.59931147e-01
6.01802647e-01 -3.33659858e-01 1.00293112e+00 8.91520858e-01
-6.18257225e-01 5.95268786e-01 5.06642461e-01 -7.85084814e-02
-6.89421415e-01 -7.09444165e-01 -1.76067173e-01 1.71536410e+00
7.38525158e-03 -8.77803862e-02 -6.16033554e-01 -1.25316036e+00
2.54865140e-01 1.00931644e+00 -5.55655658e-01 -1.52579591e-01
-4.56050336e-01 -1.37473106e+00 8.11838210e-01 3.42330128e-01
4.59417641e-01 -9.59150851e-01 -2.36676410e-01 5.24714850e-02
-3.73368561e-01 -8.54341149e-01 -5.95908463e-01 7.45460391e-01
-5.74833632e-01 -1.10935235e+00 -5.70945501e-01 -7.26330757e-01
5.52304626e-01 3.71740647e-02 1.15501511e+00 2.27700099e-02
-2.77684126e-02 -1.33961001e-02 -4.21373785e-01 -5.45946062e-01
-4.29962456e-01 1.47837400e-01 -5.40774837e-02 1.48279250e-01
4.00409579e-01 -3.83026451e-01 -4.03783202e-01 7.01229334e-01
-9.03446436e-01 -7.15631526e-03 6.09596550e-01 9.32530105e-01
8.71980965e-01 2.77357101e-01 1.26664662e+00 -1.39492285e+00
3.69260043e-01 -4.78333652e-01 -2.79971510e-01 6.83447421e-01
-1.15302706e+00 -1.32322401e-01 5.94056070e-01 -5.28939307e-01
-9.37380672e-01 -5.72963320e-02 -3.25129926e-01 -5.24124026e-01
-1.44645080e-01 2.90313870e-01 -3.20566684e-01 2.88371623e-01
4.74071890e-01 -2.57761888e-02 -1.73544884e-01 -5.10069847e-01
2.51888007e-01 1.03813708e+00 3.46823484e-01 -7.96870112e-01
3.90632331e-01 2.11148486e-01 -1.24749849e-02 1.55689036e-02
-1.44816661e+00 -5.71715891e-01 -5.21192491e-01 -1.92071974e-01
6.05793118e-01 -9.93090510e-01 -8.33987236e-01 8.26228738e-01
-6.94665134e-01 -5.30646145e-01 -1.12131514e-01 2.60672659e-01
-4.61872160e-01 2.77900040e-01 -6.19885325e-01 -9.48225915e-01
-4.44601715e-01 -1.12327909e+00 1.33884633e+00 1.13293372e-01
-2.81111784e-02 -8.66222799e-01 -1.67349368e-01 6.58509672e-01
8.98578689e-02 2.34458432e-01 1.31549239e+00 -1.03653061e+00
3.74451187e-03 -4.13770169e-01 -4.28125530e-01 6.31398261e-01
-5.13193868e-02 -3.34610999e-01 -1.02988696e+00 -6.45533919e-01
-7.97599256e-02 -7.83509254e-01 8.86307061e-01 2.50016958e-01
1.41047788e+00 -9.43082273e-02 -4.39972937e-01 3.26197982e-01
1.59254813e+00 8.22200328e-02 2.59144694e-01 1.27148643e-01
5.35307884e-01 5.42524576e-01 8.44086885e-01 6.02124333e-01
5.60293376e-01 4.82339472e-01 3.83540392e-01 3.22390832e-02
-1.47424012e-01 -2.22043961e-01 1.85909420e-01 6.18189812e-01
4.69535083e-01 -5.21666527e-01 -8.88110280e-01 2.41624057e-01
-1.70273733e+00 -5.90594947e-01 -2.44778693e-01 2.23803473e+00
1.29728985e+00 2.91474938e-01 -7.53769577e-02 3.18041354e-01
9.29706395e-01 -9.59125757e-02 -6.24173284e-01 -1.26318648e-01
-3.52234125e-01 2.13137925e-01 6.91174328e-01 4.04490590e-01
-1.30295038e+00 6.17201209e-01 5.36284781e+00 1.57652307e+00
-8.93082023e-01 4.41034675e-01 1.23128879e+00 -1.14616621e-02
-2.88253695e-01 -1.50947690e-01 -1.40466702e+00 5.98003447e-01
8.73605967e-01 2.83845603e-01 -4.16688435e-02 8.01630855e-01
-7.70760477e-02 -3.55452031e-01 -1.02533066e+00 9.11180198e-01
2.43918136e-01 -6.94843829e-01 -8.20011944e-02 -6.58703446e-02
8.64372313e-01 -2.38918990e-01 1.50335804e-01 1.01796651e+00
5.76821029e-01 -8.26032579e-01 9.83771145e-01 1.24036908e-01
1.26422310e+00 -7.21444666e-01 8.89391899e-01 8.14381838e-01
-1.05384707e+00 -3.28936756e-01 -1.67575851e-01 2.08939895e-01
-5.35144545e-02 9.37468588e-01 -4.18492109e-01 7.30848610e-01
4.54162121e-01 3.77858102e-01 -8.52287054e-01 6.38908029e-01
-9.02897418e-02 8.11854005e-01 -1.65315166e-01 1.10930920e-01
6.84743747e-02 2.43763953e-01 2.32893024e-02 1.12524760e+00
1.68000281e-01 -2.38186847e-02 6.02231801e-01 3.14250320e-01
-2.66836494e-01 2.81842858e-01 6.07556291e-02 5.60571909e-01
5.45280933e-01 1.15640450e+00 -9.17110980e-01 -3.97369474e-01
-4.32672858e-01 7.37814844e-01 5.84566593e-01 1.77092522e-01
-1.07557237e+00 -2.79525310e-01 -1.08037062e-01 -8.54331255e-02
1.72748744e-01 5.35328150e-01 -5.72568715e-01 -9.45277274e-01
-4.91349883e-02 -9.99755144e-01 8.81973386e-01 -4.25898314e-01
-1.74916303e+00 2.32540593e-01 9.68865380e-02 -1.04701281e+00
2.37885360e-02 -5.47812581e-01 -1.85697913e-01 9.49354172e-01
-1.69120634e+00 -1.39091766e+00 -1.26832798e-01 6.23175859e-01
4.52288121e-01 -1.08496286e-01 6.77711248e-01 6.88907623e-01
-8.15056324e-01 1.22345507e+00 3.56383175e-01 -1.55337498e-01
1.21254456e+00 -1.27952528e+00 -4.03958589e-01 4.74529415e-01
-3.07748020e-01 1.32592544e-01 4.36056018e-01 -7.35979557e-01
-5.50794423e-01 -1.51308787e+00 9.04838383e-01 -3.76660317e-01
1.69074163e-01 -3.58229816e-01 -7.97841966e-01 7.75403738e-01
-3.30571383e-01 3.37213308e-01 9.63305473e-01 1.39097497e-01
-6.07456803e-01 -3.57549638e-01 -1.49469209e+00 2.11263433e-01
6.48199201e-01 -2.57798016e-01 -1.94091916e-01 4.76020336e-01
6.46611750e-01 -1.85104206e-01 -6.96024239e-01 8.81557643e-01
5.57133079e-01 -9.21080410e-01 6.98419929e-01 -3.44371825e-01
2.52299070e-01 -1.19281292e-01 -4.56595868e-01 -9.80873764e-01
-7.94776082e-02 -1.03406228e-01 1.78899780e-01 1.54838896e+00
6.16992295e-01 -6.73826635e-01 8.50157857e-01 4.03923184e-01
-1.11348227e-01 -9.47775304e-01 -9.51355815e-01 -6.72572851e-01
5.93464613e-01 -5.40242493e-01 4.68777359e-01 1.10363090e+00
-4.85253751e-01 2.64852375e-01 -5.38856447e-01 5.41742034e-02
7.87891448e-01 2.12846011e-01 5.70052147e-01 -1.36873245e+00
-3.61460030e-01 -3.11022818e-01 3.42958212e-01 -7.97329187e-01
3.52977097e-01 -1.08441782e+00 2.47556373e-01 -9.62354183e-01
6.70431852e-01 -1.13106596e+00 -6.33274078e-01 7.27121770e-01
-6.25903428e-01 3.55470777e-01 6.76035434e-02 3.59548330e-01
-8.70935142e-01 3.99750978e-01 1.05056059e+00 3.80695052e-02
1.42417386e-01 3.80588293e-01 -7.74123669e-01 6.27614498e-01
6.91084802e-01 -8.57693493e-01 -3.28167349e-01 2.32217144e-02
1.68883160e-01 1.66729897e-01 1.41119733e-01 -8.28103244e-01
1.16941862e-01 -2.23726586e-01 3.43757808e-01 -9.60747004e-01
-1.14634685e-01 -7.22671568e-01 -4.65391129e-02 4.08491731e-01
-6.15880311e-01 -9.29579958e-02 3.38497804e-03 7.05054939e-01
-2.58354358e-02 -4.40448821e-01 1.20391810e+00 -6.24781996e-02
-2.19898403e-01 1.79818496e-01 -4.87057306e-03 3.50006908e-01
1.23483980e+00 1.35673389e-01 -4.04117435e-01 -2.90614925e-02
-5.34420192e-01 6.43086076e-01 6.47801086e-02 7.93739110e-02
1.85003966e-01 -1.38976884e+00 -8.00058365e-01 2.91643262e-01
3.42397720e-01 1.01075940e-01 4.11141187e-01 8.62599790e-01
-1.69710368e-01 3.45375001e-01 2.46099412e-01 -5.35262108e-01
-1.34896255e+00 6.17114663e-01 3.98782969e-01 -8.33848119e-01
6.62998948e-03 1.04737043e+00 2.36817226e-01 -1.08296847e+00
4.99321222e-01 -1.11676678e-01 -3.29661393e-03 2.22056746e-01
2.62868822e-01 4.88306314e-01 2.05582231e-01 -4.89625394e-01
-2.69891471e-01 4.46877360e-01 -2.50945151e-01 8.71248990e-02
8.92131507e-01 -3.30260694e-01 -1.50305182e-01 5.56251168e-01
1.32475674e+00 -9.62582827e-02 -1.05193472e+00 -3.44484687e-01
2.18874961e-01 -2.80566454e-01 -1.83347940e-01 -1.31742644e+00
-9.62244153e-01 7.02853858e-01 7.71889150e-01 -2.55430311e-01
1.15797877e+00 -1.71740562e-01 7.13618517e-01 7.14385286e-02
5.17841816e-01 -1.16092491e+00 3.14022392e-01 3.68476629e-01
4.62993324e-01 -1.38582873e+00 2.60247607e-02 -4.11601007e-01
-6.80799901e-01 5.69517314e-01 8.62445772e-01 3.48288000e-01
8.70474041e-01 3.23697031e-01 9.08155516e-02 -3.93000580e-02
-8.19549620e-01 1.37341410e-01 -9.98827219e-02 2.56818652e-01
3.66710842e-01 2.04433590e-01 -4.46289539e-01 8.54658306e-01
1.92660525e-01 -5.48072997e-03 1.63023725e-01 1.01184177e+00
-4.81159329e-01 -1.33397293e+00 -5.07480025e-01 7.25915432e-01
-8.03874195e-01 3.31376642e-02 1.16809040e-01 6.56013906e-01
6.85843885e-01 1.01901901e+00 -2.09282592e-01 -2.70216078e-01
2.68102527e-01 4.25502449e-01 1.35790318e-01 -5.67572236e-01
-6.83175445e-01 3.70968997e-01 -1.36834964e-01 -8.50913823e-02
-4.59364057e-01 -7.79040873e-01 -1.26553667e+00 -1.29169643e-01
-6.92832530e-01 1.34759545e-01 3.71590823e-01 8.18431318e-01
2.12041456e-02 4.90399361e-01 8.90998363e-01 -3.19571704e-01
-1.06242907e+00 -1.20626056e+00 -1.02124107e+00 5.09880602e-01
1.69626012e-01 -8.62622261e-01 -6.20865703e-01 -1.80454552e-01] | [9.44477367401123, 4.152299404144287] |
0e2ed912-87a2-4ed8-95e0-0a913f5eb732 | a-simple-and-optimal-policy-design-for-online | 2206.02969 | null | https://arxiv.org/abs/2206.02969v5 | https://arxiv.org/pdf/2206.02969v5.pdf | A Simple and Optimal Policy Design with Safety against Heavy-tailed Risk for Stochastic Bandits | We study the stochastic multi-armed bandit problem and design new policies that enjoy both worst-case optimality for expected regret and light-tailed risk for regret distribution. Starting from the two-armed bandit setting with time horizon $T$, we propose a simple policy and prove that the policy (i) enjoys the worst-case optimality for the expected regret at order $O(\sqrt{T\ln T})$ and (ii) has the worst-case tail probability of incurring a linear regret decay at an exponential rate $\exp(-\Omega(\sqrt{T}))$, a rate that we prove to be best achievable for all worst-case optimal policies. Briefly, our proposed policy achieves a delicate balance between doing more exploration at the beginning of the time horizon and doing more exploitation when approaching the end, compared to the standard Successive Elimination policy and Upper Confidence Bound policy. We then improve the policy design and analysis to work for the general $K$-armed bandit setting. Specifically, the worst-case probability of incurring a regret larger than any $x>0$ is upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$. We then enhance the policy design to accommodate the "any-time" setting where $T$ is not known a priori, and prove equivalently desired policy performances as compared to the "fixed-time" setting with known $T$. A brief account of numerical experiments is conducted to illustrate the theoretical findings. We conclude by extending our proposed policy design to the general stochastic linear bandit setting and proving that the policy leads to both worst-case optimality in terms of expected regret order and light-tailed risk on the regret distribution. | ['Feng Zhu', 'Zeyu Zheng', 'David Simchi-Levi'] | 2022-06-07 | null | null | null | null | ['thompson-sampling'] | ['methodology'] | [-1.04583383e-01 2.80028999e-01 -5.99101603e-01 -2.95395792e-01
-1.34659386e+00 -1.05576313e+00 -2.17415065e-01 1.02866665e-01
-8.39337170e-01 1.04903650e+00 -1.16850957e-01 -1.17489302e+00
-1.07140934e+00 -8.63621116e-01 -9.94648695e-01 -9.03739154e-01
-3.79747510e-01 4.37761962e-01 -3.25267673e-01 1.32758766e-01
2.42798567e-01 3.22366863e-01 -9.78880942e-01 -3.88649583e-01
8.62579525e-01 1.78851318e+00 -8.12299252e-02 5.47181845e-01
4.83932346e-03 5.70442677e-01 -3.81750911e-01 -6.55203342e-01
8.35795283e-01 -3.66273731e-01 -7.37241805e-01 -8.27908888e-02
-8.40709955e-02 -4.80762035e-01 -1.52249679e-01 1.22471070e+00
3.00829500e-01 3.86071205e-01 2.74980426e-01 -8.53848159e-01
-1.91247210e-01 9.13485527e-01 -9.86926079e-01 3.93138498e-01
3.06429178e-03 -2.20853239e-01 1.09351814e+00 1.46843567e-01
4.89957184e-02 9.62575078e-01 4.23107564e-01 3.82231146e-01
-1.11157978e+00 -7.53453195e-01 6.18637741e-01 -3.09666038e-01
-1.07876885e+00 -1.38748512e-01 4.20334190e-01 -1.51474983e-01
5.87835968e-01 7.15734959e-01 5.48682570e-01 3.21715921e-01
-2.77239960e-02 9.87684667e-01 1.24151015e+00 -5.27698457e-01
6.52422190e-01 6.45186240e-03 2.51635671e-01 5.12610078e-01
3.34808737e-01 4.63765830e-01 9.59318504e-03 -2.79285312e-01
5.67168415e-01 1.30146503e-01 -3.18701893e-01 -1.45706967e-01
-6.54861033e-01 9.04312611e-01 2.44801328e-01 -6.70770109e-02
-6.66961491e-01 5.36334097e-01 3.04220051e-01 5.25468349e-01
6.15522504e-01 1.30709931e-01 -7.04739094e-01 -5.09211600e-01
-9.01111364e-01 2.82648116e-01 8.23397398e-01 1.19990742e+00
3.39221507e-01 -7.94317946e-02 -5.73767304e-01 5.79122603e-01
-1.29517257e-01 7.20140874e-01 -7.57526457e-02 -1.09797943e+00
1.05081213e+00 -2.10684333e-02 1.06871748e+00 -3.45154971e-01
-2.04623967e-01 -9.78655040e-01 -5.44377863e-01 1.52153313e-01
6.65471613e-01 -6.64843857e-01 -6.37737513e-01 2.04980612e+00
1.28276303e-01 -4.60362017e-01 -3.43413465e-02 7.26426363e-01
-3.86040896e-01 6.70336545e-01 -3.70523840e-01 -1.07736409e+00
1.18222296e+00 -6.12743318e-01 -5.25424540e-01 -2.62028664e-01
4.41405565e-01 -4.84051287e-01 9.08711195e-01 4.41257030e-01
-1.51961422e+00 2.54072756e-01 -6.97103918e-01 7.31975019e-01
2.41205424e-01 -3.70826095e-01 6.63722038e-01 1.32571089e+00
-5.01821399e-01 4.82232451e-01 -7.29580402e-01 2.04922184e-01
2.92907774e-01 3.92787546e-01 2.76716888e-01 -1.01655520e-01
-6.39803946e-01 4.94416386e-01 2.95943469e-01 2.21670777e-01
-7.23793387e-01 -6.89715862e-01 -3.39257687e-01 3.13356817e-01
9.94970977e-01 -5.66654444e-01 1.70218682e+00 -7.85390139e-01
-1.55590320e+00 2.62213856e-01 -5.78041077e-02 -5.88898480e-01
1.02354276e+00 -2.52811402e-01 2.48404667e-01 -4.59164195e-02
1.93214940e-03 -3.61099958e-01 4.25634652e-01 -9.14668977e-01
-1.01852489e+00 -5.66103339e-01 6.83354914e-01 2.51454145e-01
-3.03893089e-01 -6.74520656e-02 -1.89633802e-01 -6.35031641e-01
1.58378825e-01 -1.06177688e+00 -5.07168949e-01 -4.04287994e-01
-1.79018691e-01 1.50629878e-01 1.93478204e-02 -4.04692143e-01
1.36840951e+00 -1.95494938e+00 -2.85580277e-01 4.27579612e-01
-4.47850823e-01 4.43359464e-02 2.39729911e-01 3.81475270e-01
2.94996295e-02 3.78619522e-01 -4.93718050e-02 -1.81317776e-01
1.45443946e-01 1.32785887e-01 -3.69397163e-01 5.94392478e-01
-7.18147755e-01 4.81644481e-01 -8.03404987e-01 1.80756167e-01
-1.75750256e-03 -5.31367779e-01 -6.33656621e-01 1.42532915e-01
-3.93993467e-01 5.34800440e-02 -8.55738521e-01 4.46485907e-01
6.64245129e-01 -1.75997004e-01 1.35105744e-01 4.36240703e-01
-3.18445802e-01 -4.06571403e-02 -1.26201737e+00 1.15160811e+00
-7.29859591e-01 -8.88268575e-02 4.85119760e-01 -1.24882865e+00
4.47411925e-01 1.34843171e-01 5.39655149e-01 -6.55405760e-01
3.47075671e-01 2.04890579e-01 -2.52816528e-01 -2.41895452e-01
2.26426065e-01 -8.26004207e-01 -2.90440202e-01 8.70030522e-01
-5.42745233e-01 2.82903194e-01 -2.75085941e-02 -2.73675192e-02
1.20555246e+00 -3.32623273e-01 1.25804782e-01 -4.66123819e-01
9.02256891e-02 -3.43155235e-01 7.00101614e-01 1.30741477e+00
-2.22267255e-01 -1.33410782e-01 8.55533719e-01 -1.42405108e-01
-8.67920995e-01 -9.38131332e-01 4.16554287e-02 1.31172144e+00
2.99649000e-01 2.29823232e-01 -4.41303700e-01 -6.51363313e-01
4.14098561e-01 1.24107194e+00 -9.00404036e-01 6.93976209e-02
-1.22019991e-01 -8.61520648e-01 1.19120799e-01 3.29953760e-01
6.24760926e-01 -4.78389859e-01 -7.23089635e-01 2.98229426e-01
-1.44146338e-01 -8.15915942e-01 -7.01488137e-01 4.98978585e-01
-8.28060627e-01 -7.19804525e-01 -8.14705133e-01 3.95626277e-02
6.30113304e-01 2.54415542e-01 5.16073227e-01 -6.87984347e-01
1.84594274e-01 5.95443606e-01 -3.57908905e-01 -7.19623327e-01
1.02095507e-01 -2.11039454e-01 -1.22290723e-01 -6.21945374e-02
-2.25092947e-01 -3.10546398e-01 -1.05848682e+00 3.20600957e-01
-8.99692476e-01 -2.96066403e-01 4.66647476e-01 7.36947000e-01
5.39665461e-01 3.40473562e-01 6.79446101e-01 -5.22077799e-01
7.03727663e-01 -3.64663482e-01 -1.25898325e+00 4.23990637e-01
-7.65622973e-01 3.09551179e-01 7.02471137e-01 -2.98302591e-01
-1.19857073e+00 -4.23322916e-01 7.02403020e-03 -3.93410265e-01
4.78730083e-01 5.68286538e-01 2.07805470e-01 1.01304382e-01
3.37381512e-01 3.10076863e-01 -4.27010618e-02 -5.12001038e-01
3.26053351e-01 6.23798728e-01 2.10505053e-01 -1.12229884e+00
3.92085075e-01 4.65030849e-01 1.27353579e-01 -2.66976088e-01
-1.33868754e+00 -3.27663809e-01 2.99824774e-01 -4.35079075e-02
7.99712166e-02 -5.52733362e-01 -1.61304247e+00 -1.17481612e-01
-5.37118256e-01 -2.50775397e-01 -5.34171581e-01 7.23649740e-01
-1.25783944e+00 2.59136111e-01 -2.90781409e-01 -1.96880496e+00
-5.67564309e-01 -7.53641129e-01 3.90854567e-01 1.73827440e-01
4.75280046e-01 -6.88704789e-01 -2.16219217e-01 4.71708179e-01
3.59312326e-01 2.34113470e-01 8.68642271e-01 -3.15157264e-01
-4.17755961e-01 -3.58687103e-01 -3.12898815e-01 4.09071445e-01
-2.25192606e-02 -7.29257107e-01 -2.90873379e-01 -7.63372064e-01
2.45599136e-01 -1.35657758e-01 7.28879333e-01 8.26481164e-01
1.40008903e+00 -1.01653779e+00 -2.92450041e-01 5.08897901e-01
1.73484898e+00 7.15237796e-01 2.34727696e-01 6.34171307e-01
-4.03483391e-01 2.28338048e-01 9.94420707e-01 1.13867748e+00
6.24575326e-03 4.14530814e-01 8.28762352e-01 4.59113568e-01
9.54582632e-01 7.25650266e-02 1.86806142e-01 -5.20514399e-02
-2.26062775e-01 -3.91128540e-01 -6.02156699e-01 8.14223886e-01
-2.17349100e+00 -1.05463159e+00 4.80081797e-01 3.11973786e+00
7.60774732e-01 4.42842096e-01 5.46176910e-01 8.46006498e-02
6.52281046e-01 -1.76617965e-01 -8.89856756e-01 -7.87660599e-01
2.50424027e-01 2.89406776e-01 1.35481274e+00 5.24463117e-01
-7.42939532e-01 5.48499346e-01 5.86385012e+00 1.08048332e+00
-9.09412026e-01 1.72537550e-01 8.60848486e-01 -9.51532066e-01
-2.11456254e-01 1.20650701e-01 -6.79198205e-01 7.29380012e-01
9.27566707e-01 -6.68877423e-01 7.90065050e-01 1.07456148e+00
3.78448665e-01 -3.43971223e-01 -8.13370943e-01 7.91410506e-01
-6.96760476e-01 -1.25531244e+00 -5.25826752e-01 3.39377433e-01
5.98606050e-01 -1.62438944e-01 1.94885164e-01 2.41877690e-01
8.83763075e-01 -6.21791065e-01 9.41184759e-01 1.90248549e-01
8.72907102e-01 -1.35651839e+00 6.72271252e-01 7.99222171e-01
-8.09963167e-01 -8.87320995e-01 -2.07212970e-01 -2.95155525e-01
3.37568432e-01 7.25109577e-01 -5.29392064e-01 9.38143730e-01
7.10016370e-01 -3.14559758e-01 6.66537702e-01 1.30937696e+00
1.55305728e-01 4.72483903e-01 -8.02003384e-01 -3.76143783e-01
7.24265814e-01 -3.24769586e-01 3.90389919e-01 8.64007711e-01
6.30208850e-01 6.03565156e-01 2.59542406e-01 3.23245704e-01
1.42906249e-01 1.89284921e-01 -1.51500970e-01 5.57697415e-02
5.10955155e-01 5.70295632e-01 -5.47302425e-01 -2.24092066e-01
-2.21179411e-01 6.17974520e-01 3.09462816e-01 4.11629140e-01
-9.46954250e-01 -5.47696948e-01 8.18016112e-01 -8.75320211e-02
7.83014655e-01 5.28915897e-02 -3.81333619e-01 -7.45212018e-01
4.56762910e-01 -2.24450082e-01 8.03371370e-01 -2.15294510e-01
-1.20029211e+00 1.50441289e-01 1.44656941e-01 -8.98925543e-01
-2.08083346e-01 -3.63956690e-01 -1.85147047e-01 8.83716285e-01
-1.40542603e+00 -5.72562575e-01 5.50122201e-01 5.96808910e-01
2.09560171e-01 1.73786774e-01 6.12502992e-01 9.40988213e-02
-5.97652137e-01 9.58595634e-01 9.78658795e-01 -1.99225664e-01
-1.39328122e-01 -1.00985432e+00 -4.52618599e-01 6.35283172e-01
-5.84191799e-01 5.85252643e-01 9.15169120e-01 -3.00729215e-01
-1.52838457e+00 -9.39796805e-01 1.78210348e-01 2.76010692e-01
8.19360435e-01 2.12348420e-02 -1.51925664e-02 9.49457288e-01
-2.37896368e-01 -7.13255554e-02 6.89531028e-01 4.58187491e-01
-2.53596753e-01 -5.67903519e-01 -1.68192387e+00 4.54754889e-01
1.04520881e+00 -9.92394984e-02 -2.43865088e-01 3.70960057e-01
6.98071718e-01 -3.65521103e-01 -9.20928776e-01 5.15673280e-01
9.16622281e-01 -9.68592048e-01 5.78142107e-01 -7.91889727e-01
-1.26067564e-01 3.05098742e-01 -4.59605783e-01 -1.17610288e+00
-2.69431949e-01 -1.30087817e+00 -2.16575321e-02 7.52384245e-01
5.10387480e-01 -8.41739714e-01 1.07978809e+00 9.57016468e-01
6.87910095e-02 -9.04218733e-01 -1.53617227e+00 -1.35331893e+00
4.71266121e-01 -8.64020050e-01 5.21988690e-01 4.50977534e-01
2.17371389e-01 -3.06260109e-01 -5.16554236e-01 2.54957706e-01
7.48540878e-01 6.38201475e-01 4.36911076e-01 -4.74752307e-01
-7.71424234e-01 -5.41297138e-01 3.11714888e-01 -1.48603976e+00
-2.78371513e-01 -3.44715208e-01 1.15294866e-02 -1.24573088e+00
4.63736981e-01 -8.56279492e-01 -8.65009010e-01 4.20253932e-01
1.57774352e-02 -4.83406484e-01 4.41542476e-01 -2.57633746e-01
-6.90457642e-01 4.27777141e-01 1.20999014e+00 1.27060097e-02
-2.43315160e-01 7.26921678e-01 -1.13413537e+00 4.10066545e-01
6.50152028e-01 -4.89880294e-01 -4.82736111e-01 -2.51958251e-01
4.64781374e-01 1.23013067e+00 -1.56604499e-01 -5.14199376e-01
-1.70091733e-01 -7.71596372e-01 -2.29520276e-01 -6.84811711e-01
2.74631590e-01 -9.61593151e-01 1.60023257e-01 6.64910018e-01
-3.67295235e-01 -2.99403906e-01 1.67637035e-01 8.97660673e-01
3.87009770e-01 -4.39019144e-01 6.66660070e-01 -3.06836814e-01
3.15289855e-01 4.93762225e-01 -2.44928911e-01 -4.39006723e-02
1.37236893e+00 8.14958755e-03 -3.53162825e-01 -8.69117737e-01
-9.52325284e-01 6.37408495e-01 1.54427318e-02 -1.30861893e-01
4.43693687e-04 -9.11376178e-01 -4.39513326e-01 -2.79866934e-01
-1.99864998e-01 -1.19446009e-01 4.06212062e-01 7.11885870e-01
4.47883317e-03 6.96980774e-01 2.86162168e-01 -2.06888348e-01
-9.48921978e-01 9.80894625e-01 3.08954537e-01 -6.97894633e-01
-1.57203063e-01 9.55726624e-01 -2.48366743e-02 1.57760680e-01
5.17994046e-01 -3.48234951e-01 7.00309575e-01 -1.88563541e-01
4.22318310e-01 5.04444599e-01 1.43814562e-02 2.46259034e-01
-8.03659111e-02 2.45485246e-01 -2.37915292e-01 -5.28849900e-01
1.40219700e+00 -3.57906371e-01 1.34727940e-01 2.68635545e-02
1.00929642e+00 1.51000144e-02 -1.33158875e+00 -3.93400848e-01
-9.50764045e-02 -8.41092527e-01 7.26517588e-02 -1.09830105e+00
-1.04171669e+00 3.82985890e-01 5.53630054e-01 7.93923795e-01
1.29924035e+00 -1.08465865e-01 6.14019752e-01 4.40178931e-01
8.87787700e-01 -1.12933755e+00 -3.07745874e-01 4.24136788e-01
6.28941119e-01 -8.40426207e-01 -4.91115823e-02 -9.59274396e-02
-4.25805181e-01 6.75919533e-01 5.32812141e-02 -1.12575330e-01
7.48903036e-01 2.28224978e-01 -4.08583164e-01 2.54798591e-01
-6.46338344e-01 -3.27314198e-01 -2.04907998e-01 -1.08535387e-01
1.26256034e-01 4.85686630e-01 -8.16716969e-01 9.01326835e-01
-3.28815788e-01 1.14778772e-01 2.89628953e-01 1.15896714e+00
-6.31653190e-01 -9.44371819e-01 -5.90947509e-01 7.48309135e-01
-1.13445723e+00 1.19599581e-01 2.42052644e-01 5.69556296e-01
-4.00175840e-01 1.11496723e+00 8.62356946e-02 9.55317393e-02
4.04481918e-01 -5.38532343e-03 6.90092981e-01 -5.09354360e-02
-3.26350927e-01 3.84956032e-01 3.21059763e-01 -4.54773486e-01
-1.30506769e-01 -5.72725832e-01 -9.16664541e-01 -7.32531190e-01
-5.13320267e-01 6.42385483e-01 6.68622136e-01 1.03126609e+00
1.82234004e-01 2.65015364e-01 1.07988882e+00 -2.27422908e-01
-1.25322545e+00 -7.49016166e-01 -9.08708155e-01 -1.14092473e-02
4.92142111e-01 -4.83883411e-01 -4.54440683e-01 -7.33846962e-01] | [4.552914619445801, 3.3278088569641113] |
ab8e2377-228a-4076-8dff-d7051d9af571 | scheduling-techniques-for-liver-segmentation | 2202.06373 | null | https://arxiv.org/abs/2202.06373v1 | https://arxiv.org/pdf/2202.06373v1.pdf | Scheduling Techniques for Liver Segmentation: ReduceLRonPlateau Vs OneCycleLR | Machine learning and computer vision techniques have influenced many fields including the biomedical one. The aim of this paper is to investigate the important concept of schedulers in manipulating the learning rate (LR), for the liver segmentation task, throughout the training process, focusing on the newly devised OneCycleLR against the ReduceLRonPlateau. A dataset, published in 2018 and produced by the Medical Segmentation Decathlon Challenge organizers, called Task 8 Hepatic Vessel (MSDC-T8) has been used for testing and validation. The reported results that have the same number of maximum epochs (75), and are the average of 5-fold cross-validation, indicate that ReduceLRonPlateau converges faster while maintaining a similar or even better loss score on the validation set when compared to OneCycleLR. The epoch at which the peak LR occurs perhaps should be made early for the OneCycleLR such that the super-convergence feature can be observed. Moreover, the overall results outperform the state-of-the-art results from the researchers who published the liver masks for this dataset. To conclude, both schedulers are suitable for medical segmentation challenges, especially the MSDC-T8 dataset, and can be used confidently in rapidly converging the validation loss with a minimal number of epochs. | ['Sarada Prasad Dakua', 'Faycal Bensaali', 'Ayman Al-Kababji'] | 2022-02-13 | null | null | null | null | ['liver-segmentation'] | ['medical'] | [ 1.22999735e-02 2.52609730e-01 -2.12684095e-01 -2.00464830e-01
-6.62470639e-01 -3.23527515e-01 5.04909337e-01 3.94841135e-01
-6.90518975e-01 6.28289521e-01 -2.29568958e-01 -4.27821875e-01
-2.75612742e-01 -1.09622471e-01 -4.05755132e-01 -1.08909798e+00
-5.45633316e-01 3.65501195e-01 2.86596894e-01 2.30705068e-01
5.88277951e-02 4.34390694e-01 -9.75575686e-01 3.27244967e-01
9.12559032e-01 1.05638945e+00 7.31050447e-02 5.91097832e-01
2.51476139e-01 5.25594234e-01 -5.33779860e-01 -4.04270023e-01
4.63332772e-01 -5.20855546e-01 -8.70361805e-01 3.80563363e-02
2.87487954e-01 1.49544403e-01 -1.27095124e-02 8.55710268e-01
6.98932171e-01 -1.34010985e-01 4.81791496e-01 -7.83213258e-01
3.67387235e-02 7.41596878e-01 -6.03243589e-01 7.13231146e-01
-1.20619416e-01 2.68219709e-01 3.35970789e-01 -5.79363346e-01
4.95275199e-01 6.58927023e-01 9.11604583e-01 6.16880536e-01
-1.18922472e+00 -5.42278230e-01 -1.83615103e-01 4.80473489e-02
-1.43997538e+00 -8.03725496e-02 1.80532545e-01 -5.12755394e-01
5.42765915e-01 5.20674407e-01 5.99581122e-01 8.79976213e-01
6.92536473e-01 5.72430491e-01 1.46410966e+00 -5.74359417e-01
2.59224862e-01 5.02265871e-01 9.52150971e-02 6.93237782e-01
1.36030033e-01 2.97367364e-01 -2.04047337e-01 4.05124724e-02
4.06963289e-01 -5.10704041e-01 -4.58873868e-01 -2.03327790e-01
-1.17626095e+00 8.41805339e-01 4.28237945e-01 6.18799984e-01
-3.33276719e-01 -4.87780422e-02 8.27128589e-01 4.42074150e-01
5.90186298e-01 5.83431423e-01 -5.03939688e-01 4.49648723e-02
-1.18488181e+00 -1.62646741e-01 9.85075533e-01 7.56400049e-01
1.64013684e-01 -2.17984676e-01 -5.09381831e-01 5.27951062e-01
1.33245081e-01 4.52438854e-02 7.57272542e-01 -4.06457216e-01
3.75118926e-02 5.13270020e-01 -3.04826558e-01 -2.93604672e-01
-8.81011724e-01 -9.99951482e-01 -9.51992393e-01 3.15583527e-01
7.68174767e-01 -3.88489574e-01 -1.04719281e+00 1.31487834e+00
3.62430573e-01 3.39794129e-01 1.10703386e-01 1.15433502e+00
9.53281105e-01 2.78917253e-01 3.59351754e-01 -4.21987742e-01
1.73329711e+00 -9.24808919e-01 -3.55500519e-01 6.97744489e-02
9.73112047e-01 -9.09821868e-01 9.02172863e-01 6.96506500e-01
-7.90603697e-01 -4.73232031e-01 -1.15840626e+00 5.86234927e-01
-1.22113891e-01 5.44695318e-01 7.76162863e-01 1.05885506e+00
-1.19987082e+00 7.25199223e-01 -9.99934018e-01 -5.10262728e-01
3.90956700e-01 3.30176383e-01 -8.98452178e-02 1.11880146e-01
-1.03708255e+00 1.14464307e+00 4.60709572e-01 2.40847796e-01
-9.79639709e-01 -1.23743069e+00 -4.57962930e-01 -2.91756004e-01
1.86462209e-01 -3.81051809e-01 1.07713032e+00 -9.99561310e-01
-1.42340040e+00 1.33654308e+00 5.08284926e-01 -1.06085026e+00
1.13885665e+00 9.92167648e-03 -1.08710460e-01 2.19800830e-01
-2.15743676e-01 6.73503757e-01 5.82717597e-01 -9.21309710e-01
-6.11722708e-01 -1.86123222e-01 -1.57502249e-01 3.05642374e-02
8.18108916e-02 1.57429054e-01 -3.96458745e-01 -6.15153551e-01
-1.88467667e-01 -1.08702409e+00 -3.08685064e-01 -1.99067056e-01
-4.00314033e-01 -1.81000739e-01 5.21236241e-01 -6.52682185e-01
1.02755296e+00 -1.98892081e+00 -7.95550197e-02 1.41170993e-01
-2.37243976e-02 4.01917666e-01 2.09917113e-01 -2.31037691e-01
-4.14664447e-01 8.04522038e-02 -3.03263187e-01 -2.91173279e-01
-5.17357171e-01 2.43777875e-02 1.42100647e-01 9.51660931e-01
6.85463175e-02 6.73072636e-01 -8.10162604e-01 -5.48435390e-01
2.04498336e-01 3.62880677e-01 -1.86180994e-01 2.93621253e-02
2.23665208e-01 8.39878738e-01 -2.96280146e-01 3.58734459e-01
6.17400289e-01 -1.37380153e-01 6.46430925e-02 -3.39552820e-01
-2.82932073e-01 -2.70013452e-01 -7.20962107e-01 1.80338335e+00
-3.17428291e-01 7.53022790e-01 -6.36479333e-02 -9.51926351e-01
9.04417634e-01 5.35673618e-01 7.93161035e-01 -8.25644553e-01
2.04530463e-01 1.92274377e-01 3.63425940e-01 -5.38242161e-01
-1.71009749e-01 -2.12507010e-01 2.44931310e-01 1.15568139e-01
6.34431168e-02 -8.85027945e-02 5.20632863e-01 -7.87764415e-02
7.57939041e-01 1.57424230e-02 2.38125890e-01 -9.86753106e-01
9.02777851e-01 1.32721905e-02 3.87739033e-01 6.52913570e-01
-5.26511192e-01 6.23812616e-01 8.57398212e-01 -5.19820273e-01
-9.26518142e-01 -6.66271150e-01 -7.86159098e-01 7.38246500e-01
1.12579137e-01 -7.02666119e-02 -1.10255253e+00 -1.14094341e+00
-2.19660208e-01 7.32356727e-01 -8.60307395e-01 -7.12658912e-02
-6.17250562e-01 -1.34423137e+00 9.11804736e-01 1.91692606e-01
3.23489457e-01 -9.60961878e-01 -9.94810104e-01 1.75515592e-01
2.28291810e-01 -1.15734506e+00 -3.51590484e-01 2.55042493e-01
-9.96346951e-01 -1.34851706e+00 -1.06055701e+00 -7.78077006e-01
7.58512437e-01 -4.10814524e-01 1.11253774e+00 2.09115133e-01
-7.35518277e-01 3.08210284e-01 -4.55925763e-01 -5.94108224e-01
-6.01438761e-01 2.90603817e-01 -2.17493057e-01 -1.27543760e-02
1.46655843e-01 -1.19025216e-01 -9.01682854e-01 4.84050304e-01
-5.91112316e-01 1.14511631e-01 7.55160570e-01 8.36489379e-01
6.80710733e-01 -2.61630505e-01 6.43714786e-01 -1.01764858e+00
2.95752943e-01 -2.17122957e-01 -7.18673408e-01 3.64945918e-01
-1.13566196e+00 -1.72885627e-01 6.48472250e-01 -2.99572319e-01
-6.25803709e-01 -1.36704668e-01 2.00879993e-03 -5.08193016e-01
-2.16504604e-01 2.45183051e-01 6.02171302e-01 -3.38969529e-01
9.39476371e-01 1.68786213e-01 2.59978920e-01 -3.66338998e-01
-6.33492544e-02 2.62281418e-01 9.88728181e-02 -3.34077060e-01
3.47338855e-01 3.42615902e-01 1.61826551e-01 -6.64873838e-01
-6.19047463e-01 -6.02361023e-01 -5.71193039e-01 -3.85541290e-01
9.49163139e-01 -7.12584317e-01 -3.83752197e-01 6.21169865e-01
-7.71696568e-01 -6.11287236e-01 -4.44633126e-01 7.26032257e-01
-4.89280075e-01 2.35264227e-01 -6.19439900e-01 -5.47985911e-01
-8.15454066e-01 -1.48530066e+00 7.10830271e-01 5.79646766e-01
-1.23323724e-01 -1.29674625e+00 -2.03887060e-01 1.37323499e-01
5.61979592e-01 5.54858804e-01 7.89871037e-01 -1.01524770e+00
-2.31584370e-01 -6.24323227e-02 -2.42362216e-01 4.37004536e-01
-3.91515195e-02 -2.30636634e-02 -8.61575544e-01 -8.03622425e-01
2.31628105e-01 -1.84195504e-01 8.02714348e-01 7.23197460e-01
1.20139730e+00 2.92406380e-02 -2.54468709e-01 6.24586582e-01
1.43262279e+00 1.34970531e-01 5.87927103e-01 4.49738562e-01
6.64187297e-02 3.32314074e-01 6.78007364e-01 3.94691378e-01
-3.23840380e-02 5.89056432e-01 3.93630236e-01 -6.33302271e-01
-4.24291611e-01 4.29372966e-01 2.96188910e-02 5.80864608e-01
-6.67011589e-02 2.09950700e-01 -1.12846458e+00 3.66226286e-01
-1.36984992e+00 -2.43192375e-01 -3.10731620e-01 2.45374227e+00
8.45038056e-01 2.86799431e-01 1.61829278e-01 2.30550412e-02
4.85119134e-01 -2.78827511e-02 -3.87665451e-01 -5.23230016e-01
1.10717595e-01 2.21633911e-01 8.20289850e-01 3.66542101e-01
-1.32767105e+00 5.71661592e-01 6.40271902e+00 9.37897563e-01
-1.56543040e+00 3.31293166e-01 1.29728830e+00 -1.58829372e-02
3.86100262e-01 -1.26504928e-01 -5.82336187e-01 5.66265583e-01
1.10702527e+00 -9.51606855e-02 2.37182170e-01 6.74391448e-01
3.84964883e-01 -5.41392803e-01 -1.14140999e+00 6.34760857e-01
1.07956447e-01 -1.14227200e+00 -2.53869325e-01 -2.21027568e-01
6.49482548e-01 2.14654952e-01 8.43998324e-03 2.92174399e-01
-2.79841006e-01 -1.17854559e+00 4.64944839e-01 4.76185501e-01
1.07376349e+00 -6.99267149e-01 1.06065106e+00 2.96194524e-01
-8.56484294e-01 1.65650591e-01 -2.78033018e-01 5.41817367e-01
-1.78268611e-01 8.69748592e-01 -1.26734948e+00 9.18332458e-01
7.95141995e-01 5.38781106e-01 -8.29469442e-01 1.61374187e+00
-1.13748394e-01 9.10798013e-01 -1.92124009e-01 5.11634722e-02
3.87922734e-01 -1.79686472e-01 7.63140440e-01 1.62233233e+00
5.60623445e-02 -2.22425535e-01 1.79933354e-01 6.39566898e-01
2.19404057e-01 3.31098229e-01 4.76823598e-02 3.19645405e-01
-5.53740710e-02 1.56734276e+00 -1.23481309e+00 -1.56442970e-01
-1.59351334e-01 5.67717671e-01 -2.27148458e-01 1.53250396e-01
-1.20722938e+00 -1.40362859e-01 1.86945051e-02 1.49445236e-01
1.12367213e-01 2.54769236e-01 -5.45967937e-01 -6.04748726e-01
-2.07473353e-01 -7.78975368e-01 7.83295214e-01 -2.77545124e-01
-1.06131589e+00 8.38535249e-01 1.34371385e-01 -1.31475472e+00
1.06270835e-01 -6.72356069e-01 -6.29878521e-01 8.55284512e-01
-1.70731497e+00 -8.67621303e-01 -2.94377089e-01 2.76286960e-01
6.63014889e-01 -8.11078921e-02 6.46343887e-01 3.72190863e-01
-6.61484480e-01 9.87236023e-01 -6.52532130e-02 7.85124302e-02
6.81621552e-01 -1.38226414e+00 -1.40714183e-01 7.77866781e-01
-1.50542155e-01 2.79295534e-01 8.41626883e-01 -3.42435509e-01
-9.58022833e-01 -1.04019558e+00 3.71076554e-01 -2.45410249e-01
3.17829102e-01 9.25809816e-02 -7.87709892e-01 3.32329422e-01
3.95395458e-01 2.05128998e-01 6.14595890e-01 -1.70132935e-01
3.30108315e-01 -2.08679974e-01 -1.45928323e+00 2.78561503e-01
5.07991314e-01 1.06820323e-01 -3.53883952e-01 5.04466832e-01
3.50319594e-01 -1.01288974e+00 -1.20150506e+00 6.88004673e-01
3.67512584e-01 -1.02251136e+00 7.63239443e-01 -4.50544864e-01
1.26528531e-01 -1.61899880e-01 5.95878184e-01 -1.30673826e+00
1.33004319e-02 -7.03034818e-01 1.50323465e-01 8.16925287e-01
7.86758780e-01 -6.15778685e-01 8.98019075e-01 3.11274499e-01
-2.62244016e-01 -1.43512261e+00 -1.53428578e+00 -6.61003411e-01
2.65704781e-01 -1.50217265e-01 -5.31587154e-02 7.69361913e-01
-3.42429578e-01 -1.78680450e-01 -9.29293633e-02 -1.10711336e-01
6.76131427e-01 -1.97540954e-01 3.97476137e-01 -1.06238616e+00
-6.74348921e-02 -4.80931014e-01 -5.02891421e-01 -4.98463154e-01
-3.30864131e-01 -1.11864340e+00 -3.87434997e-02 -1.12675214e+00
1.97852299e-01 -7.99303114e-01 -5.61669469e-01 5.85084438e-01
-2.84350485e-01 2.75535971e-01 2.57632464e-01 1.92688316e-01
-4.59569305e-01 2.72971969e-02 1.52662218e+00 -1.92893967e-02
-1.91779688e-01 3.18115622e-01 -4.46491957e-01 4.79003847e-01
6.29461229e-01 -5.57608843e-01 -2.59212643e-01 3.93745117e-02
-3.49159449e-01 -8.84660631e-02 2.05020055e-01 -1.28938842e+00
3.18793952e-01 2.95167744e-01 4.37043041e-01 -3.61295491e-01
-2.92567968e-01 -7.32386589e-01 1.58972427e-01 1.17196476e+00
-3.04518372e-01 -4.57048863e-02 4.73109245e-01 1.93922013e-01
3.00001279e-02 -4.12432104e-01 1.29857719e+00 -1.27122298e-01
-5.62709510e-01 2.58740693e-01 -2.34146059e-01 2.52126753e-01
1.58925438e+00 -3.28035980e-01 -1.91347003e-02 2.59544164e-01
-9.19564009e-01 4.42666024e-01 4.33105789e-02 3.22251827e-01
2.38471553e-01 -8.38253915e-01 -1.19744730e+00 2.14963406e-01
-1.07281290e-01 -7.56861717e-02 3.91970217e-01 1.78462219e+00
-8.26209724e-01 4.58931804e-01 -1.83650700e-03 -1.17629027e+00
-1.21978760e+00 3.79797071e-01 9.62975800e-01 -7.70340860e-01
-1.07478690e+00 9.62448955e-01 -7.10103065e-02 -8.15530121e-02
3.75516504e-01 -5.42596221e-01 -2.78034925e-01 1.99995801e-01
4.16495711e-01 4.27654624e-01 5.80975950e-01 -1.27403766e-01
-4.98666286e-01 3.50177765e-01 -3.23613703e-01 3.83005112e-01
1.13208687e+00 1.54815376e-01 3.93544734e-02 1.35803595e-01
9.72524345e-01 -3.41967911e-01 -1.37864089e+00 7.54212886e-02
1.81383401e-01 -2.14203998e-01 1.37433082e-01 -1.20217299e+00
-1.42451465e+00 5.82983017e-01 1.35819006e+00 1.90278038e-01
1.13370323e+00 -1.04228958e-01 3.49904895e-01 -2.24033311e-01
3.85423154e-01 -9.20395553e-01 -2.61084676e-01 2.90227622e-01
9.75471973e-01 -1.08207154e+00 2.33713448e-01 -4.21145588e-01
-8.25903594e-01 1.28902900e+00 5.15092731e-01 -1.45800680e-01
5.61478257e-01 5.21735370e-01 3.13051730e-01 -4.81713265e-02
-4.92224842e-01 5.19092679e-02 2.85969049e-01 4.65841919e-01
5.20504653e-01 5.93701974e-02 -8.51280093e-01 4.59067345e-01
3.91205493e-03 8.28407258e-02 4.04521406e-01 4.75826025e-01
-1.36062175e-01 -9.20681417e-01 -1.20860018e-01 5.09436905e-01
-8.52968216e-01 1.76840741e-02 6.75270334e-02 1.14412212e+00
1.94905549e-01 5.06421745e-01 -1.13207899e-01 3.91408466e-02
5.10600507e-01 -1.06030911e-01 4.54609871e-01 -3.00579011e-01
-1.18956769e+00 -3.98417674e-02 -1.46357361e-02 -6.38160586e-01
-3.07348311e-01 -5.57096958e-01 -1.25216520e+00 -8.87910575e-02
-5.17047822e-01 4.35730934e-01 6.65074229e-01 8.81102204e-01
-7.36224512e-03 8.24296653e-01 6.13514900e-01 -6.29746556e-01
-7.89198697e-01 -1.00083554e+00 -4.47475404e-01 2.20896870e-01
6.66846931e-02 -4.87674385e-01 -5.34550965e-01 -8.77456591e-02] | [14.56166934967041, -2.547041893005371] |
a6904c00-d323-4d16-a897-c49428ed54b3 | temporal-dynamic-convolutional-neural-network | 2110.03213 | null | https://arxiv.org/abs/2110.03213v2 | https://arxiv.org/pdf/2110.03213v2.pdf | Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis | In the field of text-independent speaker recognition, dynamic models that adapt along the time axis have been proposed to consider the phoneme-varying characteristics of speech. However, a detailed analysis of how dynamic models work depending on phonemes is insufficient. In this paper, we propose temporal dynamic CNN (TDY-CNN) that considers temporal variation of phonemes by applying kernels optimally adapting to each time bin. These kernels adapt to time bins by applying weighted sum of trained basis kernels. Then, an analysis of how adaptive kernels work on different phonemes in various layers is carried out. TDY-ResNet-38(x0.5) using six basis kernels improved an equal error rate (EER), the speaker verification performance, by 17.3% compared to the baseline model ResNet-38(x0.5). In addition, we showed that adaptive kernels depend on phoneme groups and are more phoneme-specific at early layers. The temporal dynamic model adapts itself to phonemes without explicitly given phoneme information during training, and results show the necessity to consider phoneme variation within utterances for more accurate and robust text-independent speaker verification. | ['Yong-Hwa Park', 'Hyeonuk Nam', 'Seong-Hu Kim'] | 2021-10-07 | null | null | null | null | ['text-independent-speaker-recognition', 'text-independent-speaker-verification'] | ['speech', 'speech'] | [-1.28799677e-01 -4.99798596e-01 1.59565628e-01 -6.33092821e-01
-4.61547792e-01 -6.44209087e-01 4.34317559e-01 -1.90001711e-01
-7.44200170e-01 3.05454731e-01 1.49417192e-01 -3.54394853e-01
-1.77411884e-01 -3.60051870e-01 -5.38235784e-01 -9.20455337e-01
-4.97389108e-01 2.52413660e-01 3.14213008e-01 -2.53158152e-01
-3.34308147e-02 6.80477083e-01 -1.41048169e+00 3.95557582e-01
6.84249401e-01 7.01311409e-01 3.44749633e-03 1.13057780e+00
-1.54540583e-01 2.34099537e-01 -8.37002754e-01 -7.02123344e-02
-2.12305156e-03 -3.92505884e-01 -4.25595552e-01 -1.98289245e-01
4.61083293e-01 -5.96180111e-02 -2.25670248e-01 8.34427178e-01
8.59690368e-01 4.81282353e-01 6.25643253e-01 -1.00488091e+00
-6.83312416e-01 1.03098702e+00 3.55421789e-02 6.55261755e-01
-2.39927903e-01 -3.40382010e-02 3.64013672e-01 -1.05202532e+00
1.21624231e-01 1.21723306e+00 9.53783989e-01 9.34080958e-01
-1.05266118e+00 -7.76606321e-01 5.07405877e-01 8.73463750e-01
-1.50342643e+00 -7.92724788e-01 6.72158003e-01 -2.98349440e-01
1.37738287e+00 4.86948133e-01 3.80447745e-01 1.07243836e+00
1.61689088e-01 4.68243420e-01 9.53931212e-01 -6.58643723e-01
2.51558423e-01 2.22984672e-01 7.79656887e-01 1.96624041e-01
-5.34727037e-01 2.77191192e-01 -6.89066172e-01 2.80945331e-01
3.83012474e-01 -2.50116795e-01 -4.40962404e-01 9.42295790e-02
-1.01761615e+00 5.21847010e-01 1.94979936e-01 9.03204024e-01
-3.07082862e-01 8.23897198e-02 6.98523045e-01 5.31637132e-01
6.68663442e-01 -6.79482892e-02 -8.80974770e-01 -4.38805252e-01
-1.02929771e+00 -3.66846085e-01 6.51369035e-01 5.20956695e-01
4.83841002e-01 6.46830022e-01 -2.82692760e-01 1.23801339e+00
2.00285129e-02 4.92208481e-01 9.67173636e-01 -2.62620449e-01
4.41578567e-01 2.05118313e-01 -2.43248358e-01 -4.67371076e-01
-4.98466909e-01 -5.05110979e-01 -9.21557486e-01 3.13182592e-01
6.01136565e-01 -1.50167108e-01 -1.27544391e+00 1.76114261e+00
1.60749361e-01 4.61244255e-01 2.39616111e-01 5.42155504e-01
6.11105084e-01 9.15367305e-01 1.72802284e-01 -1.90442458e-01
1.34000957e+00 -8.92796814e-01 -1.16137767e+00 2.42851973e-01
5.33562660e-01 -7.71102667e-01 1.08209097e+00 3.75662118e-01
-8.35903823e-01 -8.44388425e-01 -9.93660331e-01 3.90787572e-01
-9.49385345e-01 2.13185892e-01 8.68844166e-02 1.26550078e+00
-1.60231066e+00 5.48146605e-01 -8.97472024e-01 -3.84497792e-01
-1.37734905e-01 6.69708848e-01 -2.28910580e-01 3.21792185e-01
-1.42126644e+00 1.10283875e+00 4.36226308e-01 4.03999746e-01
-8.68056417e-01 -7.93462574e-01 -7.10369527e-01 2.69195259e-01
-2.11076826e-01 -1.80680260e-01 1.33013213e+00 -1.06924188e+00
-2.19897270e+00 3.50732654e-01 -5.17150164e-01 -6.72161520e-01
3.86876225e-01 -4.62115072e-02 -1.10334826e+00 -4.96403351e-02
-6.45068645e-01 3.58533502e-01 1.14652920e+00 -8.71742189e-01
-2.65226543e-01 -2.67418861e-01 -3.03876400e-01 1.23128124e-01
-7.36487985e-01 2.94199824e-01 -4.84681517e-01 -6.89366639e-01
-2.27369070e-01 -9.61189568e-01 1.31229788e-01 -4.96277332e-01
-1.75191015e-01 -3.99803638e-01 1.10854983e+00 -1.04841316e+00
1.47083902e+00 -2.41693139e+00 5.81977284e-03 -9.84223839e-03
-2.71294713e-01 5.49385548e-01 -1.36926919e-01 2.27995828e-01
-3.90098840e-01 8.30954537e-02 -2.35607222e-01 -5.80282450e-01
1.20063178e-01 1.12782396e-01 -2.86711991e-01 4.43482667e-01
-3.27954255e-02 8.39327037e-01 -3.75194401e-01 -1.13901116e-01
4.87098157e-01 1.00290501e+00 -1.74532190e-01 -1.94233298e-01
2.63137341e-01 2.46413946e-01 2.44209096e-01 3.01850319e-01
9.07637835e-01 3.49727452e-01 -3.00911903e-01 -1.57835558e-01
-3.12282115e-01 1.64948508e-01 -9.38463867e-01 1.37078238e+00
-8.61416221e-01 1.05000627e+00 1.00276142e-01 -7.98183918e-01
7.53384829e-01 7.16017962e-01 1.59785956e-01 -4.60760325e-01
7.79327378e-02 1.44766748e-01 2.66074091e-01 -1.87750071e-01
4.67331707e-01 -1.53181195e-01 2.02993065e-01 1.71823874e-01
2.91502953e-01 2.79837042e-01 -1.95209041e-01 -1.96112618e-01
7.44134426e-01 -4.67462718e-01 -1.57791257e-01 -2.82539219e-01
7.94854164e-01 -6.87907279e-01 2.73488760e-01 6.75196886e-01
-4.14871722e-01 6.27172828e-01 -1.60617173e-01 -4.12324280e-01
-7.28793859e-01 -1.08555377e+00 -4.73664880e-01 1.38954794e+00
-3.17272633e-01 -6.72490299e-02 -1.09101987e+00 -5.50777674e-01
-1.80336952e-01 1.01895249e+00 -8.70991051e-01 -2.60108948e-01
-9.44138944e-01 -9.48331833e-01 8.75246882e-01 5.16132534e-01
6.23583913e-01 -1.06623483e+00 -1.91050544e-01 5.23739398e-01
1.26700372e-01 -1.07293284e+00 -9.13532197e-01 5.07931232e-01
-8.14045191e-01 -5.40262878e-01 -1.02963507e+00 -6.36579871e-01
4.46492165e-01 -4.95409742e-02 6.58242524e-01 -2.18791738e-01
1.01886466e-01 6.79516256e-01 -4.81934339e-01 -3.06678236e-01
-5.77399373e-01 2.93482184e-01 4.93049324e-01 4.77409780e-01
3.95736039e-01 -5.47103167e-01 -2.26792216e-01 6.03842199e-01
-7.70369768e-01 -4.55544978e-01 1.59058392e-01 7.69011557e-01
6.37250021e-02 1.50267228e-01 5.47377050e-01 -4.02293205e-01
5.06095588e-01 -1.34757325e-01 -4.91152048e-01 5.02980351e-01
-6.48391128e-01 -7.49410018e-02 7.59769738e-01 -1.07266748e+00
-1.17342973e+00 -7.30825961e-02 -4.79691654e-01 -4.46449190e-01
-2.56343186e-01 1.89371228e-01 -2.27124378e-01 -1.09504253e-01
7.04469562e-01 6.44715488e-01 -2.05958307e-01 -5.73143303e-01
4.09676224e-01 7.20908582e-01 4.58797872e-01 -1.39527529e-01
7.07568169e-01 2.09237084e-01 -8.26300383e-01 -1.18054199e+00
-7.40515143e-02 -4.84211475e-01 -7.84182370e-01 -3.48238975e-01
8.85510206e-01 -6.89466000e-01 -7.26580083e-01 1.12897515e+00
-1.23085678e+00 -7.67000437e-01 -2.69330591e-01 7.41947889e-01
-2.62321293e-01 2.18949810e-01 -6.38772309e-01 -8.85363638e-01
-3.96645844e-01 -1.00774479e+00 5.95607698e-01 1.44701570e-01
8.92511979e-02 -1.36931109e+00 7.70445019e-02 -1.26454771e-01
1.03822422e+00 -4.05825257e-01 5.70290089e-01 -8.47872615e-01
-2.82118320e-01 -2.72407115e-01 1.42889872e-01 6.47389293e-01
3.09833378e-01 1.80411518e-01 -1.51298606e+00 -3.37248504e-01
2.24862427e-01 4.47690487e-01 1.03354061e+00 7.99940646e-01
1.09927356e+00 -4.80506361e-01 -2.07556114e-01 7.02072859e-01
9.72899258e-01 6.04562342e-01 6.52521372e-01 2.16433957e-01
5.97788751e-01 5.15351832e-01 -8.01379830e-02 8.58266950e-02
2.80510724e-01 1.13134480e+00 -6.55077547e-02 6.49927109e-02
-4.53292400e-01 2.02145308e-01 9.14130509e-01 1.34902501e+00
1.70963220e-04 -5.31516671e-01 -9.09415483e-01 6.76874220e-01
-1.44230866e+00 -1.06517196e+00 -1.11631295e-02 2.12390971e+00
7.50543833e-01 1.58686727e-01 1.07749380e-01 4.26873147e-01
1.09864461e+00 3.18461880e-02 -5.76841712e-01 -7.52967358e-01
-3.48726153e-01 9.98740196e-02 5.39510071e-01 9.19356167e-01
-8.44347537e-01 1.09012449e+00 6.40079260e+00 1.17481804e+00
-1.67553043e+00 5.07719874e-01 4.06194508e-01 3.67529481e-03
-3.72421965e-02 -3.31341654e-01 -1.11453593e+00 5.53094923e-01
1.58881295e+00 -1.14401884e-01 5.30348480e-01 5.37456810e-01
3.05138350e-01 1.84201211e-01 -9.44619715e-01 1.02396226e+00
2.10727096e-01 -1.04448187e+00 -1.29536569e-01 -1.50781497e-01
4.83344048e-01 1.56428069e-01 4.68309999e-01 5.39892018e-01
2.12633967e-01 -9.66385603e-01 7.65048027e-01 5.76241910e-01
7.26794124e-01 -7.19471812e-01 6.44982457e-01 1.48616701e-01
-1.35446942e+00 -1.12869099e-01 -1.64257258e-01 2.98318833e-01
2.80017436e-01 6.50042295e-01 -1.26371574e+00 2.22376376e-01
9.01319206e-01 5.31602204e-01 -5.68098485e-01 9.35466826e-01
1.03071488e-01 1.11100316e+00 -3.13158959e-01 -6.19540997e-02
-8.92317668e-03 2.97806174e-01 5.33975780e-01 1.80909538e+00
5.05475044e-01 -1.55975342e-01 -5.58476985e-01 3.64632964e-01
3.28396320e-01 1.35231957e-01 -2.13082746e-01 1.34151608e-01
4.87558782e-01 8.49252880e-01 -6.64795816e-01 -4.42986280e-01
6.27712905e-02 1.31968415e+00 6.87624589e-02 7.92237639e-01
-8.22022438e-01 -4.78672206e-01 8.46007645e-01 -2.69642800e-01
5.14152706e-01 -5.45937896e-01 -3.59560788e-01 -1.03161180e+00
1.06784506e-02 -5.42638481e-01 2.28687748e-01 -3.83588523e-01
-1.17661464e+00 1.00073791e+00 4.74155135e-02 -1.11471879e+00
-4.10849810e-01 -7.75882602e-01 -8.05701792e-01 1.11816430e+00
-1.57274473e+00 -9.70619678e-01 5.34614958e-02 7.62985051e-01
8.53823960e-01 -3.36250693e-01 1.00176239e+00 3.53508085e-01
-6.88370407e-01 1.29981267e+00 2.70999879e-01 1.60508171e-01
7.17329025e-01 -1.14326441e+00 8.42181623e-01 8.33950102e-01
2.60958165e-01 7.74061859e-01 5.46454251e-01 -1.77199766e-01
-9.32224751e-01 -1.01745188e+00 1.17890179e+00 -5.73671639e-01
4.70243573e-01 -6.26599193e-01 -1.40806198e+00 4.99044627e-01
3.94650638e-01 1.49713904e-02 6.78750217e-01 1.57925338e-01
-5.89809656e-01 -5.07290781e-01 -1.02351928e+00 4.27436471e-01
7.14909136e-01 -9.21830177e-01 -3.87720048e-01 5.25227413e-02
8.83218527e-01 -3.37846786e-01 -7.48897612e-01 3.46686602e-01
5.01400292e-01 -1.04660094e+00 1.05530655e+00 -1.52935684e-01
-6.59224331e-01 -3.72295648e-01 -7.93685243e-02 -1.54932892e+00
-3.36127490e-01 -5.14341354e-01 -1.74912632e-01 1.34776163e+00
6.28753543e-01 -9.98877823e-01 4.03296292e-01 4.24046904e-01
-5.72887480e-01 -2.00277984e-01 -1.60213709e+00 -1.28597641e+00
1.84436843e-01 -9.44715261e-01 6.84642673e-01 9.83430088e-01
-2.19827548e-01 -2.40861550e-01 -2.85830408e-01 4.67005134e-01
9.95912254e-02 -6.27087295e-01 4.45067972e-01 -7.38218725e-01
-2.64357775e-01 -7.69783139e-01 -5.28937697e-01 -9.31294858e-01
2.69645393e-01 -7.27728546e-01 1.96764156e-01 -9.48068857e-01
-3.49638790e-01 -3.95002186e-01 -6.99371696e-01 5.87577522e-01
-2.80440420e-01 1.13099262e-01 1.96150005e-01 -9.20406580e-02
-2.01675788e-01 6.64534152e-01 7.13608742e-01 -3.54206681e-01
-5.79790831e-01 2.58294314e-01 8.66958797e-02 4.17727858e-01
1.11787295e+00 -2.88387269e-01 -2.69252628e-01 -3.85833859e-01
-4.04796928e-01 -2.56470859e-01 3.07086170e-01 -1.38407362e+00
5.23899913e-01 2.81693697e-01 3.03281248e-01 -7.19546974e-01
6.21282160e-01 -8.32961202e-01 2.17330262e-01 4.81147110e-01
-2.72754818e-01 1.66295782e-01 8.30208242e-01 3.85605127e-01
-3.42848569e-01 -1.42667040e-01 8.15447092e-01 2.01832891e-01
-6.99507535e-01 2.01246008e-01 -7.50120401e-01 -5.30245781e-01
7.45990872e-01 -5.58478355e-01 5.08644572e-03 -2.84290105e-01
-9.57801521e-01 -2.04638302e-01 1.49330914e-01 6.23687983e-01
5.84680736e-01 -1.25963557e+00 -7.66680479e-01 2.92107552e-01
-4.18096632e-02 -6.29137099e-01 9.04752731e-01 7.81114399e-01
-7.95966834e-02 4.86382365e-01 -2.32428424e-02 -7.51580477e-01
-1.48268378e+00 5.14438331e-01 7.78157651e-01 4.44412790e-02
-3.44846278e-01 1.10157382e+00 1.33160815e-01 -6.62088156e-01
6.26394749e-01 -6.86116397e-01 -4.90880400e-01 3.43838006e-01
6.64477646e-01 3.43998075e-01 4.14886236e-01 -8.00341964e-01
-5.40339470e-01 9.43690181e-01 -2.33325407e-01 -4.42222923e-01
1.16475725e+00 -3.02586615e-01 1.78828344e-01 9.29181457e-01
1.31271267e+00 1.00889407e-01 -1.30803907e+00 -1.73491642e-01
-5.95776457e-03 7.73948431e-02 -2.58553866e-02 -1.06098652e+00
-1.01630127e+00 1.11330163e+00 1.19209898e+00 2.58889586e-01
1.28604805e+00 -4.10273641e-01 6.56532764e-01 1.26975015e-01
-2.37989426e-02 -1.06162095e+00 -1.30172372e-01 1.04578161e+00
9.10119057e-01 -8.80724132e-01 -6.99862599e-01 -7.82696977e-02
-4.19303089e-01 1.49399817e+00 4.38401937e-01 4.02528137e-01
1.04852509e+00 1.63410038e-01 5.52326143e-01 3.55621517e-01
-5.57242930e-01 4.21550684e-02 5.34814715e-01 7.59777367e-01
3.84460002e-01 2.03377441e-01 4.57416661e-02 3.40333164e-01
-3.77816886e-01 -3.79723221e-01 2.74946570e-01 4.02442902e-01
-2.98832417e-01 -1.19058740e+00 -6.74281120e-01 -1.92254037e-01
-1.99519649e-01 -3.76956075e-01 -1.59748226e-01 5.55966020e-01
1.95464611e-01 1.02967048e+00 -1.03160376e-02 -6.33438706e-01
3.23386908e-01 6.97063744e-01 2.79679686e-01 -3.35846990e-01
-8.92116308e-01 -1.32939056e-01 -2.32590303e-01 -3.28921266e-02
-3.02657902e-01 -7.26008177e-01 -1.24257874e+00 -1.94237202e-01
-4.58153337e-01 1.39907971e-01 1.20256293e+00 7.43723571e-01
3.48907590e-01 8.45118284e-01 7.44168162e-01 -8.32946301e-01
-4.49279070e-01 -1.31276405e+00 -5.33503711e-01 -3.16161774e-02
8.22849691e-01 -3.63830864e-01 -7.36890554e-01 2.36489877e-01] | [14.394279479980469, 6.107877254486084] |
e22b8ce6-e186-4d34-b539-7e8c0ef11554 | retrieval-as-attention-end-to-end-learning-of | 2212.02027 | null | https://arxiv.org/abs/2212.02027v1 | https://arxiv.org/pdf/2212.02027v1.pdf | Retrieval as Attention: End-to-end Learning of Retrieval and Reading within a Single Transformer | Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt. | ['Graham Neubig', 'Jamie Callan', 'Zhiruo Wang', 'Haibo Ding', 'Jun Araki', 'Luyu Gao', 'Zhengbao Jiang'] | 2022-12-05 | null | null | null | null | ['passage-retrieval', 'open-domain-question-answering'] | ['natural-language-processing', 'natural-language-processing'] | [ 4.06329334e-02 3.37163150e-01 9.76833049e-03 -4.70639944e-01
-1.76587951e+00 -8.50269616e-01 6.90679610e-01 2.43399873e-01
-5.55454195e-01 5.01617432e-01 2.19693318e-01 -2.95717269e-01
-3.04816872e-01 -6.08303487e-01 -8.65653872e-01 -2.35026613e-01
4.77477044e-01 1.34850562e+00 4.98008788e-01 -5.02441168e-01
1.45464540e-01 -4.21960540e-02 -1.51500297e+00 4.61892962e-01
1.09954095e+00 9.12797332e-01 3.59355628e-01 8.40262771e-01
-2.24271774e-01 8.31441402e-01 -4.56362426e-01 -7.80713916e-01
8.29053223e-02 -2.98792511e-01 -1.38969541e+00 -3.06631356e-01
5.93431771e-01 -4.26728457e-01 -3.70683879e-01 5.14887094e-01
8.41217935e-01 2.72776514e-01 6.15283072e-01 -5.27869105e-01
-1.25142074e+00 5.18602729e-01 -9.74531621e-02 1.86779499e-01
5.60614467e-01 6.11650087e-02 1.27138484e+00 -9.78423536e-01
4.86171693e-01 9.73003507e-01 2.36467436e-01 6.96601808e-01
-1.03286397e+00 -2.16596305e-01 9.01519582e-02 2.91250736e-01
-1.14015019e+00 -8.12585413e-01 5.99964559e-01 -1.47353886e-02
1.11010623e+00 1.41864553e-01 -1.87127534e-02 9.31675375e-01
-3.50626320e-01 1.29334652e+00 6.51137412e-01 -7.44946420e-01
1.94723625e-02 -1.25883976e-02 4.11725670e-01 4.41089779e-01
-7.83220455e-02 -3.43982935e-01 -3.64269018e-01 -1.38387024e-01
2.16045320e-01 -2.74571143e-02 -4.16619092e-01 -2.86887676e-01
-1.13384068e+00 7.85307407e-01 6.12600505e-01 1.30745947e-01
-4.19914812e-01 -6.21246472e-02 2.56627917e-01 6.93730056e-01
4.41431910e-01 6.57915533e-01 -5.99917471e-01 1.24610085e-02
-8.82711411e-01 4.48012143e-01 9.39666629e-01 1.00157797e+00
7.37558782e-01 -6.61495745e-01 -5.20920157e-01 1.21019590e+00
1.10818200e-01 7.58053422e-01 6.23696446e-01 -8.18647623e-01
6.37232661e-01 4.87021416e-01 3.38746518e-01 -3.20790172e-01
-2.37256125e-01 -6.03959262e-01 -4.28865612e-01 -3.68917376e-01
5.91953516e-01 -2.22684257e-02 -1.07072437e+00 1.56296468e+00
3.06455255e-01 -4.08096403e-01 1.68300152e-01 9.93919969e-01
1.01524007e+00 9.07785594e-01 4.36408892e-02 6.58508763e-02
1.54275954e+00 -1.62663770e+00 -6.39079571e-01 -5.31748414e-01
5.75187683e-01 -9.40580368e-01 1.47614598e+00 2.13235945e-01
-1.55303240e+00 -4.54163045e-01 -6.57240689e-01 -8.36905599e-01
-4.10292447e-01 1.91473160e-02 1.53291181e-01 -6.58672750e-02
-1.11142635e+00 1.81864604e-01 -6.22260749e-01 -2.99663961e-01
1.86138734e-01 2.40093365e-01 -1.54142395e-01 -4.93804872e-01
-1.30617917e+00 1.01586592e+00 1.91912636e-01 -1.97442807e-02
-8.14274848e-01 -6.32468879e-01 -5.74494839e-01 3.12055051e-01
6.20956302e-01 -1.19394815e+00 2.07413244e+00 -7.85834432e-01
-1.63982415e+00 1.00396442e+00 -3.70896101e-01 -4.01575446e-01
2.77739048e-01 -7.62267470e-01 -1.77108824e-01 4.74457830e-01
1.81507990e-01 4.39311534e-01 7.52321243e-01 -9.80475187e-01
-4.06574398e-01 -3.92902404e-01 2.69534886e-01 4.69052553e-01
-1.96528524e-01 2.71821797e-01 -9.12441075e-01 -3.39984804e-01
-1.27809480e-01 -7.13650227e-01 -3.30600590e-02 -3.33399802e-01
-1.60382420e-01 -6.39324367e-01 2.40065679e-01 -9.79008913e-01
1.23128235e+00 -1.78849113e+00 2.18324646e-01 -1.42818391e-01
1.91186443e-01 5.21272242e-01 -4.66931939e-01 7.93529630e-01
2.39586279e-01 -3.51321131e-01 -1.74758866e-01 -4.20584321e-01
2.70430356e-01 -2.10198984e-01 -5.28949499e-01 -1.39738889e-02
2.97207624e-01 1.37293041e+00 -1.10200405e+00 -3.21560591e-01
-2.69058079e-01 2.46411666e-01 -4.22820359e-01 6.15327954e-01
-8.18851769e-01 2.41043150e-01 -7.35334277e-01 5.55820882e-01
2.40577370e-01 -7.53425300e-01 -1.64582908e-01 2.02950791e-01
4.04956013e-01 9.04185057e-01 -5.90062976e-01 1.92725945e+00
-7.95893431e-01 4.34684604e-01 2.57714856e-02 -8.71558309e-01
8.19839239e-01 4.15592164e-01 -1.36571705e-01 -1.15531421e+00
2.29698829e-02 4.80251461e-01 -2.27503821e-01 -5.74829459e-01
5.78914523e-01 1.88563243e-01 -1.20542645e-01 8.08160841e-01
3.89867187e-01 -3.82271525e-03 3.15459847e-01 4.78095412e-01
1.24218285e+00 1.26096718e-02 1.96452793e-02 8.79161656e-02
4.48312640e-01 1.64229065e-01 -1.02921665e-01 1.01310110e+00
1.74613819e-01 7.98706174e-01 1.64625086e-02 -9.55078378e-02
-9.32266414e-01 -1.07038784e+00 5.61194383e-02 1.68827784e+00
-5.00229113e-02 -2.37356946e-01 -6.32370889e-01 -7.96893537e-01
-1.46835446e-01 7.16143906e-01 -2.85141766e-01 -2.46192738e-01
-6.16633713e-01 -2.60786146e-01 4.50713396e-01 4.19654191e-01
3.84189159e-01 -1.17206430e+00 -3.43628526e-01 3.26674104e-01
-5.88334441e-01 -8.91602993e-01 -4.39274698e-01 1.17872022e-02
-7.82910764e-01 -8.84313881e-01 -1.21959603e+00 -9.99986291e-01
5.79218388e-01 3.19908082e-01 1.72283828e+00 2.67219216e-01
1.85390115e-01 6.03145421e-01 -6.73517764e-01 -3.44445646e-01
-2.03484356e-01 6.24076188e-01 -4.48233277e-01 -1.00818411e-01
5.18415570e-01 -3.27469975e-01 -9.34424460e-01 3.11211079e-01
-8.38954866e-01 -6.66278601e-02 8.97436202e-01 9.22056019e-01
5.18836915e-01 -5.64903975e-01 8.64695370e-01 -9.38161671e-01
8.57900798e-01 -5.07349849e-01 -4.98603433e-01 7.61336148e-01
-5.91077805e-01 2.45500475e-01 6.20091140e-01 -2.44905695e-01
-1.14188325e+00 -2.66559958e-01 -3.12572569e-01 -2.55504817e-01
-4.11829092e-02 7.08049357e-01 1.14327751e-01 3.36278886e-01
9.59051073e-01 3.08954388e-01 -3.46303657e-02 -8.78173530e-01
6.50510788e-01 1.08265710e+00 6.87008977e-01 -5.03367722e-01
8.19787681e-01 6.78829700e-02 -7.52889335e-01 -2.41671845e-01
-1.39425254e+00 -7.56759405e-01 -4.35648888e-01 7.13266656e-02
5.02762318e-01 -1.13446355e+00 -3.21316063e-01 3.17429096e-01
-1.18739247e+00 -5.64997077e-01 -2.32235312e-01 8.21796060e-02
-4.54927742e-01 1.39591232e-01 -6.23962581e-01 -5.50120354e-01
-1.06966269e+00 -7.79506385e-01 1.24850869e+00 3.49218220e-01
-6.08806387e-02 -9.19131339e-01 2.29942262e-01 1.13540912e+00
7.14379728e-01 -4.95717466e-01 7.92621911e-01 -1.10686851e+00
-7.70413041e-01 -6.60493970e-01 -1.92774415e-01 2.91145295e-01
-2.82433718e-01 -5.11829674e-01 -1.11280847e+00 -2.92220742e-01
-2.22279206e-01 -9.30408537e-01 1.09227622e+00 -3.04747280e-03
9.11405027e-01 -2.65661985e-01 -1.93644688e-01 1.54847309e-01
1.10411489e+00 -1.88621879e-01 5.89137971e-01 4.62115377e-01
4.48425174e-01 6.87373459e-01 6.29178226e-01 -1.40027314e-01
7.72464335e-01 7.13083744e-01 4.37043458e-02 5.49267139e-03
-3.59560728e-01 -3.42746258e-01 2.90466368e-01 7.67575443e-01
2.73819149e-01 -4.69386458e-01 -1.09726512e+00 1.04053330e+00
-2.03459859e+00 -8.18131030e-01 1.03721254e-01 2.27732444e+00
1.32249260e+00 -6.22694977e-02 9.24742501e-03 -2.97992826e-01
4.10630375e-01 -2.20564995e-02 -5.71442544e-01 -2.82160878e-01
1.60231411e-01 5.40286124e-01 5.20631624e-03 7.26629078e-01
-8.14315438e-01 1.03889430e+00 5.90783405e+00 8.60087812e-01
-8.08625281e-01 2.91645199e-01 5.17607570e-01 -2.20634252e-01
-4.22686607e-01 1.48875356e-01 -8.01242888e-01 2.56511331e-01
1.22087932e+00 -1.02291971e-01 4.58295226e-01 7.21417904e-01
-2.47466624e-01 -3.43038477e-02 -1.20338440e+00 6.24532878e-01
1.54030010e-01 -1.06338573e+00 2.49732077e-01 -4.82585818e-01
5.95683992e-01 4.47478890e-01 -5.73804276e-03 7.22629905e-01
3.49826366e-01 -8.55120242e-01 4.71140772e-01 5.69410563e-01
4.94859248e-01 -4.11330014e-01 8.03069472e-01 6.14406407e-01
-5.77595472e-01 -6.88872039e-02 -4.44565833e-01 7.50190252e-03
3.01963031e-01 4.66875106e-01 -8.15450728e-01 6.92056477e-01
6.96482897e-01 3.00299793e-01 -7.36685753e-01 1.07298124e+00
-4.94313240e-01 7.10867763e-01 -3.16067606e-01 -1.46010727e-01
2.64953852e-01 1.64135709e-01 2.83321708e-01 1.01808786e+00
8.46131295e-02 1.09482482e-01 -1.23959132e-01 6.31578147e-01
-4.68418807e-01 1.91519290e-01 -2.85119087e-01 -8.05960819e-02
5.83471239e-01 1.11958420e+00 -5.58458231e-02 -5.21834850e-01
-5.40786564e-01 1.00744045e+00 8.58210027e-01 5.38406134e-01
-5.20619929e-01 -6.90547884e-01 2.35724747e-02 1.48533449e-01
6.12863600e-01 1.91096902e-01 -1.55245569e-02 -1.35619426e+00
4.40313399e-01 -1.03922176e+00 8.16805482e-01 -9.63593900e-01
-1.42671573e+00 7.99328506e-01 -1.24894612e-01 -9.88677859e-01
-6.28870487e-01 -3.38103414e-01 -4.76649076e-01 1.03561831e+00
-2.04149914e+00 -1.11580527e+00 -2.51598209e-01 6.96926415e-01
6.97232664e-01 1.88495908e-02 9.06387985e-01 3.62689942e-01
-3.49084884e-01 7.91629672e-01 5.35713911e-01 2.31674030e-01
1.06259298e+00 -1.25810194e+00 5.01152039e-01 7.62500286e-01
1.61483929e-01 8.14387202e-01 4.98112410e-01 -2.31647491e-01
-1.43854940e+00 -8.52401018e-01 1.54111016e+00 -9.56998050e-01
6.55442715e-01 -3.61651689e-01 -1.08310652e+00 7.64433265e-01
6.64820194e-01 -2.91244477e-01 5.88624179e-01 5.03458381e-01
-4.49741602e-01 -1.94247842e-01 -7.28646815e-01 5.84195793e-01
7.71280229e-01 -7.94794858e-01 -1.13109636e+00 7.49400735e-01
7.90701449e-01 -5.84686935e-01 -7.48361945e-01 2.15969279e-01
3.82515758e-01 -6.29773259e-01 1.09130275e+00 -6.31271362e-01
5.21333516e-01 -1.43641829e-01 1.41171739e-01 -1.16153800e+00
-2.23526552e-01 -7.40911901e-01 -4.88627344e-01 1.19743586e+00
8.09175909e-01 -5.52246034e-01 2.69356340e-01 7.81665206e-01
-2.27325857e-01 -8.44171882e-01 -6.58058107e-01 -5.60946643e-01
2.24608615e-01 -7.12026879e-02 4.92284477e-01 6.09129965e-01
4.17268984e-02 9.94342387e-01 -5.47456406e-02 1.00525767e-01
3.47552001e-01 5.08278608e-01 8.78733277e-01 -1.06677687e+00
-4.84785825e-01 -3.55433196e-01 3.53037804e-01 -1.69214308e+00
3.48402113e-02 -9.80701745e-01 1.93106994e-01 -1.91363037e+00
1.93402156e-01 -2.91721940e-01 -3.11739773e-01 5.29856086e-01
-5.46235204e-01 1.00067094e-01 7.22177103e-02 4.74286914e-01
-1.27264380e+00 7.21611261e-01 1.23356926e+00 -2.43162885e-01
-1.80159122e-01 9.24625695e-02 -1.17275190e+00 1.73502743e-01
6.50836468e-01 -4.86724406e-01 -5.88646233e-01 -1.18530619e+00
3.53703409e-01 2.34903544e-01 3.10745507e-01 -6.59119666e-01
4.02283013e-01 3.36159974e-01 1.38697073e-01 -4.71070647e-01
3.12652260e-01 -5.26702523e-01 -5.14704466e-01 -2.46060714e-02
-6.67324960e-01 1.55660100e-02 1.09430835e-01 4.62080985e-01
-4.03675675e-01 -4.79605347e-01 3.67615521e-01 -1.66136384e-01
-4.46760327e-01 2.10267961e-01 -4.71352506e-03 5.40030956e-01
4.56983626e-01 1.86937153e-01 -7.60379136e-01 -7.44781494e-01
-4.48453009e-01 7.54921794e-01 2.28981718e-01 5.13028502e-01
3.83350790e-01 -1.03933275e+00 -9.95090902e-01 -1.47926390e-01
3.77775162e-01 4.63415474e-01 3.90589327e-01 8.01208556e-01
-4.16676164e-01 8.19083929e-01 3.27805310e-01 -3.58168304e-01
-9.00162697e-01 4.97864246e-01 3.15446347e-01 -7.60729134e-01
-4.71358389e-01 1.03855264e+00 1.14690252e-01 -7.72828043e-01
2.47414783e-01 -1.33063616e-02 -1.90569520e-01 -1.52975526e-02
7.14258015e-01 3.00296526e-02 4.63267595e-01 -1.78642303e-01
-1.51790440e-01 3.96800965e-01 -6.76074505e-01 -1.42304122e-01
1.20671451e+00 -2.26577118e-01 -4.82459255e-02 3.87967117e-02
1.09029567e+00 -2.03934386e-01 -9.55642343e-01 -8.97837043e-01
-1.16477096e-02 -1.91305086e-01 1.33752048e-01 -1.39705312e+00
-6.02808654e-01 8.15508783e-01 1.61977082e-01 8.43251571e-02
1.27781475e+00 4.35971260e-01 1.23165011e+00 1.09757698e+00
1.41866848e-01 -1.11255300e+00 1.96451798e-01 7.14448929e-01
1.11553383e+00 -1.34838843e+00 -2.47222275e-01 9.25468653e-02
-6.25185013e-01 7.39382327e-01 4.74804103e-01 -4.86614890e-02
3.61266822e-01 -4.52295393e-01 4.33088094e-01 -3.85235220e-01
-1.10500026e+00 -4.49247807e-01 6.74081743e-01 3.56643587e-01
4.81714278e-01 -3.51217449e-01 -1.76774994e-01 6.94834709e-01
-1.90293327e-01 4.74523008e-02 5.03062382e-02 1.20236349e+00
-4.89728689e-01 -1.11092424e+00 -2.03090072e-01 4.82351780e-01
-4.52031076e-01 -3.47450644e-01 -4.40563679e-01 5.26922584e-01
-6.66804612e-01 1.22623301e+00 -2.46549249e-02 5.52807190e-02
5.58307171e-01 5.02348483e-01 4.28220689e-01 -7.60475159e-01
-7.22485840e-01 -1.66824132e-01 3.24331015e-01 -4.16182697e-01
-1.97479457e-01 -4.18642312e-01 -1.08813405e+00 -5.44075444e-02
-5.39345503e-01 5.17308235e-01 2.72581190e-01 1.02181375e+00
8.85669887e-01 2.67759562e-01 4.89909708e-01 -3.88251692e-01
-1.01749456e+00 -1.23395395e+00 -2.19659768e-02 4.34570044e-01
5.28223038e-01 -2.65370637e-01 -1.57259867e-01 -1.30944292e-03] | [11.345090866088867, 7.8913798332214355] |
661590e5-9f1d-42fb-aca1-b0cbe1d7483d | sampling-matters-an-empirical-study-of | null | null | https://aclanthology.org/D19-1128 | https://aclanthology.org/D19-1128.pdf | Sampling Matters! An Empirical Study of Negative Sampling Strategies for Learning of Matching Models in Retrieval-based Dialogue Systems | We study how to sample negative examples to automatically construct a training set for effective model learning in retrieval-based dialogue systems. Following an idea of dynamically adapting negative examples to matching models in learning, we consider four strategies including minimum sampling, maximum sampling, semi-hard sampling, and decay-hard sampling. Empirical studies on two benchmarks with three matching models indicate that compared with the widely used random sampling strategy, although the first two strategies lead to performance drop, the latter two ones can bring consistent improvement to the performance of all the models on both benchmarks. | ['Chongyang Tao', 'Wei Wu', 'Rui Yan', 'Dongyan Zhao', 'Yansong Feng', 'Jia Li'] | 2019-11-01 | null | null | null | ijcnlp-2019-11 | ['conversational-response-selection'] | ['natural-language-processing'] | [ 2.60706931e-01 3.56150657e-01 -5.54704249e-01 -3.93541068e-01
-1.10657585e+00 -5.42112112e-01 1.11000276e+00 1.74458757e-01
-8.56601417e-01 1.00859797e+00 6.38416186e-02 -3.88718903e-01
-1.39617827e-02 -6.12399280e-01 -6.91121519e-02 -5.14824986e-01
5.63041344e-02 1.17554712e+00 6.56498671e-01 -8.06209266e-01
6.12001181e-01 2.03864262e-01 -1.25436485e+00 5.26975811e-01
8.17326427e-01 6.76276267e-01 1.03693649e-01 9.07993078e-01
-6.75154746e-01 7.68160522e-01 -1.06097031e+00 -4.40913916e-01
2.71692663e-01 -5.46301365e-01 -1.25387025e+00 -1.37113467e-01
5.49572408e-02 -1.88389525e-01 1.35040116e-02 8.34679246e-01
7.62438953e-01 3.99115562e-01 8.94896924e-01 -1.02480805e+00
-3.21804702e-01 5.12391090e-01 -4.40720677e-01 2.32729658e-01
7.71556556e-01 5.58754876e-02 7.95378923e-01 -8.93537104e-01
6.42994523e-01 1.71831715e+00 5.17697930e-01 1.15729725e+00
-1.25601387e+00 -3.86097312e-01 -1.46025300e-01 3.55467051e-02
-9.47649181e-01 -7.15643644e-01 5.63156962e-01 -1.34636134e-01
1.05854130e+00 7.11083770e-01 8.31579626e-01 8.29139888e-01
-2.03704029e-01 1.00980330e+00 1.31243157e+00 -9.83265698e-01
2.77700722e-01 8.10871303e-01 5.16345322e-01 3.93753260e-01
-7.74414986e-02 7.65921324e-02 -5.90135098e-01 -8.34299743e-01
2.53433019e-01 -4.88993198e-01 -2.24757567e-01 -1.86722860e-01
-6.41935170e-01 9.96154010e-01 -5.58814555e-02 2.81041026e-01
-2.74174035e-01 -3.68550450e-01 5.93443930e-01 7.18171179e-01
6.81739926e-01 9.08874452e-01 -7.27639854e-01 -3.95911425e-01
-4.77787226e-01 6.18941307e-01 1.28166628e+00 8.25136006e-01
6.08834028e-01 -6.14397600e-02 -6.01956487e-01 1.33325028e+00
1.97924912e-01 3.13442320e-01 8.17644000e-01 -9.12718773e-01
5.72780609e-01 5.93493819e-01 4.98933047e-01 -3.12388629e-01
-3.22787613e-01 3.51693830e-03 -3.19717199e-01 -1.24394149e-01
6.12254679e-01 -2.95410067e-01 -8.52627873e-01 1.47569597e+00
3.54242504e-01 -3.18348855e-01 2.67148525e-01 4.38636035e-01
9.08891380e-01 6.43165767e-01 2.47437179e-01 -8.27526033e-01
7.50596285e-01 -1.14382660e+00 -9.03242767e-01 -2.15628535e-01
1.08382154e+00 -8.85793626e-01 1.31284106e+00 6.03504479e-01
-1.19497871e+00 -2.95841515e-01 -8.18391263e-01 3.39007616e-01
-4.03457999e-01 -2.88187325e-01 6.72453582e-01 7.38712072e-01
-1.20735598e+00 5.30574620e-01 -1.36924475e-01 -2.67225832e-01
-1.78093776e-01 4.34553206e-01 -3.46047953e-02 -1.67452861e-02
-1.52668369e+00 1.20130742e+00 4.13251519e-01 -1.94774270e-01
-7.12017834e-01 -2.56275117e-01 -5.97892284e-01 -2.36905724e-01
1.95326984e-01 -3.22369367e-01 1.73667455e+00 -1.03729475e+00
-1.76963592e+00 8.59643340e-01 -3.04730266e-01 -5.71521521e-01
7.90117145e-01 -2.84627259e-01 -4.59029526e-02 5.40888980e-02
-3.27469289e-01 9.54072416e-01 6.32424772e-01 -1.50543201e+00
-4.50538903e-01 -2.99194027e-02 2.64212519e-01 5.69469213e-01
-6.07299685e-01 3.45420092e-01 -5.15398502e-01 -1.26261219e-01
-1.41723692e-01 -7.53386915e-01 -4.43345845e-01 -4.42227840e-01
-1.84217140e-01 -9.46340203e-01 7.44014204e-01 -3.60901922e-01
1.41559494e+00 -1.60367095e+00 7.63436407e-02 2.03606397e-01
-1.04956858e-01 6.70860469e-01 -1.65320292e-01 4.83758718e-01
8.63095224e-02 2.84481198e-01 1.94541305e-01 -2.04894722e-01
-2.06784606e-01 2.20781207e-01 -2.59893350e-02 -9.56969559e-02
2.31643081e-01 5.69445252e-01 -1.30515265e+00 -6.06943607e-01
1.65046453e-01 1.89186916e-01 -5.34604132e-01 5.76534152e-01
-4.94361877e-01 -8.84780735e-02 -4.58701909e-01 4.08177137e-01
2.45183930e-01 -1.20452732e-01 4.21552241e-01 3.67751420e-01
5.74291825e-01 6.32026494e-01 -1.04889381e+00 7.45882630e-01
-3.21230650e-01 3.72216851e-01 1.16026187e-02 -9.02079105e-01
1.20050609e+00 5.75355411e-01 -6.14021197e-02 -7.95443296e-01
-1.80914938e-01 3.50044698e-01 1.44948989e-01 -5.69383621e-01
8.61721635e-01 -3.31909388e-01 1.09642625e-01 4.87784654e-01
9.71038043e-02 -4.97337967e-01 4.13735688e-01 3.18303525e-01
7.22556770e-01 -2.12739304e-01 2.91102201e-01 -1.59374207e-01
7.02647865e-01 -7.67265037e-02 3.43519598e-01 1.14004803e+00
-5.00265777e-01 2.10495442e-01 6.96939707e-01 -3.83798063e-01
-6.84629560e-01 -6.54554844e-01 -3.18257883e-03 1.56896198e+00
-3.31542119e-02 -6.55369222e-01 -8.16431403e-01 -1.13787150e+00
-3.22513491e-01 8.79561782e-01 -5.66218972e-01 -4.61082041e-01
-6.85345650e-01 -9.19116616e-01 3.39502692e-01 2.22672641e-01
2.82551527e-01 -1.30175567e+00 -7.23521635e-02 7.23363683e-02
-1.84317276e-01 -2.58225352e-01 -2.10098088e-01 5.23079932e-01
-8.61409903e-01 -9.20641243e-01 -7.86262512e-01 -7.37972796e-01
5.40478826e-01 2.75762171e-01 1.50020289e+00 8.02354813e-01
4.67794091e-02 5.25695801e-01 -4.50414747e-01 -6.85310304e-01
-9.50380623e-01 2.03943655e-01 -7.74345174e-02 -5.77846229e-01
6.74175501e-01 2.93942809e-01 -2.23040298e-01 2.10018739e-01
-6.85858667e-01 -1.75237566e-01 2.64477909e-01 1.46483052e+00
-2.34561786e-03 -4.64421719e-01 1.08832181e+00 -1.25333202e+00
1.31175256e+00 -3.40918005e-01 -2.02278510e-01 5.22209287e-01
-1.07605755e+00 -5.09406533e-03 5.09176493e-01 -7.44810939e-01
-1.14153278e+00 -5.00398986e-02 -2.01711223e-01 1.51998669e-01
-2.99196094e-02 2.19515145e-01 6.53162673e-02 -8.30480903e-02
1.05282402e+00 1.90549150e-01 7.19862431e-02 -2.85087526e-01
2.18906000e-01 1.00211012e+00 -1.49797872e-01 -6.76099479e-01
3.47175539e-01 -1.37434199e-01 -5.93411267e-01 -9.39922988e-01
-8.53931546e-01 -5.33539653e-01 -4.79987115e-01 -3.85912567e-01
4.04064089e-01 -3.96555930e-01 -2.47853488e-01 2.57852942e-01
-1.00436413e+00 -5.25098562e-01 -3.67067486e-01 1.98355123e-01
-6.68987215e-01 4.78598654e-01 -7.61384785e-01 -1.29498482e+00
-4.89429027e-01 -1.07489610e+00 9.13800776e-01 3.70319754e-01
-6.80677831e-01 -1.17095053e+00 1.99368045e-01 3.75638485e-01
4.81607467e-01 -4.14981872e-01 1.08597708e+00 -1.38095939e+00
9.53608826e-02 -4.16306704e-01 3.27643037e-01 4.25684273e-01
5.96841378e-03 -1.60257313e-02 -1.04282212e+00 -3.75035226e-01
1.16378009e-01 -1.01304460e+00 6.28031492e-01 6.03004508e-02
7.07453668e-01 -4.32078868e-01 -3.91178578e-01 -2.17555240e-01
8.77624869e-01 5.53104162e-01 6.47493601e-01 5.53293645e-01
4.24753455e-03 8.12505484e-01 1.27454543e+00 3.83034378e-01
9.11918655e-02 7.09690392e-01 1.40601799e-01 -2.08461910e-01
3.98532152e-01 9.74670500e-02 3.64573985e-01 6.66787624e-01
7.36588687e-02 -1.58660889e-01 -9.09379721e-01 4.98378694e-01
-1.73493350e+00 -1.06980276e+00 5.19070737e-02 2.41603947e+00
1.58852303e+00 5.38697958e-01 4.25525129e-01 7.17799887e-02
6.18598521e-01 2.05872446e-01 -2.08859697e-01 -7.80648947e-01
1.29846886e-01 1.11699834e-01 -7.19637647e-02 8.32894802e-01
-8.15883398e-01 9.83632565e-01 8.00882912e+00 9.84214723e-01
-9.94974792e-01 -2.15168111e-02 8.09416056e-01 -1.38114482e-01
-4.55271274e-01 -6.81079924e-03 -1.03459823e+00 1.97968423e-01
1.29251516e+00 -3.25545788e-01 2.22311318e-01 8.84598494e-01
7.26592094e-02 -1.32221326e-01 -9.98428464e-01 4.66545045e-01
-1.15960243e-03 -1.08873594e+00 2.94794917e-01 -3.31448406e-01
7.67443120e-01 -2.05887362e-01 -3.75422955e-01 9.29537654e-01
4.00882065e-01 -8.36845577e-01 3.72600287e-01 4.00969028e-01
2.37277001e-01 -8.81418824e-01 9.46282864e-01 7.62308896e-01
-4.16926861e-01 1.74555220e-02 -5.16272664e-01 5.71411252e-02
-6.22225851e-02 5.09830862e-02 -1.28362834e+00 1.58381075e-01
4.67791915e-01 1.38335332e-01 -8.46080065e-01 9.71152365e-01
6.74128113e-03 8.81840110e-01 -1.45513296e-01 -5.77637911e-01
2.66572654e-01 -1.18823625e-01 3.73423576e-01 1.38050330e+00
-4.42202806e-01 -4.07209098e-02 2.29140788e-01 3.36630046e-01
2.22139955e-01 3.20620209e-01 -7.33374536e-01 2.33018279e-01
7.78127849e-01 1.11644411e+00 -4.61246938e-01 -8.92639101e-01
-1.07391596e-01 5.29467762e-01 5.43113887e-01 2.18703777e-01
-3.24679255e-01 -4.18909788e-01 -7.35863298e-02 8.20691586e-02
-2.21890047e-01 3.39794338e-01 -1.13449171e-01 -5.13540685e-01
-2.02733666e-01 -1.40742970e+00 4.51274693e-01 -5.78275025e-01
-1.16252840e+00 5.87430894e-01 4.65858936e-01 -1.01021302e+00
-9.44922507e-01 -3.53023052e-01 -6.83087707e-01 8.97475243e-01
-1.21944737e+00 -4.93448138e-01 7.83499926e-02 2.44907051e-01
9.29119647e-01 -3.27714592e-01 1.23698223e+00 3.24724987e-02
-2.46619627e-01 6.26480401e-01 1.11383438e-01 -7.69734606e-02
8.89908314e-01 -1.62715793e+00 1.50315002e-01 -2.57320739e-02
-1.23152524e-01 9.94665980e-01 8.19738984e-01 -5.29094398e-01
-1.03694165e+00 -5.51700234e-01 1.00853503e+00 -3.53543818e-01
3.40626568e-01 -1.80617183e-01 -1.22338295e+00 4.90552366e-01
5.92359364e-01 -4.14565146e-01 7.13846087e-01 2.24451438e-01
-7.60694966e-02 1.14701144e-01 -1.34763801e+00 6.40672684e-01
3.77617925e-01 -1.98332056e-01 -8.55383337e-01 8.97205412e-01
5.84637225e-01 -4.83097374e-01 -7.44003713e-01 4.15580750e-01
3.70964706e-01 -1.01069343e+00 8.94155145e-01 -9.51583862e-01
7.92902559e-02 3.14717919e-01 2.38425553e-01 -1.46585798e+00
9.87522006e-02 -9.19180512e-01 -2.37670779e-01 1.18294549e+00
7.98051178e-01 -7.08309770e-01 8.58117044e-01 8.50158155e-01
1.55313700e-01 -1.10437787e+00 -8.71309698e-01 -6.34532332e-01
4.55521584e-01 -1.81065593e-02 2.53519803e-01 8.50057840e-01
2.97744036e-01 7.44484782e-01 -4.05940652e-01 -7.80568719e-01
1.85490057e-01 -2.76099503e-01 9.80583012e-01 -1.23306096e+00
-4.95575428e-01 -4.52469707e-01 1.08086802e-01 -1.20680439e+00
2.40715250e-01 -4.10268039e-01 2.04380497e-01 -1.38249087e+00
3.08973372e-01 -6.08618736e-01 -5.93305193e-02 3.47923785e-01
-7.02938318e-01 1.16480682e-02 -7.56979594e-03 1.31235927e-01
-8.21038723e-01 3.76716405e-01 1.10157776e+00 -1.78510338e-01
-4.87415493e-01 2.83106655e-01 -5.25312424e-01 7.96358705e-01
7.98640788e-01 -5.07409096e-01 -6.50070071e-01 1.04507856e-01
1.67364925e-01 3.23111653e-01 -2.63493896e-01 -4.11605477e-01
-5.85280359e-02 -4.72870916e-01 3.01694930e-01 -6.42689168e-01
5.08774102e-01 -3.97674382e-01 -5.34634948e-01 7.49739766e-01
-9.99572217e-01 2.01406345e-01 1.55428231e-01 4.88179892e-01
-1.60929635e-01 -9.97755945e-01 9.56653714e-01 -4.50842649e-01
-5.27548254e-01 -4.08606619e-01 -5.09858847e-01 3.97372305e-01
8.93255711e-01 -4.51915003e-02 -4.45788950e-01 -7.22931862e-01
-7.10820794e-01 4.59899694e-01 2.30297670e-01 5.56206465e-01
5.90725064e-01 -1.12037051e+00 -5.82285583e-01 2.94265971e-02
1.46524057e-01 -1.99214056e-01 -3.57298493e-01 7.53843963e-01
-3.07749093e-01 4.73840863e-01 3.25393528e-01 -6.42367780e-01
-1.70867455e+00 3.03964674e-01 5.64297497e-01 -7.85765350e-01
5.94657958e-02 8.80735993e-01 -2.74536818e-01 -1.00164735e+00
7.84150422e-01 2.18279094e-01 -6.90833271e-01 -3.99224274e-02
6.33042753e-01 3.88006598e-01 1.24527872e-01 -3.23259950e-01
-1.09496098e-02 3.04337610e-02 -5.12407541e-01 -3.31231922e-01
1.00340843e+00 1.15589373e-01 -9.57860947e-02 7.85873950e-01
8.98899376e-01 -2.34926969e-01 -6.71979487e-01 -3.01532656e-01
4.86987412e-01 -3.94528985e-01 -2.80178219e-01 -7.67290294e-01
-4.64807808e-01 7.90672004e-01 5.87191403e-01 8.60535920e-01
7.62511611e-01 -2.14798763e-01 2.71868944e-01 1.00596619e+00
4.33108419e-01 -1.58726799e+00 2.96824008e-01 8.06093633e-01
9.14755762e-01 -1.34855926e+00 1.39512852e-01 -1.73020750e-01
-8.91436458e-01 1.07867932e+00 1.18722892e+00 7.37159774e-02
4.84848440e-01 -4.75658253e-02 3.01525623e-01 -1.37395099e-01
-1.46218324e+00 8.05751681e-02 2.29837537e-01 6.78898990e-01
8.49204004e-01 -2.21912593e-01 -8.45854759e-01 1.36699975e-01
-5.62130436e-02 -2.16921315e-01 5.13093054e-01 1.04754031e+00
-7.17177153e-01 -1.35055292e+00 -2.71930844e-01 8.56790543e-01
-4.20187056e-01 -2.83811409e-02 -1.15407526e+00 1.20095861e+00
-5.50824046e-01 1.23202765e+00 -1.97029203e-01 -2.70839304e-01
4.74080324e-01 5.71006536e-01 3.75805795e-01 -1.04464936e+00
-1.25571883e+00 2.32624024e-01 7.28388071e-01 -8.74545127e-02
-4.67880756e-01 -4.01226699e-01 -1.14385188e+00 4.61778715e-02
-1.17929220e+00 7.51814544e-01 2.25070164e-01 9.01177049e-01
-1.06869943e-01 -4.29794304e-02 8.24607253e-01 -7.24789500e-01
-1.54142499e+00 -1.72636843e+00 -3.01584154e-01 3.71700794e-01
1.92906708e-01 -5.03570735e-01 -7.31776059e-01 -3.27407002e-01] | [12.724601745605469, 8.103229522705078] |
621648d3-afc4-4f3a-bba2-686fbc9640bd | saliency-augmented-memory-completion-for | 2212.13242 | null | https://arxiv.org/abs/2212.13242v1 | https://arxiv.org/pdf/2212.13242v1.pdf | Saliency-Augmented Memory Completion for Continual Learning | Continual Learning is considered a key step toward next-generation Artificial Intelligence. Among various methods, replay-based approaches that maintain and replay a small episodic memory of previous samples are one of the most successful strategies against catastrophic forgetting. However, since forgetting is inevitable given bounded memory and unbounded tasks, how to forget is a problem continual learning must address. Therefore, beyond simply avoiding catastrophic forgetting, an under-explored issue is how to reasonably forget while ensuring the merits of human memory, including 1. storage efficiency, 2. generalizability, and 3. some interpretability. To achieve these simultaneously, our paper proposes a new saliency-augmented memory completion framework for continual learning, inspired by recent discoveries in memory completion separation in cognitive neuroscience. Specifically, we innovatively propose to store the part of the image most important to the tasks in episodic memory by saliency map extraction and memory encoding. When learning new tasks, previous data from memory are inpainted by an adaptive data generation module, which is inspired by how humans complete episodic memory. The module's parameters are shared across all tasks and it can be jointly trained with a continual learning classifier as bilevel optimization. Extensive experiments on several continual learning and image classification benchmarks demonstrate the proposed method's effectiveness and efficiency. | ['Liang Zhao', 'Yuyang Gao', 'Chen Ling', 'Guangji Bai'] | 2022-12-26 | null | null | null | null | ['bilevel-optimization'] | ['methodology'] | [ 3.00376445e-01 2.10734636e-01 -1.31119087e-01 -1.58655107e-01
-4.64344054e-01 2.60966029e-02 5.12463629e-01 2.31155664e-01
-5.34181178e-01 1.14634788e+00 1.13527328e-01 1.54040396e-01
-3.45224261e-01 -8.25812697e-01 -1.08415663e+00 -7.36402571e-01
1.46521956e-01 2.02221036e-01 2.75754213e-01 -7.45813921e-02
6.59292877e-01 2.45218217e-01 -1.93916237e+00 2.73413211e-01
1.18534017e+00 9.96676743e-01 7.51226485e-01 2.83869177e-01
-3.12620074e-01 9.09722626e-01 -5.72447896e-01 -1.79571480e-01
-1.07299395e-01 -6.31887197e-01 -8.41866076e-01 2.73503780e-01
2.13836059e-01 -2.05263019e-01 -3.21849734e-01 9.05252993e-01
3.42756480e-01 3.24803203e-01 3.63625854e-01 -1.10639310e+00
-1.14418399e+00 5.96487701e-01 -4.91034031e-01 6.11613095e-01
1.92744106e-01 1.81974590e-01 4.44363296e-01 -1.29939902e+00
5.10569811e-01 1.02465546e+00 5.14438033e-01 6.72545254e-01
-9.58913267e-01 -4.73333985e-01 2.82611579e-01 5.62588394e-01
-1.39948285e+00 -6.05268240e-01 7.91859448e-01 -4.89605665e-02
8.35255742e-01 2.23139435e-01 9.62955773e-01 1.03324783e+00
6.07369363e-01 1.00041580e+00 1.03965664e+00 -4.89415884e-01
5.74868917e-01 2.64299065e-01 1.74952075e-01 7.59885669e-01
3.99661392e-01 3.20701301e-03 -1.06580210e+00 1.55740052e-01
5.73735118e-01 4.69158709e-01 -4.89087284e-01 -2.55028903e-01
-1.03283656e+00 5.79418182e-01 4.04130042e-01 2.31038466e-01
-5.44410706e-01 -2.64507551e-02 1.06030084e-01 4.48311150e-01
5.19899964e-01 3.93309921e-01 -2.00313441e-02 1.40851051e-01
-1.25340581e+00 1.79674223e-01 2.15439409e-01 1.00575900e+00
9.56460953e-01 2.37762690e-01 -2.15185910e-01 6.83153272e-01
-4.75775935e-02 2.70452738e-01 1.13797140e+00 -6.16786838e-01
8.33892226e-02 6.81016266e-01 6.17475547e-02 -9.96928453e-01
-3.33661377e-01 -7.24978268e-01 -9.60679650e-01 7.46593177e-02
-4.72730137e-02 2.35862732e-01 -8.86119664e-01 1.74248147e+00
1.54336333e-01 3.73469323e-01 -8.16298574e-02 9.45997655e-01
5.69458067e-01 5.80855072e-01 2.25403666e-01 -6.94959819e-01
1.06930041e+00 -1.13224590e+00 -8.33737433e-01 -5.75940967e-01
1.60275713e-01 -4.40838993e-01 1.28828466e+00 2.12283239e-01
-1.28211617e+00 -6.84388220e-01 -1.35183513e+00 -2.08545506e-01
-3.90600502e-01 -1.41163066e-01 5.20536482e-01 4.01045948e-01
-1.01085842e+00 6.72953784e-01 -7.79727519e-01 -2.31302053e-01
6.20180190e-01 1.18902333e-01 -6.42753989e-02 -4.01620660e-03
-1.21461618e+00 1.10077703e+00 7.51433909e-01 -7.33986497e-02
-1.06362200e+00 -7.04482377e-01 -5.51142335e-01 2.20479071e-01
4.05483663e-01 -8.12419713e-01 9.60775018e-01 -9.71059978e-01
-1.09626436e+00 6.82248890e-01 -3.54311824e-01 -8.88350666e-01
3.17761511e-01 -4.48466599e-01 -3.97592068e-01 1.16053179e-01
5.57348244e-02 7.06494689e-01 1.32287574e+00 -1.07629859e+00
-6.26168013e-01 -3.32618028e-01 -2.50580013e-01 3.50317538e-01
-7.85338223e-01 -6.56561255e-01 -1.01483300e-01 -8.40637147e-01
3.66410166e-01 -7.66515017e-01 1.14617422e-01 -4.37992588e-02
3.03608421e-02 -1.02141470e-01 9.43499207e-01 -6.61832631e-01
1.29149616e+00 -2.27083445e+00 2.54087389e-01 -3.43024075e-01
1.98933095e-01 2.72210956e-01 -1.56932458e-01 1.22348122e-01
1.05075397e-01 -1.50382563e-01 -3.83745164e-01 -4.50422734e-01
-2.22416267e-01 4.77968045e-02 -8.59392643e-01 2.26837918e-01
2.65252322e-01 1.19218135e+00 -1.00289130e+00 -4.74281579e-01
-1.02770753e-01 3.40020031e-01 -2.17100695e-01 1.70730799e-01
-3.28957617e-01 3.00058782e-01 -1.58350557e-01 6.42991722e-01
7.08674610e-01 -4.56587493e-01 -1.55190051e-01 4.64404374e-02
-1.53898954e-01 -2.97950697e-03 -9.90344286e-01 1.98989296e+00
-2.66291469e-01 4.44686174e-01 -4.63893563e-01 -9.76162851e-01
1.00195026e+00 1.01096466e-01 1.36602111e-02 -1.11237669e+00
-1.94730416e-01 3.00585121e-01 -4.04863268e-01 -4.09850031e-01
7.73243010e-01 -2.67344862e-01 1.67221829e-01 7.55002260e-01
2.23888353e-01 1.05000496e-01 -6.28861890e-04 2.35948920e-01
1.00117755e+00 2.11580172e-02 3.78558159e-01 -2.14610353e-01
4.12715822e-01 1.01072378e-01 7.01848328e-01 9.09105659e-01
-3.01132441e-01 7.61409521e-01 -6.70521846e-03 -8.43849540e-01
-9.46849763e-01 -1.18614089e+00 2.05172047e-01 1.06230986e+00
4.86802042e-01 -5.99252097e-02 -6.14057422e-01 -4.18232769e-01
-1.45651400e-01 9.42439973e-01 -7.35925555e-01 -8.50596726e-01
-6.35002017e-01 -8.61982048e-01 1.14625119e-01 3.44570518e-01
1.03226423e+00 -1.49073625e+00 -1.03979468e+00 3.34816664e-01
-3.32046986e-01 -4.82160896e-01 -5.43012261e-01 1.70344681e-01
-1.19336259e+00 -8.74837935e-01 -8.55485976e-01 -9.45245624e-01
6.29789293e-01 8.91991735e-01 1.04449105e+00 3.78806204e-01
-3.47301722e-01 3.66709232e-01 -2.31369257e-01 -4.06813174e-01
-5.57530001e-02 3.45803499e-01 2.17616305e-01 8.25588852e-02
2.27355212e-01 -7.99444437e-01 -7.87414551e-01 -8.98499861e-02
-1.16499317e+00 1.90954924e-01 9.97749209e-01 1.06735528e+00
9.05251086e-01 1.81629524e-01 1.16521645e+00 -8.24351609e-01
6.74718261e-01 -6.33141935e-01 -1.60046801e-01 5.20420790e-01
-8.65329623e-01 1.94530800e-01 5.89724600e-01 -6.36125803e-01
-1.29825151e+00 -6.82915896e-02 3.24041367e-01 -4.75968748e-01
1.69162065e-01 4.15491968e-01 -1.02183446e-01 -3.32349725e-02
6.71971560e-01 9.94980276e-01 1.26857966e-01 -2.11773664e-01
3.93797249e-01 1.98525995e-01 5.90999186e-01 -3.11026901e-01
4.87227410e-01 4.97075737e-01 -2.45777965e-01 -7.61407018e-01
-1.15630937e+00 -2.49058623e-02 -5.42175293e-01 -2.68997222e-01
4.58216906e-01 -8.31392527e-01 -3.90090793e-01 5.31750381e-01
-1.07455838e+00 1.06574148e-02 -6.13347590e-01 2.41642594e-01
-7.27858603e-01 2.05457583e-01 -4.02726084e-01 -7.41033852e-01
-5.34255326e-01 -6.73678756e-01 6.46019220e-01 5.81458688e-01
-1.65185943e-01 -7.49759734e-01 -3.80724780e-02 5.89876361e-02
7.33909309e-01 1.27834305e-02 9.55904901e-01 -2.25509644e-01
-9.24129546e-01 2.40231037e-01 -8.70818496e-02 1.40741602e-01
2.15898946e-01 -8.28295648e-01 -8.58278692e-01 -5.68062365e-01
5.24337471e-01 -4.75712299e-01 1.39249325e+00 5.32204285e-02
1.12662363e+00 -5.66350877e-01 -3.87718469e-01 3.91090661e-01
1.35280943e+00 2.02109277e-01 8.40755880e-01 5.86368740e-01
2.74522990e-01 4.57484126e-01 7.18102634e-01 5.45320988e-01
2.88619161e-01 9.69691351e-02 3.74644816e-01 3.46751869e-01
-4.05646831e-01 -4.77445751e-01 1.97699532e-01 1.01747739e+00
2.35565662e-01 2.15605110e-01 -6.44026041e-01 6.70545161e-01
-1.92078662e+00 -1.28525865e+00 4.27316606e-01 2.18123722e+00
1.08005595e+00 2.79973596e-01 -2.58651346e-01 2.29286149e-01
7.50579774e-01 2.03387946e-01 -1.07882750e+00 -5.90610169e-02
-5.05608678e-01 1.73006833e-01 3.32999676e-02 2.32788607e-01
-8.67763460e-01 9.55586135e-01 5.98492861e+00 8.86501908e-01
-1.14396966e+00 4.22100842e-01 6.90230787e-01 -4.17840183e-01
-3.34479094e-01 7.08118379e-02 -8.20855975e-01 6.25027239e-01
8.10545444e-01 -6.50748551e-01 6.37655556e-01 7.94186175e-01
-7.60142580e-02 -3.62857819e-01 -8.20924222e-01 9.58642960e-01
3.91785532e-01 -1.53668940e+00 4.38991368e-01 -3.89417589e-01
8.22790384e-01 -5.16301394e-01 6.16634905e-01 5.50558388e-01
-4.97606874e-01 -9.03260648e-01 9.08825278e-01 1.08967519e+00
3.99697244e-01 -8.64427626e-01 3.56692791e-01 6.73847735e-01
-8.56883407e-01 -4.09516901e-01 -7.84318864e-01 -8.19399804e-02
1.87191591e-01 9.39479053e-01 -5.95678806e-01 2.10407093e-01
7.03973055e-01 5.40995061e-01 -8.86422992e-01 1.19899261e+00
-1.36968732e-01 4.24741775e-01 1.54815450e-01 -7.60635640e-03
-9.96421427e-02 9.86323059e-02 5.04746497e-01 8.76577735e-01
5.89313507e-01 1.85621262e-01 -2.14486897e-01 9.92983162e-01
-1.31140918e-01 -1.43416282e-02 -5.96049190e-01 4.82148081e-02
7.94737875e-01 9.48095620e-01 -7.94194758e-01 -3.59640062e-01
-7.97814727e-02 1.28357053e+00 7.57977307e-01 2.34827176e-01
-8.73576224e-01 -4.24385250e-01 5.82413897e-02 2.39226714e-01
2.30464920e-01 -2.73080587e-01 -5.19275069e-01 -1.03868842e+00
2.56962091e-01 -5.85240960e-01 2.95450509e-01 -7.87528574e-01
-9.51853156e-01 5.73498547e-01 -3.74544352e-01 -1.10616553e+00
7.69101232e-02 1.56684797e-02 -6.18497968e-01 4.97087866e-01
-1.70449352e+00 -9.57880497e-01 -5.42956054e-01 6.09608710e-01
9.44084466e-01 -3.70763391e-01 7.50089228e-01 2.66159326e-01
-4.29480344e-01 5.50412595e-01 -1.22646563e-01 -6.03122115e-01
6.13102615e-01 -8.96452665e-01 1.21781081e-01 7.38297164e-01
1.72592565e-01 8.35771799e-01 6.64683163e-01 -9.00168955e-01
-1.61790621e+00 -1.38377213e+00 9.68175709e-01 -1.17705464e-01
2.80710697e-01 -1.90036207e-01 -1.50657427e+00 6.29165947e-01
1.35561809e-01 -1.69073403e-01 4.13323879e-01 -2.16855183e-01
-1.14617601e-01 -1.44575730e-01 -9.72619295e-01 6.45122766e-01
1.26448488e+00 -3.71569514e-01 -1.05885220e+00 3.15275639e-01
9.86209810e-01 -2.06302539e-01 -2.90669054e-01 2.26563111e-01
3.81296217e-01 -1.07300901e+00 7.93291032e-01 -2.76587516e-01
2.83949763e-01 -2.83989251e-01 1.11321710e-01 -1.30745888e+00
-4.47054982e-01 -5.48604488e-01 -6.20624959e-01 1.20766056e+00
9.80204716e-02 -5.28067768e-01 7.95904398e-01 3.97747576e-01
-2.26787031e-01 -6.05098009e-01 -1.07915413e+00 -9.87493396e-01
-3.01749706e-02 5.93966059e-02 6.71033621e-01 7.28409708e-01
-7.64162913e-02 3.58802259e-01 -7.10841775e-01 -4.35173959e-02
7.55680025e-01 3.54006886e-01 4.01500672e-01 -1.05174267e+00
-8.69579837e-02 -2.69698620e-01 -5.90724275e-02 -9.76554453e-01
1.79862857e-01 -8.58856201e-01 2.61537842e-02 -1.34127331e+00
4.58590448e-01 -2.17425689e-01 -5.55635273e-01 5.16735196e-01
-3.41333836e-01 6.86572939e-02 2.07461327e-01 6.60608172e-01
-9.51802969e-01 1.11095989e+00 1.33531046e+00 -3.38500261e-01
-3.46046835e-01 -3.30972016e-01 -7.86601663e-01 3.92316341e-01
8.12003076e-01 -4.98337656e-01 -6.59304917e-01 -5.36360502e-01
1.40411496e-01 3.13728750e-02 4.69030678e-01 -1.32253301e+00
8.51978660e-01 -1.87920049e-01 5.09780347e-01 -5.74884176e-01
3.39563310e-01 -3.76865476e-01 2.48166084e-01 6.50849760e-01
-3.49369854e-01 1.45191684e-01 1.38468161e-01 8.40560913e-01
-3.08441132e-01 -2.84659237e-01 8.50202024e-01 -4.67744708e-01
-1.09926271e+00 2.90330887e-01 -2.87469864e-01 1.96760371e-02
1.07844210e+00 -2.56979585e-01 -5.07480323e-01 -1.73203334e-01
-9.03967977e-01 7.78353736e-02 2.85480291e-01 5.99295676e-01
1.26513302e+00 -1.43671310e+00 -5.15255809e-01 3.03798795e-01
-7.39416480e-02 -1.85851812e-01 5.00736058e-01 7.62161434e-01
-4.43920232e-02 3.72915208e-01 -5.29865503e-01 -3.26403618e-01
-6.72483325e-01 9.91065621e-01 1.18749477e-02 3.13793421e-02
-7.24286139e-01 6.72820270e-01 7.69035667e-02 2.00871438e-01
2.30316207e-01 2.36103609e-01 -1.19397312e-01 1.86142266e-01
9.01826382e-01 5.32874584e-01 2.34379053e-01 -1.86217993e-01
-1.24155201e-01 1.29262164e-01 -3.85262311e-01 -6.04058430e-03
1.40565205e+00 -5.67299426e-01 -2.52324849e-01 7.86297917e-01
7.08998740e-01 -4.56247032e-01 -1.33182228e+00 -3.44795018e-01
2.63297200e-01 -4.24232036e-01 -1.13612764e-01 -6.17100656e-01
-9.39573407e-01 9.17372227e-01 7.16085613e-01 4.28022183e-02
1.32528532e+00 -2.95234561e-01 1.09972179e+00 4.81966704e-01
7.58777618e-01 -1.43920124e+00 6.77093208e-01 5.42738318e-01
1.23362923e+00 -1.20888877e+00 3.61938588e-03 5.36351316e-02
-4.77878511e-01 9.81052101e-01 8.01257432e-01 -1.29359886e-01
6.16156995e-01 -1.00899622e-01 -3.46150637e-01 -2.35857777e-02
-9.37437713e-01 -1.43597061e-02 2.48905532e-02 3.19856912e-01
1.27960620e-02 -2.19243914e-01 -6.09836161e-01 8.32612514e-01
-1.98423833e-01 2.44718209e-01 4.73784924e-01 1.24299431e+00
-1.08006978e+00 -6.07044756e-01 -3.16525638e-01 4.56287891e-01
-2.11585946e-02 -2.82879956e-02 -7.64191151e-02 4.31639522e-01
1.03997827e-01 7.38827884e-01 -1.13488756e-01 -2.69507229e-01
7.23885149e-02 3.24388862e-01 4.58853334e-01 -6.27982914e-01
-1.94965005e-01 -4.03891206e-01 -6.57616019e-01 -3.61792892e-01
-3.02859426e-01 -5.97518027e-01 -1.35470641e+00 -1.80023178e-01
-2.94016212e-01 1.59223616e-01 3.97836447e-01 1.00019479e+00
7.57174194e-01 4.55729395e-01 5.74481845e-01 -6.52210355e-01
-6.39752984e-01 -7.71283984e-01 -6.87927186e-01 3.67094010e-01
3.04904878e-01 -9.15238082e-01 -4.26354438e-01 2.17333063e-01] | [9.845317840576172, 3.40586256980896] |
3a82e8b3-c8ce-4525-9281-ba4c12f4181e | gender-stereotyping-impact-in-facial | 2210.05332 | null | https://arxiv.org/abs/2210.05332v1 | https://arxiv.org/pdf/2210.05332v1.pdf | Gender Stereotyping Impact in Facial Expression Recognition | Facial Expression Recognition (FER) uses images of faces to identify the emotional state of users, allowing for a closer interaction between humans and autonomous systems. Unfortunately, as the images naturally integrate some demographic information, such as apparent age, gender, and race of the subject, these systems are prone to demographic bias issues. In recent years, machine learning-based models have become the most popular approach to FER. These models require training on large datasets of facial expression images, and their generalization capabilities are strongly related to the characteristics of the dataset. In publicly available FER datasets, apparent gender representation is usually mostly balanced, but their representation in the individual label is not, embedding social stereotypes into the datasets and generating a potential for harm. Although this type of bias has been overlooked so far, it is important to understand the impact it may have in the context of FER. To do so, we use a popular FER dataset, FER+, to generate derivative datasets with different amounts of stereotypical bias by altering the gender proportions of certain labels. We then proceed to measure the discrepancy between the performance of the models trained on these datasets for the apparent gender groups. We observe a discrepancy in the recognition of certain emotions between genders of up to $29 \%$ under the worst bias conditions. Our results also suggest a safety range for stereotypical bias in a dataset that does not appear to produce stereotypical bias in the resulting model. Our findings support the need for a thorough bias analysis of public datasets in problems like FER, where a global balance of demographic representation can still hide other types of bias that harm certain demographic groups. | ['Mikel Galar', 'Daniel Paternain', 'Iris Dominguez-Catena'] | 2022-10-11 | null | null | null | null | ['facial-expression-recognition'] | ['computer-vision'] | [ 1.56352166e-02 2.73715585e-01 -7.22115785e-02 -9.82892156e-01
6.12070225e-02 -4.98445094e-01 6.69253290e-01 4.40299846e-02
-5.51301241e-01 5.64977944e-01 3.75043154e-01 -5.29951714e-02
1.71154156e-01 -7.59359837e-01 -4.99221325e-01 -5.96514106e-01
6.68105707e-02 3.01139086e-01 -3.57111841e-01 -4.54045027e-01
1.96635410e-01 4.66240823e-01 -1.87574029e+00 3.20646405e-01
6.17444277e-01 1.14380467e+00 -5.15489697e-01 1.43525973e-01
7.90346563e-02 6.86155975e-01 -7.96327829e-01 -7.72941470e-01
4.25584793e-01 -4.23407853e-01 -5.20031393e-01 -3.41534428e-02
8.69948149e-01 -2.96940565e-01 1.26245711e-03 1.03663123e+00
5.90682030e-01 -1.57346874e-01 9.07347977e-01 -1.54402494e+00
-3.62702072e-01 4.19597328e-01 -8.62457097e-01 -5.48230931e-02
4.76712376e-01 2.45955482e-01 8.80819499e-01 -6.12208903e-01
8.37263405e-01 1.71446466e+00 7.29284167e-01 7.62412488e-01
-1.55695641e+00 -1.39978826e+00 4.39234450e-02 -1.60522759e-01
-1.51719189e+00 -7.07691789e-01 6.58941627e-01 -7.36801147e-01
2.28214234e-01 3.08811218e-01 6.99045181e-01 1.36670935e+00
-2.88997144e-02 1.59680992e-01 1.71435523e+00 -2.06291318e-01
2.56520599e-01 6.96242213e-01 2.10012309e-02 5.23631096e-01
2.85888255e-01 9.11082551e-02 -5.92638791e-01 -6.87229753e-01
3.77241671e-01 -2.31714055e-01 -1.28641594e-02 -4.12210584e-01
-6.59325182e-01 1.04153776e+00 3.70585054e-01 1.66843221e-01
-2.59139687e-01 -1.24849685e-01 5.48551798e-01 2.73730636e-01
6.05849564e-01 7.73939729e-01 -2.97761977e-01 -2.11455114e-02
-8.10671031e-01 5.79087615e-01 7.60362327e-01 4.04532313e-01
9.46193039e-01 -2.68758461e-02 -1.46683753e-01 1.01245964e+00
2.33594719e-02 3.64000678e-01 4.42081928e-01 -1.10438955e+00
-7.28865787e-02 6.89779580e-01 1.03124984e-01 -1.51520181e+00
-3.42373759e-01 1.56964421e-01 -4.14186269e-01 5.29913306e-01
7.67184794e-01 -3.68062288e-01 -6.00714922e-01 2.36201811e+00
2.51376957e-01 -4.01704371e-01 -1.47661179e-01 8.63335609e-01
5.83874762e-01 1.31841794e-01 5.20608902e-01 6.75826566e-03
1.40381193e+00 -1.93447769e-02 -5.03226697e-01 -3.86851013e-01
7.01690018e-01 -6.07336521e-01 1.08772981e+00 1.10683076e-01
-7.21954644e-01 -1.93091735e-01 -8.41438890e-01 3.41872126e-01
-4.82497096e-01 -1.08902514e-01 9.41153049e-01 1.17917192e+00
-9.41368639e-01 4.29652125e-01 -1.36519894e-01 -6.91249847e-01
6.27767205e-01 4.69453365e-01 -5.62088192e-01 8.24524388e-02
-1.17725217e+00 9.88835633e-01 -3.75953391e-02 -1.86138928e-01
-3.89851987e-01 -7.42489100e-01 -8.63453209e-01 -1.81328088e-01
2.22512297e-02 -2.49352574e-01 9.09087658e-01 -1.98025155e+00
-1.01046491e+00 1.40967488e+00 -7.12069124e-02 -1.01057321e-01
6.07202172e-01 2.69833654e-01 -5.15799999e-01 -2.66673595e-01
2.09490255e-01 1.05354548e+00 8.96027267e-01 -1.37598419e+00
-3.23644727e-01 -7.83027709e-01 1.68808952e-01 5.49599715e-02
-4.18500274e-01 4.94331419e-01 3.12456280e-01 -4.06681925e-01
-4.33783889e-01 -1.17261076e+00 -4.12856154e-02 1.85906366e-01
1.12383794e-02 -2.42068425e-01 7.11065292e-01 -4.39040750e-01
1.04885674e+00 -2.34304523e+00 -2.59980798e-01 4.16123748e-01
1.74230710e-01 -5.23182936e-02 2.01039091e-02 1.44900441e-01
-4.26218569e-01 4.27979171e-01 8.08754861e-02 -1.76019087e-01
-8.70936215e-02 1.34409592e-01 -1.78113192e-01 6.64831638e-01
3.38353723e-01 3.80833060e-01 -5.91608882e-01 -5.24883807e-01
-2.82577753e-01 3.94838154e-01 -8.66644263e-01 9.69405696e-02
1.21663183e-01 3.32041174e-01 -6.72359765e-02 6.46622777e-01
6.71988249e-01 4.34929609e-01 3.22472841e-01 -1.69562832e-01
1.15650399e-02 -9.05178860e-03 -9.02405560e-01 9.01852071e-01
-1.62425086e-01 8.20503652e-01 3.17909658e-01 -6.92236364e-01
1.09882402e+00 1.10613368e-02 4.39693421e-01 -6.71401978e-01
4.53035325e-01 2.91195542e-01 5.04085720e-01 -3.68211597e-01
6.40807271e-01 -6.95952833e-01 -2.08006456e-01 4.11561280e-01
-2.03886911e-01 -9.99779999e-02 3.45411189e-02 -5.04681915e-02
7.32420087e-01 -2.90685833e-01 -2.20207796e-02 -5.92120469e-01
9.59121287e-02 -8.14964771e-02 7.58622050e-01 4.23410952e-01
-5.01749396e-01 5.05407810e-01 8.87943923e-01 -3.83431196e-01
-8.60556304e-01 -7.83172429e-01 -4.41059798e-01 1.23891652e+00
-1.19216733e-01 -1.96639225e-01 -6.83060706e-01 -6.20144367e-01
3.31213653e-01 7.33536541e-01 -1.05504882e+00 -6.28178596e-01
-1.51295274e-01 -9.52108204e-01 9.59371448e-01 2.58522689e-01
1.93588808e-01 -8.51384759e-01 -7.31855452e-01 -4.34821844e-01
6.00793883e-02 -9.68728304e-01 2.78834179e-02 -1.69701815e-01
-5.17792463e-01 -1.08489203e+00 -6.29242778e-01 -4.53111321e-01
8.88575196e-01 -7.64491782e-02 1.32269859e+00 2.38190100e-01
-2.55795777e-01 5.09799898e-01 -1.08042091e-01 -8.55707347e-01
-5.29295504e-01 -1.05384476e-01 3.11445683e-01 4.03390348e-01
7.26222813e-01 -4.09233600e-01 -5.92268705e-01 5.97515702e-01
-8.93543661e-01 -1.94088712e-01 1.91697881e-01 5.23002088e-01
-2.63198793e-01 -2.35115290e-01 6.32825732e-01 -1.15869439e+00
6.45444274e-01 -7.18917131e-01 -1.47112325e-01 -1.43068448e-01
-6.57336414e-01 -2.01352552e-01 3.03466052e-01 -6.50852501e-01
-1.13356066e+00 -2.26765364e-01 2.09370270e-01 -2.85780400e-01
-2.71532595e-01 2.70463228e-01 -7.47816786e-02 -6.62851483e-02
1.01875019e+00 -4.91873890e-01 4.59502041e-01 -1.71894968e-01
-1.03953019e-01 9.54592466e-01 6.01922236e-02 -8.27304006e-01
4.82422471e-01 6.24625027e-01 -1.77225098e-01 -7.64331639e-01
-6.35668933e-01 1.25169262e-01 -2.29664862e-01 -4.91076618e-01
6.73954785e-01 -1.01293421e+00 -6.76082492e-01 3.67149562e-01
-6.79790080e-01 -3.73598099e-01 -1.63377315e-01 2.88700968e-01
-3.09139103e-01 4.58889641e-03 -2.61032760e-01 -8.72967184e-01
8.43093619e-02 -1.16219664e+00 8.51804554e-01 1.03955649e-01
-1.02694464e+00 -7.39408731e-01 -7.90608376e-02 3.49584132e-01
4.22065884e-01 5.38395166e-01 1.02925849e+00 -6.85823619e-01
2.72084564e-01 -2.64436543e-01 -2.82796323e-01 2.64863431e-01
2.91060656e-01 3.69513094e-01 -1.25538528e+00 -1.72249570e-01
-1.97689459e-01 -7.87466526e-01 5.02561390e-01 3.20429616e-02
1.08329630e+00 -2.72972494e-01 -1.20665699e-01 2.37042755e-01
1.19654191e+00 2.01304406e-01 5.90034604e-01 1.63508937e-01
4.72169548e-01 1.27979994e+00 6.35299146e-01 4.96291280e-01
3.58114958e-01 6.04603946e-01 2.93318301e-01 -2.98645467e-01
3.27239364e-01 -1.90149501e-01 5.80468416e-01 -2.00287551e-01
-9.95767042e-02 2.67954201e-01 -9.13535833e-01 3.40735793e-01
-1.29799938e+00 -1.01603913e+00 1.67563975e-01 2.30505943e+00
8.28742445e-01 -1.20959371e-01 4.50092584e-01 2.69404929e-02
8.50935698e-01 3.43088776e-01 -4.40781295e-01 -9.74672854e-01
-2.53650606e-01 8.88204295e-03 5.03670454e-01 1.62413001e-01
-6.56755805e-01 6.26074255e-01 7.08724976e+00 5.15860319e-01
-1.60287678e+00 -3.28507036e-01 1.25714672e+00 -4.33291525e-01
-3.25987518e-01 -9.88744050e-02 -5.05903840e-01 5.83320916e-01
8.84119034e-01 -2.71812886e-01 3.83737952e-01 8.67844582e-01
2.91514099e-01 -3.28686357e-01 -1.25540817e+00 9.79681492e-01
2.33797416e-01 -6.19579375e-01 -1.14691503e-01 2.91892648e-01
4.78767872e-01 -3.36507082e-01 2.71540433e-01 4.20763344e-01
2.89964497e-01 -1.42913461e+00 8.59547436e-01 1.22998059e-01
1.06541991e+00 -7.32308626e-01 5.90554237e-01 -1.90754067e-02
-3.23917776e-01 -2.72522628e-01 -3.49517345e-01 -5.60784161e-01
-3.38730246e-01 3.55874270e-01 -6.90546215e-01 -2.56986499e-01
9.86284196e-01 3.11647952e-01 -8.51374447e-01 2.69922405e-01
3.61626089e-01 4.63236004e-01 -3.21983069e-01 1.06512234e-01
-1.52219296e-01 -2.35624388e-01 8.90340954e-02 1.01548493e+00
2.02588156e-01 -3.97819169e-02 -2.76444733e-01 7.36400843e-01
-2.27560565e-01 2.88926244e-01 -1.01659894e+00 -1.78802356e-01
3.95165622e-01 1.38441586e+00 -4.72634584e-01 -2.13585421e-01
-5.05912602e-01 5.43334007e-01 3.96060020e-01 2.50483096e-01
-6.65912151e-01 1.65568545e-01 1.13715613e+00 4.61691171e-01
-3.30184013e-01 2.85908133e-01 -3.76190037e-01 -9.32394505e-01
-2.07789138e-01 -1.39952850e+00 4.58809644e-01 -7.44215310e-01
-1.37628472e+00 2.66826153e-01 1.36754721e-01 -6.83126330e-01
-3.13377202e-01 -5.78916967e-01 -4.03448105e-01 7.69045711e-01
-9.57304239e-01 -9.84856188e-01 -3.17631185e-01 4.78996545e-01
-1.31311705e-02 -1.10162064e-01 7.85563111e-01 3.17429990e-01
-5.64111650e-01 8.41894627e-01 -4.51941729e-01 2.50237942e-01
1.35635555e+00 -9.76077497e-01 -3.84638876e-01 1.53457507e-01
-3.08814645e-01 7.46890128e-01 9.89859283e-01 -4.09144670e-01
-8.73888433e-01 -6.82250440e-01 7.39936650e-01 -5.22945106e-01
4.49106365e-01 -4.76698607e-01 -5.74331999e-01 7.16204941e-01
7.52406344e-02 -1.77334696e-01 1.15360522e+00 5.13052702e-01
-8.13643396e-01 -2.29852915e-01 -1.57046795e+00 9.38926101e-01
1.06912196e+00 -5.72222114e-01 -1.55768976e-01 -8.96503851e-02
3.86990756e-02 -5.29285744e-02 -8.92121315e-01 4.26097572e-01
9.78623211e-01 -1.42814684e+00 5.99301755e-01 -7.32132256e-01
6.77377880e-01 1.27631739e-01 -2.49107450e-01 -1.38615859e+00
-1.56427249e-01 -1.79136470e-01 6.34750247e-01 1.64327550e+00
4.48330462e-01 -7.75238514e-01 8.37713301e-01 1.47334695e+00
4.90407377e-01 -7.90901780e-01 -7.19481051e-01 -3.90414894e-01
4.32324082e-01 -2.64492184e-01 7.67099202e-01 1.26957524e+00
-8.11519995e-02 1.91189796e-01 -2.55110800e-01 -2.16104746e-01
2.07437664e-01 -1.23688683e-01 1.10168850e+00 -1.45837724e+00
1.40399411e-01 -5.70303440e-01 -6.76388085e-01 1.52462889e-02
6.63175344e-01 -6.90008402e-01 -2.52852917e-01 -5.69359601e-01
3.63984525e-01 -6.53949201e-01 2.32690573e-02 4.72804576e-01
-6.10068403e-02 4.51285988e-01 2.60685742e-01 -1.65361576e-02
-2.32128035e-02 4.04552400e-01 9.31526780e-01 -2.92487610e-02
-3.97595577e-02 -3.65564287e-01 -1.33055067e+00 1.02046943e+00
7.45159626e-01 -3.70723456e-01 -3.32105964e-01 -1.50989190e-01
3.35669726e-01 -4.19518232e-01 3.83639663e-01 -7.30736196e-01
-4.01692688e-01 -3.74568731e-01 6.33107364e-01 4.19572413e-01
5.11282265e-01 -9.69667971e-01 2.40833491e-01 3.42493951e-01
-4.49840993e-01 1.53683767e-01 2.09179446e-01 1.49537906e-01
-8.20756778e-02 -4.43124166e-03 9.39688206e-01 -2.11360037e-01
-4.17074561e-01 1.25295624e-01 -4.75389719e-01 2.77165264e-01
1.01386559e+00 -3.86268556e-01 -1.56769320e-01 -6.04167700e-01
-3.02393168e-01 -3.92510891e-02 1.14807343e+00 6.43901408e-01
-7.77713880e-02 -1.20458984e+00 -6.22741163e-01 2.44571850e-01
4.36120540e-01 -6.02427602e-01 2.11368054e-02 7.25812316e-01
-9.72266793e-02 -2.97994971e-01 -5.89810908e-01 -3.55442673e-01
-1.54600275e+00 2.68880069e-01 5.56599975e-01 2.96697319e-01
1.75068945e-01 6.38622820e-01 5.31246841e-01 -4.39171582e-01
-1.09510891e-01 2.69426554e-01 -3.03908497e-01 7.38215327e-01
2.73124546e-01 3.57586384e-01 -2.93514311e-01 -1.18705118e+00
-3.16487730e-01 2.89638340e-01 -3.02594956e-02 -2.06142619e-01
1.07956886e+00 -4.35985683e-04 -2.82005042e-01 4.72452074e-01
1.10690343e+00 3.59471083e-01 -9.68438625e-01 1.98531285e-01
-7.43387416e-02 -8.51468146e-01 -3.19981307e-01 -5.93117058e-01
-1.18991363e+00 5.86025238e-01 7.53820479e-01 1.16755910e-01
9.57071006e-01 -1.26270175e-01 2.01076806e-01 -7.66939968e-02
4.46671337e-01 -1.17822397e+00 -1.85651645e-01 1.47179201e-01
8.53388309e-01 -1.40226901e+00 4.83739115e-02 -4.24232662e-01
-8.01065624e-01 5.97775459e-01 9.70125794e-01 -9.80427396e-03
5.16863525e-01 6.00266941e-02 5.90431094e-01 -2.87280500e-01
-6.04362547e-01 2.66456362e-02 -1.43668935e-01 7.15497434e-01
7.51730442e-01 1.82511792e-01 -6.61181331e-01 5.79573452e-01
-7.14156985e-01 -7.72545263e-02 5.64022124e-01 7.51133442e-01
1.62659645e-01 -1.05967486e+00 -5.82199395e-01 7.05356002e-01
-8.10753465e-01 2.47012839e-01 -9.96394217e-01 8.37233841e-01
4.40552682e-01 8.02626729e-01 4.00066733e-01 -4.96531725e-01
3.27215612e-01 3.60191286e-01 3.70806962e-01 -5.30978262e-01
-8.37019563e-01 -6.59474015e-01 4.99484211e-01 -5.07173717e-01
-4.23786432e-01 -9.16649580e-01 -8.59985888e-01 -5.86518466e-01
1.25101414e-02 -7.94083551e-02 4.77948427e-01 6.08259499e-01
4.46308106e-01 -3.04266602e-01 6.65961981e-01 -9.51074421e-01
-4.21214342e-01 -8.40640008e-01 -8.35451365e-01 1.15157890e+00
1.16408179e-02 -9.78256047e-01 -5.92579067e-01 -2.13764727e-01] | [13.043142318725586, 1.3560817241668701] |
8bf7aca5-dcd0-4b7f-83f8-eb0e1f29c232 | uncertainty-inspired-open-set-learning-for | 2304.03981 | null | https://arxiv.org/abs/2304.03981v1 | https://arxiv.org/pdf/2304.03981v1.pdf | Uncertainty-inspired Open Set Learning for Retinal Anomaly Identification | Failure to recognize samples from the classes unseen during training is a major limit of artificial intelligence (AI) in real-world implementation of retinal anomaly classification. To resolve this obstacle, we propose an uncertainty-inspired open-set (UIOS) model which was trained with fundus images of 9 common retinal conditions. Besides the probability of each category, UIOS also calculates an uncertainty score to express its confidence. Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set, external testing set and non-typical testing set, respectively, compared to the F1 score of 92.20%, 80.69% and 64.74% by the standard AI model. Furthermore, UIOS correctly predicted high uncertainty scores, which prompted the need for a manual check, in the datasets of rare retinal diseases, low-quality fundus images, and non-fundus images. This work provides a robust method for real-world screening of retinal anomalies. | ['Huazhu Fu', 'Haoyu Chen', 'Chi Pui Pang', 'Yong liu', 'Rick Siow Mong Goh', 'Daoqiang Zhang', 'Xinjian Chen', 'Changqing Zhang', 'Weifang Zhu', 'Mingzhi Zhang', 'Jianhong Lin', 'Junhong Chen', 'Zhiqun Wu', 'Guoyao Deng', 'Yiming Qian', 'Qingquan Meng', 'Yuanyuan Peng', 'Yi Zhou', 'Xinxing Xu', 'Ke Zou', 'Aidi Lin', 'Lianyu Wang', 'Tian Lin', 'Meng Wang'] | 2023-04-08 | null | null | null | null | ['anomaly-classification', 'open-set-learning'] | ['computer-vision', 'miscellaneous'] | [ 4.75892350e-02 5.07820189e-01 1.09598130e-01 -4.63781029e-01
-4.38099623e-01 -2.11009055e-01 1.92122281e-01 4.07491699e-02
-2.45236084e-01 1.09126377e+00 -3.73281419e-01 -2.23830879e-01
-4.95749801e-01 -6.57990813e-01 -6.24164402e-01 -6.38297796e-01
2.86942143e-02 4.55630898e-01 3.36012721e-01 3.78329068e-01
4.86347705e-01 2.10007265e-01 -2.34630632e+00 5.20834982e-01
1.59030151e+00 1.29583979e+00 -3.03742468e-01 6.46303535e-01
-1.37649020e-02 6.29798293e-01 -7.20967829e-01 -4.95209038e-01
3.52011174e-01 -4.33871686e-01 -7.10042417e-01 1.17477730e-01
7.53893852e-01 -2.53263921e-01 2.52533346e-01 1.37074113e+00
3.21532696e-01 -1.06042050e-01 1.10055232e+00 -9.46374893e-01
-6.62512243e-01 1.22128516e-01 -5.88132560e-01 1.07600354e-01
1.01569511e-01 1.86753288e-01 5.30523002e-01 -2.87560850e-01
5.29000521e-01 6.87716424e-01 3.55490685e-01 4.35644418e-01
-7.61926651e-01 -3.08255821e-01 -1.51099876e-01 1.55254602e-01
-1.22069299e+00 -1.45991355e-01 -1.84772626e-01 -8.58185351e-01
7.56129801e-01 4.15663093e-01 8.97049010e-01 3.55836719e-01
4.71927345e-01 3.33136111e-01 1.41161442e+00 -7.39629865e-01
1.77097082e-01 3.56382459e-01 1.88464522e-01 8.63903284e-01
7.21879900e-01 4.31577176e-01 -5.27304187e-02 -3.35274875e-01
7.44188666e-01 -4.28923070e-01 -1.38121367e-01 1.47185400e-01
-5.77205300e-01 2.96006173e-01 3.03919405e-01 -5.29117957e-02
-3.22259933e-01 -5.89907944e-01 4.07734402e-02 1.54648751e-01
3.81275147e-01 5.46103954e-01 -3.14922750e-01 6.13194592e-02
-5.56097448e-01 -1.39917389e-01 6.84075832e-01 7.65114069e-01
4.55869317e-01 -1.52604416e-01 -3.52299511e-01 7.63877749e-01
5.13998985e-01 4.21983063e-01 7.29962647e-01 -9.61662889e-01
-2.88969576e-01 1.09217739e+00 1.94600046e-01 -6.32982969e-01
-2.85079002e-01 -5.57111621e-01 -6.91707611e-01 5.71317911e-01
6.15662575e-01 -4.64477055e-02 -1.58254015e+00 1.19296598e+00
1.50530636e-01 4.26430613e-01 2.32419908e-01 7.85167038e-01
7.87609339e-01 1.76253438e-01 -1.91382125e-01 -4.38218683e-01
1.12345529e+00 -4.82430756e-01 -4.98468608e-01 4.73782755e-02
5.84004462e-01 -7.14323580e-01 7.68291414e-01 9.16734397e-01
-8.78495991e-01 -3.40223283e-01 -8.71846557e-01 3.64740521e-01
9.41520464e-03 5.99515021e-01 5.25610268e-01 7.31818259e-01
-9.54407632e-01 3.35249603e-01 -5.55489779e-01 -2.33935446e-01
7.46582270e-01 4.11018223e-01 -3.89669985e-01 -5.70575222e-02
-5.80152154e-01 9.64378536e-01 3.03486407e-01 -1.65570676e-01
-4.07142848e-01 -5.02517045e-01 -4.91866261e-01 -2.14851290e-01
1.62621498e-01 -6.55268908e-01 1.04249525e+00 -9.18514252e-01
-1.31493998e+00 1.14931750e+00 -2.00785950e-01 -7.70559072e-01
4.78021502e-01 -2.33185440e-01 -6.95641041e-01 1.91767275e-01
6.66916370e-02 4.26410884e-01 7.55248129e-01 -7.82567799e-01
-8.82006288e-01 -5.64494312e-01 -3.74252915e-01 -3.27629238e-01
2.09397748e-01 9.88554731e-02 -6.30368069e-02 -1.66178778e-01
2.40305558e-01 -7.67806292e-01 -2.13498294e-01 -3.50678451e-02
-5.90667486e-01 -4.74490672e-01 -1.35126607e-02 -5.06519318e-01
1.29444134e+00 -2.09702945e+00 -4.85282779e-01 5.51568687e-01
4.21439141e-01 8.33250344e-01 2.76186734e-01 -3.92177492e-01
-2.01453656e-01 3.04270238e-01 -9.48684886e-02 3.94072682e-01
-4.83385950e-01 1.06291682e-01 6.59992248e-02 2.14552909e-01
6.75559163e-01 2.12789312e-01 -6.93954408e-01 -5.75951159e-01
2.43628979e-01 1.02789346e-02 -6.97079062e-01 1.04688488e-01
-2.57444352e-01 3.21070343e-01 -3.88287812e-01 9.91593957e-01
5.93453646e-01 -2.85823226e-01 -2.13769466e-01 -1.36775166e-01
-2.15287179e-01 -2.77990848e-01 -1.21731758e+00 8.98305297e-01
2.22472593e-01 5.23639143e-01 -9.77500737e-01 -6.84050500e-01
1.12286627e+00 2.24025831e-01 1.25576824e-01 -4.93051261e-01
3.04869682e-01 5.64933717e-01 6.79044485e-01 -1.05999446e+00
3.09361387e-02 7.23967105e-02 5.83160341e-01 -4.71490733e-02
2.42910370e-01 2.60598540e-01 1.82525009e-01 -1.81509808e-01
7.70632207e-01 1.59863919e-01 6.99352205e-01 -3.13488096e-02
5.68383873e-01 -7.11958334e-02 8.35671902e-01 7.34822750e-01
-6.09302282e-01 1.04570258e+00 7.38212168e-01 -6.36511564e-01
-7.25127459e-01 -8.95831048e-01 -9.96401131e-01 -3.02194394e-02
-3.57507206e-02 -1.87394410e-01 -7.02777624e-01 -5.64006686e-01
1.28949434e-01 3.77743661e-01 -5.43042362e-01 -1.58744246e-01
1.55834436e-01 -9.55115795e-01 2.61570096e-01 8.29780623e-02
5.01894236e-01 -4.90708470e-01 -3.56033325e-01 -8.52152780e-02
1.15852594e-01 -6.93411887e-01 3.38764310e-01 -5.74090123e-01
-7.53421009e-01 -1.74131846e+00 -4.51548606e-01 -4.02272999e-01
8.48988950e-01 -4.81804043e-01 1.01353562e+00 1.09007820e-01
-8.87223244e-01 -7.77984932e-02 -2.07517669e-01 -9.22905028e-01
-3.97793680e-01 -8.68459880e-01 3.11462075e-01 4.76812601e-01
8.01250160e-01 -2.06200883e-01 -7.10778952e-01 4.21196789e-01
-3.41514409e-01 -4.43340749e-01 8.26943994e-01 9.95869756e-01
1.08317149e+00 -4.59485166e-02 6.22065365e-01 -7.26644874e-01
1.99399561e-01 -4.82096583e-01 -9.06617105e-01 4.96828884e-01
-9.00251567e-01 -1.46561652e-01 1.23205267e-01 -3.00704658e-01
-8.92289519e-01 -6.39997572e-02 2.52103209e-01 -4.00942981e-01
-4.38000113e-01 3.26555341e-01 3.34456712e-01 -3.14563066e-01
1.23159838e+00 -1.99247718e-01 4.02850062e-01 -3.52563292e-01
-2.19454572e-01 1.20194721e+00 6.46628320e-01 -1.87029257e-01
1.39382437e-01 2.07167029e-01 1.16800591e-01 -7.26166785e-01
-9.26760018e-01 -3.47732544e-01 -3.00690502e-01 -2.55671740e-01
7.09489644e-01 -7.24217892e-01 -5.78007698e-01 6.36068523e-01
-8.15379918e-01 3.81061137e-01 -4.14463669e-01 1.05818343e+00
-3.22969854e-01 3.84002894e-01 1.13409802e-01 -1.19883513e+00
-1.74686283e-01 -1.11817813e+00 5.52559793e-01 7.63693213e-01
-6.68899715e-02 -4.26129639e-01 -1.39353275e-01 4.22731936e-01
-1.67689081e-02 4.66627359e-01 8.38067591e-01 -7.12292731e-01
-6.60793185e-01 -5.19950807e-01 -4.03624505e-01 9.25797820e-01
1.29920244e-01 8.95168960e-01 -1.15071642e+00 1.54298916e-01
-1.46389022e-01 -3.98346394e-01 8.79069030e-01 8.49149704e-01
1.25366604e+00 -2.10295040e-02 -2.76524991e-01 6.37802482e-01
1.46966982e+00 6.50746405e-01 1.16719103e+00 3.38672251e-01
-8.45835805e-02 4.47722733e-01 9.25158143e-01 5.34534216e-01
4.31372449e-02 1.45896837e-01 5.36514819e-01 1.75218940e-01
-8.42221081e-02 1.18835412e-01 -1.41609892e-01 6.79809377e-02
-5.31372786e-01 -2.78422683e-01 -9.71496701e-01 5.18476248e-01
-1.53594196e+00 -7.63515651e-01 -4.51717168e-01 2.57290053e+00
6.01014555e-01 2.26994097e-01 -4.74382974e-02 6.49063513e-02
7.52094328e-01 -8.31656039e-01 -6.51765823e-01 -4.75188613e-01
-2.43261978e-01 2.46056885e-01 1.90067708e-01 2.58541793e-01
-1.12771535e+00 5.32656074e-01 6.29577971e+00 4.95212823e-01
-8.25018466e-01 -4.07833219e-01 8.77597988e-01 3.15030105e-02
1.28739208e-01 1.96293090e-02 -7.89448202e-01 6.94426119e-01
1.03092420e+00 -2.00051486e-01 -9.04785469e-02 4.99328554e-01
-8.04316327e-02 -6.11661434e-01 -7.78661966e-01 8.76417816e-01
-1.18752485e-02 -1.13989913e+00 2.48951226e-01 1.20155802e-02
8.36715639e-01 7.68762231e-02 1.43926263e-01 -1.05881780e-01
-7.75502026e-02 -1.29714429e+00 -1.13216758e-01 1.29604411e+00
1.09508431e+00 -5.17618120e-01 1.18715799e+00 1.94586009e-01
-1.17083848e-01 -1.93220258e-01 -6.56751990e-01 -1.55683666e-01
-4.21967387e-01 7.60847628e-01 -1.03248084e+00 5.84473193e-01
9.38590288e-01 5.14950275e-01 -7.23882854e-01 1.95165837e+00
9.28334668e-02 6.92884982e-01 -5.70639551e-01 6.43430604e-03
1.96344629e-02 -4.61285591e-01 5.95974267e-01 4.86262441e-01
4.89430219e-01 2.10713163e-01 -4.40073162e-01 7.20547080e-01
4.06953067e-01 2.29021594e-01 -4.99306649e-01 -1.21853203e-01
3.29855621e-01 6.90648556e-01 -7.67834708e-02 -1.14386216e-01
-3.17995429e-01 2.40313768e-01 4.78123389e-02 1.72583371e-01
-5.03137529e-01 -6.33536756e-01 4.29172218e-01 2.60381605e-02
-3.16595793e-01 6.48178160e-01 -3.13176423e-01 -1.11260390e+00
2.45687738e-01 -6.36104882e-01 5.41963279e-01 -1.01462638e+00
-1.24524188e+00 8.35686445e-01 -2.32779592e-01 -1.81807518e+00
-2.55938411e-01 -1.01116419e+00 -5.70395350e-01 1.19445968e+00
-1.39851427e+00 -7.13115990e-01 -4.31716472e-01 1.98176190e-01
-1.29924551e-01 -9.88789916e-01 8.39487493e-01 -2.54838318e-02
-6.60186172e-01 6.56751394e-01 2.08149031e-01 -1.27210081e-01
1.01115930e+00 -1.25725079e+00 -3.86300415e-01 9.39056754e-01
-3.01687449e-01 4.56562400e-01 3.85283619e-01 -6.37813866e-01
-4.60573435e-01 -1.03009427e+00 7.73453295e-01 -4.87774670e-01
2.94178039e-01 8.37542057e-01 -9.76627111e-01 4.95569080e-01
-2.13471889e-01 5.18695176e-01 1.06099093e+00 -2.75589693e-02
-1.94842573e-02 -1.14113532e-01 -1.61513889e+00 3.20230693e-01
8.05555105e-01 -1.82052441e-02 -7.34013081e-01 5.19495308e-01
2.93992519e-01 -5.75454354e-01 -1.23518872e+00 8.55598629e-01
6.98542714e-01 -1.42458653e+00 6.92759752e-01 -1.00047195e+00
4.48309183e-01 -3.73924762e-01 -2.39880569e-02 -9.38683450e-01
-1.26156777e-01 -3.55534226e-01 3.11495531e-02 9.00674045e-01
6.45226896e-01 -1.17069161e+00 5.16280711e-01 6.84740424e-01
-2.66094655e-01 -9.95846748e-01 -9.06004548e-01 -4.59891737e-01
-2.52190083e-01 -2.22336575e-01 3.76992077e-01 5.44863105e-01
-3.39843452e-01 -4.76295739e-01 -1.01629935e-01 6.39392495e-01
7.43982196e-01 -5.00618592e-02 4.01942641e-01 -1.84231055e+00
-8.27101395e-02 -1.71844617e-01 -1.30917609e+00 7.65249040e-03
-4.05297756e-01 -5.67695081e-01 -5.42513490e-01 -1.37432742e+00
4.97352853e-02 -5.83048940e-01 -4.74851191e-01 4.05696303e-01
-1.94324419e-01 3.32818151e-01 -5.11213958e-01 3.50675166e-01
-9.62923765e-02 4.15989347e-02 1.42096531e+00 1.57162309e-01
-2.22003371e-01 5.67247510e-01 -8.17542970e-01 1.02640331e+00
9.05299604e-01 -1.87707543e-01 -5.59321880e-01 -7.43730962e-02
1.91055760e-01 -1.05303705e-01 4.34890151e-01 -1.11236358e+00
3.80293019e-02 -3.23203504e-01 5.29683113e-01 -4.60635453e-01
-2.88722161e-02 -2.84132808e-01 -6.45289570e-02 3.70600373e-01
3.52448635e-02 -7.37140000e-01 1.17005236e-01 6.54215753e-01
-4.44622487e-01 -4.00541037e-01 9.67822552e-01 -1.10313848e-01
-6.86751366e-01 1.46203861e-01 -5.22771999e-02 6.92307577e-02
1.32461739e+00 -6.45284235e-01 -6.96312070e-01 1.62247509e-01
-1.08686173e+00 1.52123079e-01 3.27206284e-01 1.06642529e-01
8.26482892e-01 -7.35711277e-01 -9.08080637e-01 6.58136964e-01
4.96107161e-01 2.76869625e-01 3.75374168e-01 1.01971173e+00
-7.12020099e-01 3.87937665e-01 -4.04061019e-01 -8.91105294e-01
-1.35421050e+00 5.42888464e-03 8.18482041e-01 4.04088259e-01
-3.21998715e-01 9.89787281e-01 -1.22566335e-01 8.24218057e-03
1.00034602e-01 -4.85490948e-01 -7.02693820e-01 -2.54602581e-01
6.71052456e-01 4.66367245e-01 3.15142214e-01 -2.63209432e-01
-1.54684499e-01 8.32095206e-01 -2.94601560e-01 4.54538852e-01
8.16225410e-01 2.42547885e-01 -4.60443169e-01 2.54547089e-01
4.85855699e-01 -1.55474216e-01 -6.78098381e-01 -7.18045533e-02
-9.18768868e-02 -7.67791092e-01 6.33948594e-02 -1.49214554e+00
-4.50056165e-01 5.62808573e-01 1.28152847e+00 1.94830060e-01
1.17116559e+00 -1.75159097e-01 -6.41990900e-02 4.55343574e-01
4.00959581e-01 -9.70799506e-01 -4.70203668e-01 5.56101836e-02
8.68032634e-01 -1.55015528e+00 1.37985293e-02 -5.06507099e-01
-6.49529278e-01 1.04889059e+00 1.03138459e+00 -8.85584131e-02
6.08481646e-01 -1.16833597e-01 2.43932620e-01 -3.38403769e-02
-8.81969571e-01 -3.10801744e-01 7.79676974e-01 8.27575088e-01
2.98380941e-01 1.79593533e-01 -6.84547305e-01 7.30023563e-01
-2.43360400e-02 5.53626299e-01 8.34808350e-01 6.07009172e-01
-6.97462440e-01 -8.32224131e-01 -1.56613395e-01 1.20635676e+00
-5.50998986e-01 1.53202444e-01 -4.04571086e-01 7.66022503e-01
5.21645844e-01 8.58760655e-01 4.15519446e-01 -4.55337077e-01
8.54004025e-02 1.91841796e-01 4.90770966e-01 -6.33959293e-01
-5.66533394e-02 -5.70204966e-02 3.30353260e-01 -5.36291480e-01
-4.90333438e-01 -4.56559896e-01 -1.06360590e+00 3.32255960e-01
-5.97440183e-01 2.12848127e-01 3.94489199e-01 7.36242175e-01
6.36503518e-01 2.66793996e-01 5.54722488e-01 1.42606094e-01
-6.62962556e-01 -1.04995334e+00 -7.03932464e-01 6.48844019e-02
4.72159803e-01 -8.69504213e-01 -6.04646683e-01 1.38118514e-04] | [15.785842895507812, -3.9077773094177246] |
55ad182d-6bde-4b89-b614-46c552705c8f | jointformer-single-frame-lifting-transformer | 2208.03704 | null | https://arxiv.org/abs/2208.03704v1 | https://arxiv.org/pdf/2208.03704v1.pdf | Jointformer: Single-Frame Lifting Transformer with Error Prediction and Refinement for 3D Human Pose Estimation | Monocular 3D human pose estimation technologies have the potential to greatly increase the availability of human movement data. The best-performing models for single-image 2D-3D lifting use graph convolutional networks (GCNs) that typically require some manual input to define the relationships between different body joints. We propose a novel transformer-based approach that uses the more generalised self-attention mechanism to learn these relationships within a sequence of tokens representing joints. We find that the use of intermediate supervision, as well as residual connections between the stacked encoders benefits performance. We also suggest that using error prediction as part of a multi-task learning framework improves performance by allowing the network to compensate for its confidence level. We perform extensive ablation studies to show that each of our contributions increases performance. Furthermore, we show that our approach outperforms the recent state of the art for single-frame 3D human pose estimation by a large margin. Our code and trained models are made publicly available on Github. | ['Aljosa Smolic', 'Ciaran Simms', 'Matthew Moynihan', 'Koustav Ghosal', 'Richard Blythman', 'Sebastian Lutz'] | 2022-08-07 | null | null | null | null | ['monocular-3d-human-pose-estimation'] | ['computer-vision'] | [-1.19610289e-02 2.49817282e-01 -1.81644157e-01 -3.54605049e-01
-6.16046846e-01 -3.00277680e-01 5.05784750e-01 -1.95785388e-01
-6.17919564e-01 5.42167306e-01 5.36869466e-01 -5.32102771e-02
1.79321989e-01 -3.27239960e-01 -1.08909297e+00 -1.40316889e-01
-3.26535016e-01 6.02352321e-01 4.72552717e-01 -4.07760382e-01
-7.03590885e-02 3.82546127e-01 -1.30519307e+00 1.27341092e-01
3.22638512e-01 8.97672892e-01 -3.56747545e-02 7.87346900e-01
4.66559023e-01 7.80691147e-01 -5.37132323e-01 -5.81520379e-01
4.35428321e-01 -1.94524959e-01 -9.20100987e-01 5.11072204e-02
6.78660691e-01 -6.78668857e-01 -3.57402176e-01 4.23529953e-01
7.79028058e-01 1.07448749e-01 2.72203475e-01 -1.26773083e+00
-2.66242087e-01 3.04902047e-01 -4.82791871e-01 4.70156074e-02
6.35555446e-01 2.65438437e-01 9.52173471e-01 -8.04822028e-01
7.90812969e-01 1.30584967e+00 1.00077772e+00 4.93972927e-01
-1.08360279e+00 -5.14349818e-01 2.48574793e-01 1.10785112e-01
-1.18842316e+00 -3.55172783e-01 7.01443911e-01 -2.79228181e-01
1.45595908e+00 -9.80964229e-02 1.03997850e+00 1.21569729e+00
3.08658630e-01 9.30099666e-01 6.26939774e-01 -4.84326810e-01
-2.70681947e-01 -5.25514364e-01 -2.53799409e-01 1.18995392e+00
2.41241828e-01 9.74942222e-02 -7.81050146e-01 -6.30941913e-02
9.72554922e-01 -1.40902877e-01 -6.24790229e-02 -9.74619389e-01
-1.29226720e+00 6.80769026e-01 8.32523406e-01 -2.65384410e-02
-1.32671148e-01 8.52891386e-01 6.19607151e-01 1.38306841e-01
5.20327926e-01 3.12421769e-01 -6.62171781e-01 -2.40583166e-01
-8.42842162e-01 6.17498279e-01 5.87289870e-01 8.77024770e-01
4.96886522e-01 -1.94995731e-01 -4.01928872e-02 6.21587455e-01
3.28191280e-01 3.93237732e-02 2.44309470e-01 -1.24991596e+00
5.20593643e-01 4.07282054e-01 2.03568563e-01 -8.10758114e-01
-5.56525648e-01 -2.94079781e-01 -1.79233477e-01 4.04605687e-01
5.77623606e-01 -2.79663384e-01 -1.22896183e+00 1.82959580e+00
4.32051390e-01 2.82609817e-02 -4.66503233e-01 1.03975677e+00
5.01176238e-01 -3.30716521e-02 1.67730391e-01 5.80194294e-01
1.29497302e+00 -1.11484087e+00 -4.74985272e-01 -5.41045427e-01
7.82246232e-01 -6.72057748e-01 9.17609096e-01 2.85854816e-01
-1.18230057e+00 -5.95805824e-01 -1.16442490e+00 -6.03787184e-01
-1.01103269e-01 3.59248549e-01 9.11556900e-01 4.62514013e-01
-1.05768943e+00 8.68020117e-01 -1.35910618e+00 -4.27108079e-01
3.61981720e-01 6.29967809e-01 -6.87387586e-01 5.82484975e-02
-1.30984056e+00 1.28144014e+00 5.46511896e-02 1.84462339e-01
-7.52111673e-01 -4.00300026e-01 -1.26700652e+00 -2.55336791e-01
5.20340919e-01 -1.16026378e+00 1.25813627e+00 -6.97072744e-01
-1.53007817e+00 9.72243309e-01 8.34888406e-03 -6.53336048e-01
9.10023630e-01 -9.80603695e-01 3.63538444e-01 2.90475011e-01
5.75962253e-02 1.16198933e+00 8.37686658e-01 -8.47426414e-01
-3.73878479e-01 -2.76977539e-01 3.21452856e-01 4.01143014e-01
6.77758679e-02 -8.51631388e-02 -7.38826573e-01 -5.55838704e-01
-7.71318972e-02 -1.39411080e+00 -2.94814408e-01 3.91112745e-01
-4.04975206e-01 -2.32159927e-01 4.74985540e-01 -8.43492150e-01
8.44474733e-01 -1.69039118e+00 4.39311594e-01 6.18346930e-02
1.43179819e-01 2.28265468e-02 1.06743768e-01 2.63979524e-01
-1.50865428e-02 -7.27001950e-02 2.99900807e-02 -6.50485575e-01
5.95537610e-02 2.48191565e-01 3.09756666e-01 5.30768394e-01
4.62603033e-01 1.12342501e+00 -7.14346826e-01 -4.33231741e-01
4.60399121e-01 7.94252813e-01 -8.77117217e-01 6.03438951e-02
-5.45845889e-02 3.54413271e-01 -1.32747233e-01 3.40607345e-01
1.40313625e-01 -3.62319559e-01 2.70988882e-01 -4.14243758e-01
2.48010680e-01 6.44184589e-01 -1.09141576e+00 2.45989847e+00
-4.29796308e-01 5.42884827e-01 -1.41896605e-01 -7.46984363e-01
5.12274861e-01 3.69113117e-01 5.95373690e-01 -1.65573761e-01
2.02140033e-01 7.09683895e-02 1.88607618e-01 -1.26607031e-01
4.80981320e-01 3.10990456e-02 -1.72686338e-01 2.30200797e-01
3.41287524e-01 -1.02911159e-01 9.06260312e-02 1.93886653e-01
1.26340151e+00 1.03139639e+00 2.35425159e-01 -4.50463630e-02
1.24616064e-01 1.57781690e-02 3.22947115e-01 5.27737021e-01
-2.90074855e-01 7.14014053e-01 3.74441504e-01 -5.54716289e-01
-1.30016136e+00 -1.07210374e+00 2.76471227e-01 1.05865097e+00
-1.24941528e-01 -5.77818990e-01 -6.38202965e-01 -6.20231092e-01
1.95128202e-01 1.51830003e-01 -7.61354446e-01 -1.70843497e-01
-9.62402403e-01 -3.03053617e-01 7.09531605e-01 9.55036819e-01
3.26570749e-01 -8.47360730e-01 -1.10175395e+00 2.29957640e-01
-2.18096688e-01 -1.23501194e+00 -4.50995386e-01 4.55777884e-01
-7.92495191e-01 -1.10357976e+00 -1.02160764e+00 -6.36631966e-01
4.94905263e-01 -7.93455765e-02 1.22347701e+00 1.30958185e-01
-4.24402803e-01 3.81586641e-01 -3.23998511e-01 -1.46318913e-01
3.77528891e-02 3.73066217e-01 1.16078062e-02 -6.56547606e-01
2.41283551e-01 -4.38666463e-01 -6.43279016e-01 1.99381948e-01
-2.93532312e-01 2.70121813e-01 4.67321366e-01 8.63061011e-01
2.33789697e-01 -6.60135031e-01 9.16608348e-02 -6.12337768e-01
4.40242261e-01 2.17716172e-02 -2.00961232e-01 -8.36506113e-02
-2.86780894e-01 4.12659317e-01 1.52693361e-01 -3.28289211e-01
-8.42000186e-01 4.89283562e-01 -2.73558289e-01 -6.46330655e-01
-7.88264573e-02 3.50401282e-01 2.24201083e-01 -1.38779894e-01
6.19045436e-01 -2.95616150e-01 2.03506082e-01 -5.11347890e-01
4.92657989e-01 1.05044603e-01 6.55944228e-01 -5.93287706e-01
6.41800880e-01 4.46926534e-01 1.03556871e-01 -2.69244075e-01
-8.31989348e-01 -2.99470484e-01 -1.01796591e+00 -2.21455738e-01
1.05972600e+00 -1.29997218e+00 -8.29446912e-01 2.52241790e-01
-1.15272558e+00 -6.43360615e-01 -6.21472746e-02 5.46020448e-01
-8.49749923e-01 4.31891203e-01 -9.28647459e-01 -6.13900244e-01
-2.83816814e-01 -1.15892804e+00 1.54152381e+00 -2.85172462e-01
-7.10805714e-01 -6.92130506e-01 3.39399017e-02 3.79514515e-01
1.48095876e-01 4.74324703e-01 5.32241404e-01 -3.15462261e-01
-3.33427072e-01 -3.75990987e-01 5.91325611e-02 2.48747349e-01
7.57889152e-02 -2.08167836e-01 -6.59203410e-01 -4.31787521e-01
-5.77432096e-01 -7.25581527e-01 9.50191557e-01 4.79450703e-01
9.07094717e-01 4.36906628e-02 -3.61638188e-01 5.34105837e-01
9.03968453e-01 -4.48187947e-01 6.18967831e-01 4.60041940e-01
1.02943540e+00 5.24203479e-01 4.89367008e-01 2.91223288e-01
5.56311548e-01 9.70288694e-01 4.43071067e-01 -1.88003585e-01
-3.41865689e-01 -3.89948308e-01 3.21720481e-01 4.84797865e-01
-4.65354949e-01 -4.08814549e-02 -8.77693892e-01 5.09667814e-01
-1.88154864e+00 -8.93828273e-01 2.62899965e-01 2.14112902e+00
7.62997389e-01 6.27100408e-01 4.48132992e-01 2.47008041e-01
4.74880487e-01 1.77295804e-01 -3.83777589e-01 -2.91270703e-01
4.16982025e-01 5.83489239e-01 7.64126122e-01 6.72968149e-01
-1.22512436e+00 1.04406691e+00 6.76476860e+00 2.98772424e-01
-9.81130898e-01 -1.31925456e-02 2.18283340e-01 -5.05668402e-01
1.60424277e-01 -3.73072848e-02 -7.18058288e-01 1.23415351e-01
7.65508175e-01 3.42495531e-01 1.74480647e-01 7.44435191e-01
8.67235810e-02 -1.01623997e-01 -1.31500673e+00 7.89098263e-01
1.83991924e-01 -9.81159329e-01 -1.97614610e-01 9.95346978e-02
4.32143599e-01 2.40579486e-01 -2.27982223e-01 1.14953015e-02
5.47974348e-01 -9.82061148e-01 9.59499002e-01 3.75975400e-01
6.98416829e-01 -7.39797175e-01 5.47654331e-01 1.21261060e-01
-1.31761992e+00 1.58147171e-01 -1.51437044e-01 -4.30529445e-01
3.44628274e-01 2.17050537e-01 -8.34601641e-01 6.01867139e-01
6.53542936e-01 8.66744041e-01 -6.64820433e-01 9.46892619e-01
-5.53263009e-01 2.83774644e-01 -6.25757158e-01 7.25199208e-02
1.70139581e-01 4.56477940e-01 3.29212099e-01 9.32830334e-01
7.76555240e-02 -2.96065629e-01 3.70154142e-01 4.60402817e-01
-1.55530190e-02 -3.03749114e-01 -4.68342334e-01 2.53071785e-01
4.60685566e-02 8.60762954e-01 -5.40149093e-01 -2.95935035e-01
-3.57232690e-01 1.30982828e+00 6.01296306e-01 -1.66721735e-02
-8.84354413e-01 -3.08108330e-01 7.99287915e-01 3.13369870e-01
5.04442215e-01 -6.85078323e-01 -1.66645631e-01 -1.12482750e+00
2.76768237e-01 -6.67856157e-01 3.08450699e-01 -9.12411332e-01
-9.62107360e-01 3.67422611e-01 1.96049735e-01 -1.10653448e+00
-7.42546141e-01 -7.47459173e-01 -6.07039966e-02 7.19608247e-01
-1.21668553e+00 -1.33800673e+00 -2.46523365e-01 4.63631153e-01
3.74629229e-01 4.37181979e-01 8.16670716e-01 2.95722574e-01
-1.90469265e-01 6.14239931e-01 -7.57970154e-01 4.57180649e-01
8.03787231e-01 -1.22812581e+00 9.63732839e-01 6.97896302e-01
2.77664363e-01 6.65470064e-01 7.59546936e-01 -7.28153884e-01
-1.01810694e+00 -6.33167624e-01 1.01604009e+00 -8.70003700e-01
3.27132285e-01 -6.54103160e-01 -4.63738263e-01 1.16918576e+00
3.39515135e-02 2.60948181e-01 4.06488448e-01 4.25100625e-01
-3.34183127e-01 2.14181229e-01 -7.43070602e-01 5.26865304e-01
1.53800750e+00 -4.62682515e-01 -8.47465575e-01 2.23292977e-01
6.50863469e-01 -8.84406269e-01 -9.38626230e-01 4.99768883e-01
9.56096768e-01 -8.67845953e-01 1.18742037e+00 -6.69108510e-01
6.01121366e-01 -2.07240939e-01 1.43581972e-01 -1.18959749e+00
-2.69559771e-01 -4.43217278e-01 -1.96778595e-01 4.04912204e-01
3.29399467e-01 -2.42207617e-01 1.16594136e+00 5.62738836e-01
-1.20716661e-01 -8.27204406e-01 -1.04270256e+00 -5.54983377e-01
3.18752229e-02 -4.73264128e-01 2.06792906e-01 4.61758018e-01
1.16044939e-01 4.43861693e-01 -8.85353804e-01 -1.81367788e-02
5.03743827e-01 -2.78239489e-01 1.16596866e+00 -1.08570504e+00
-4.77552891e-01 -6.24299571e-02 -8.10494065e-01 -1.36110282e+00
8.19277167e-02 -6.95413291e-01 1.00239530e-01 -1.60028553e+00
-1.10677153e-01 -1.47676736e-01 -1.29604682e-01 8.48339498e-01
-1.39497101e-01 5.46068549e-01 3.39691132e-01 9.46450140e-03
-6.63231373e-01 4.91785645e-01 1.22573698e+00 1.82795957e-01
2.84431074e-02 -1.89002812e-01 -2.91474462e-01 7.19617605e-01
5.86662173e-01 -4.59996760e-01 -3.01213592e-01 -7.35277593e-01
1.75911918e-01 -1.42627239e-01 8.44689131e-01 -1.26063025e+00
9.31935161e-02 3.61756444e-01 8.19086373e-01 -4.94803309e-01
7.32793152e-01 -5.77517867e-01 3.58595140e-02 7.79312491e-01
-4.39955711e-01 3.48000735e-01 1.11432835e-01 3.91360939e-01
6.89527839e-02 2.90951073e-01 5.34228384e-01 -5.04158974e-01
-5.92480958e-01 2.55354255e-01 -1.64923817e-01 6.06370438e-03
6.38047874e-01 -3.16496521e-01 2.00693876e-01 -5.36438346e-01
-9.75646973e-01 1.32396787e-01 4.86694723e-01 6.11370146e-01
3.49482447e-01 -1.33278561e+00 -4.75155503e-01 -5.00667328e-03
-4.86637503e-02 -3.32740806e-02 -1.35545805e-01 7.25282848e-01
-6.25305295e-01 5.22819221e-01 -4.88202572e-01 -6.72022164e-01
-1.28573549e+00 1.18784949e-01 4.81512219e-01 -3.86793345e-01
-8.97112191e-01 9.91469085e-01 -3.52742314e-01 -5.34262776e-01
3.06261688e-01 -4.63278532e-01 2.50566155e-01 -3.46923351e-01
1.05727650e-01 2.01796487e-01 1.47967011e-01 -6.83927119e-01
-6.51808143e-01 4.79571640e-01 -6.77172560e-04 -2.59733915e-01
1.29992139e+00 -1.30175054e-02 4.25861239e-01 2.78262794e-01
1.25862288e+00 -1.74339443e-01 -1.75910532e+00 6.23054756e-03
-4.15245555e-02 -4.94511306e-01 -1.36105061e-01 -8.58872950e-01
-8.65620494e-01 8.25028718e-01 4.96290028e-01 -4.36186641e-01
7.59950757e-01 -1.80393849e-02 8.32027078e-01 3.38956892e-01
5.88471949e-01 -1.10606265e+00 3.22825253e-01 4.19393986e-01
7.50462234e-01 -1.19816566e+00 4.08888459e-01 -5.01764834e-01
-4.77404892e-01 9.54522014e-01 6.82882547e-01 -6.26206279e-01
5.04878521e-01 3.41009438e-01 2.44582742e-02 -2.24465489e-01
-7.88524568e-01 -3.84080738e-01 4.47563648e-01 5.54324269e-01
9.02773023e-01 -1.79423630e-01 -2.68889815e-01 1.67037115e-01
-5.08862913e-01 2.23488882e-01 9.42375213e-02 1.21517313e+00
-2.43043512e-01 -1.29822290e+00 -1.53144166e-01 3.32637817e-01
-5.82099319e-01 -1.51636926e-02 -3.76342744e-01 1.09099150e+00
1.41985372e-01 5.61279297e-01 4.27973680e-02 -4.07302320e-01
5.09682178e-01 2.53203779e-01 1.06795490e+00 -6.29192948e-01
-6.19831145e-01 1.19047821e-01 4.37804610e-01 -1.03468418e+00
-6.11903548e-01 -6.37923837e-01 -1.17687631e+00 -1.94730997e-01
-2.98896790e-01 -3.26791465e-01 5.25824487e-01 1.06669259e+00
4.17181313e-01 6.02099657e-01 -1.41199917e-01 -1.42580545e+00
-4.92433041e-01 -9.63019311e-01 -1.29011944e-01 5.58387995e-01
2.12451324e-01 -1.22947860e+00 -7.81454984e-03 -2.54392102e-02] | [7.000821113586426, -0.9118217825889587] |
38f4d85a-eb56-4532-b2d7-89727cf73b6f | closing-the-loop-testing-chatgpt-to-generate | 2306.05115 | null | https://arxiv.org/abs/2306.05115v1 | https://arxiv.org/pdf/2306.05115v1.pdf | Closing the Loop: Testing ChatGPT to Generate Model Explanations to Improve Human Labelling of Sponsored Content on Social Media | Regulatory bodies worldwide are intensifying their efforts to ensure transparency in influencer marketing on social media through instruments like the Unfair Commercial Practices Directive (UCPD) in the European Union, or Section 5 of the Federal Trade Commission Act. Yet enforcing these obligations has proven to be highly problematic due to the sheer scale of the influencer market. The task of automatically detecting sponsored content aims to enable the monitoring and enforcement of such regulations at scale. Current research in this field primarily frames this problem as a machine learning task, focusing on developing models that achieve high classification performance in detecting ads. These machine learning tasks rely on human data annotation to provide ground truth information. However, agreement between annotators is often low, leading to inconsistent labels that hinder the reliability of models. To improve annotation accuracy and, thus, the detection of sponsored content, we propose using chatGPT to augment the annotation process with phrases identified as relevant features and brief explanations. Our experiments show that this approach consistently improves inter-annotator agreement and annotation accuracy. Additionally, our survey of user experience in the annotation task indicates that the explanations improve the annotators' confidence and streamline the process. Our proposed methods can ultimately lead to more transparency and alignment with regulatory requirements in sponsored content detection. | ['Adriana Iamnitchi', 'Gerasimos Spanakis', 'Catalina Goanta', 'Stefan Huber', 'Thales Bertaglia'] | 2023-06-08 | null | null | null | null | ['marketing'] | ['miscellaneous'] | [ 3.47881019e-01 5.77261925e-01 -4.96413499e-01 -5.89366198e-01
-9.82474029e-01 -8.50042045e-01 5.61216354e-01 4.50004429e-01
-4.00177598e-01 5.35314977e-01 4.91452843e-01 -4.44204569e-01
9.40856040e-02 -5.08097708e-01 -2.25442126e-01 -3.46070677e-01
4.13753927e-01 4.43527550e-01 2.07254916e-01 -1.40892729e-01
4.71490979e-01 1.36680260e-01 -1.16908276e+00 6.40768230e-01
1.01505792e+00 8.42014968e-01 -1.20640695e-01 2.58305758e-01
-4.01227236e-01 6.91422284e-01 -6.03267014e-01 -9.40366626e-01
3.10801685e-01 -3.72346461e-01 -8.65765452e-01 1.16434231e-01
3.31686825e-01 -1.76637799e-01 2.74538040e-01 1.27077711e+00
5.34038097e-02 -1.86821371e-01 5.01961350e-01 -1.02954769e+00
-8.02567601e-01 1.01930130e+00 -7.26155758e-01 4.32759821e-02
5.06615460e-01 -1.71895221e-01 1.57939327e+00 -5.46331465e-01
6.17417991e-01 1.05980527e+00 4.12553430e-01 2.79879957e-01
-1.26855266e+00 -8.06245208e-01 4.07454610e-01 -1.15225554e-01
-1.18105519e+00 -2.07089394e-01 5.25023878e-01 -7.61164188e-01
4.88522023e-01 4.32274848e-01 4.46545333e-01 8.62223387e-01
-1.11536123e-01 6.54302299e-01 1.09580946e+00 -5.00702560e-01
1.86270222e-01 7.40045905e-01 2.24623933e-01 3.54947358e-01
4.40608144e-01 -2.85894871e-01 -4.33958769e-01 -3.74468416e-01
3.70830864e-01 -3.07361573e-01 -1.73884109e-01 -6.70635328e-02
-6.58910692e-01 1.21299100e+00 2.68281013e-01 7.32988536e-01
-3.84013027e-01 -2.73364097e-01 5.16401589e-01 2.77005315e-01
8.26856673e-01 7.57756531e-01 -2.26439819e-01 -9.53684151e-02
-6.82023406e-01 4.20184106e-01 9.19128776e-01 5.77049136e-01
4.71305311e-01 -5.27352095e-01 -1.97954744e-01 9.76343215e-01
5.50862789e-01 3.31755996e-01 1.84526369e-01 -8.61705661e-01
5.70070207e-01 9.56879377e-01 6.17632389e-01 -1.28857565e+00
-1.87769920e-01 -5.95457792e-01 -6.91738203e-02 -6.58900067e-02
5.53947628e-01 -1.97517917e-01 -4.77590293e-01 1.43792844e+00
4.33002383e-01 -5.40912986e-01 -3.09307605e-01 1.09278893e+00
3.82570982e-01 4.89983261e-01 5.29926002e-01 -1.54184699e-01
1.45394933e+00 -4.98877019e-01 -1.06453049e+00 -3.79687287e-02
1.04653120e+00 -1.00420785e+00 1.09265673e+00 4.44352835e-01
-6.01809859e-01 -2.47659773e-01 -7.64380753e-01 2.55333751e-01
-2.07683951e-01 9.09642279e-02 9.04506683e-01 9.54063237e-01
-3.02140146e-01 2.84184039e-01 -2.49673933e-01 -2.52526581e-01
4.19331968e-01 2.83728093e-01 -2.47611403e-01 9.06612426e-02
-1.28816640e+00 8.05635929e-01 1.99189007e-01 2.04664026e-03
-1.83375970e-01 -3.95413309e-01 -5.76269329e-01 3.27604078e-02
5.21001995e-01 1.09914839e-01 1.49027967e+00 -1.40050209e+00
-1.05707562e+00 9.12113130e-01 3.08239013e-01 -4.80211794e-01
4.42258686e-01 -3.18477839e-01 -6.91703320e-01 6.61442569e-03
4.88337398e-01 5.43949604e-01 4.01412427e-01 -1.20096207e+00
-1.08831954e+00 -4.07319218e-01 2.77179986e-01 1.33984461e-01
-6.35321021e-01 3.72654468e-01 -1.65645584e-01 -4.12513584e-01
3.39428820e-02 -1.23790205e+00 -2.05001712e-01 -4.61791337e-01
-2.81845331e-01 -5.78858256e-01 7.54003763e-01 -7.62493491e-01
1.39081299e+00 -2.15573382e+00 -4.64958876e-01 5.05304337e-01
2.77201474e-01 2.61261880e-01 1.63218737e-01 3.53352904e-01
2.42868155e-01 4.96537030e-01 2.66744792e-01 4.95434441e-02
1.20101534e-01 1.54415965e-01 -3.56398970e-01 4.14626420e-01
-9.88829210e-02 5.69069684e-01 -8.57908070e-01 -4.11431462e-01
-1.92509070e-01 1.96283191e-01 -4.87435579e-01 -2.50118785e-02
-3.67252290e-01 6.05549455e-01 -7.41689086e-01 5.66018820e-01
2.62321144e-01 -3.83879900e-01 5.68773448e-01 -3.24443653e-02
-2.41999432e-01 5.81050396e-01 -9.58719850e-01 1.12097049e+00
-3.13311279e-01 4.88898337e-01 2.69582570e-01 -7.83182740e-01
9.84863877e-01 4.80847478e-01 6.51097894e-01 -7.25077152e-01
3.81130904e-01 3.85016412e-01 3.28332573e-01 -7.44725049e-01
5.78678787e-01 -9.80172306e-02 -2.86194623e-01 5.07532537e-01
-4.59235907e-01 7.81041905e-02 3.04712325e-01 3.61138046e-01
7.93817580e-01 -4.00764532e-02 3.12322736e-01 -6.56049401e-02
5.51480293e-01 3.06740969e-01 6.35239005e-01 6.19446576e-01
-2.32492194e-01 3.54078342e-03 4.90387291e-01 -2.62780458e-01
-1.01272321e+00 -1.85709372e-01 -1.37286246e-01 1.21000218e+00
-1.37623876e-01 -4.95099545e-01 -8.20328951e-01 -1.20244992e+00
3.21109556e-02 8.23935032e-01 -5.13631105e-01 3.02511513e-01
-2.63597220e-01 -5.40709794e-01 2.28093475e-01 2.28132606e-01
4.40570801e-01 -7.14522898e-01 -4.27368462e-01 3.49602193e-01
-3.26252520e-01 -1.24936080e+00 -4.70373929e-01 8.44067056e-03
-4.60822910e-01 -1.28238511e+00 -3.80486369e-01 -4.96222824e-01
7.05537498e-01 1.25313461e-01 7.16508687e-01 1.30555958e-01
9.03814584e-02 8.32325816e-02 -6.03391469e-01 -5.86274505e-01
-7.53226757e-01 1.81616172e-01 -2.36381054e-01 9.51622352e-02
1.00009203e+00 -2.30607823e-01 -4.67527300e-01 8.30730438e-01
-9.07887101e-01 -1.89557672e-01 5.84024489e-01 4.51977462e-01
2.25414589e-01 -1.31408721e-01 7.78045654e-01 -1.53576136e+00
9.57939923e-01 -4.13815469e-01 -8.09723139e-01 9.29417089e-02
-9.21302557e-01 -2.08670840e-01 1.84067070e-01 -2.67398238e-01
-1.13632119e+00 1.02608539e-01 -8.46490636e-02 3.91957611e-01
-2.61944622e-01 5.58688700e-01 8.85601938e-02 -2.04189435e-01
9.49529469e-01 -4.91511762e-01 -1.53920010e-01 -5.11484146e-01
2.26866618e-01 1.07283735e+00 6.25497997e-02 -2.84924954e-01
8.32324743e-01 1.61358163e-01 -5.83008289e-01 -4.89730835e-01
-1.44671345e+00 -9.13842380e-01 -3.69014263e-01 -5.27290583e-01
8.92761350e-01 -8.98736358e-01 -6.04184091e-01 -3.71947408e-01
-1.11036098e+00 2.08121911e-01 1.53959498e-01 6.18034184e-01
3.71489078e-02 2.77549654e-01 -4.89537120e-01 -9.77552712e-01
-2.79208213e-01 -1.00737309e+00 8.27588499e-01 -9.58162919e-02
-8.76182437e-01 -7.83206642e-01 1.32374525e-01 1.19183755e+00
3.67017627e-01 1.49436414e-01 7.56823421e-01 -1.13070738e+00
-3.10991764e-01 -7.21066415e-01 -1.33456483e-01 3.80533397e-01
2.81236451e-02 -8.92715752e-02 -8.22482049e-01 2.06963763e-01
-9.96802151e-02 -2.61264145e-01 3.79591525e-01 1.41023695e-01
7.85729766e-01 -6.40324950e-01 -4.25911486e-01 -5.17867804e-01
1.07295442e+00 4.10350680e-01 3.47206384e-01 3.63026798e-01
3.51040572e-01 1.17111290e+00 1.10182524e+00 3.13158751e-01
1.12210706e-01 9.99048412e-01 3.36125731e-01 2.46998062e-03
2.50286847e-01 -2.61148453e-01 2.82203585e-01 5.47712266e-01
-1.80992573e-01 -5.89155331e-02 -7.71714866e-01 3.64622265e-01
-1.95580757e+00 -8.79029751e-01 -5.23596585e-01 2.03421283e+00
7.80056179e-01 3.71859044e-01 2.50662327e-01 2.52942681e-01
8.95001590e-01 -2.22972199e-01 2.64818594e-03 -6.68481290e-01
2.94444799e-01 -3.25860560e-01 6.24811292e-01 5.13834596e-01
-8.70203674e-01 8.79694223e-01 5.85001230e+00 5.51658809e-01
-7.85696268e-01 3.23045284e-01 7.24727929e-01 1.24946341e-01
-4.93071616e-01 -1.05241805e-01 -9.86863017e-01 3.95416558e-01
7.17087090e-01 -1.37973621e-01 1.38288170e-01 1.01844954e+00
4.96145189e-01 -3.39833014e-02 -7.95797348e-01 5.13470888e-01
-2.06690785e-02 -1.19945514e+00 -2.63671458e-01 5.01616120e-01
8.21783781e-01 -3.12485397e-01 9.37621444e-02 3.49439770e-01
4.31119025e-01 -6.42513812e-01 7.52354443e-01 -2.04184830e-01
2.66800940e-01 -6.49769723e-01 1.02706420e+00 2.01551348e-01
-7.90107310e-01 -2.40006089e-01 -7.23443478e-02 -1.39142901e-01
3.33355397e-01 8.11717987e-01 -1.33021605e+00 3.29254046e-02
4.19900954e-01 3.17578882e-01 -2.81339735e-01 8.49480212e-01
-5.43155253e-01 7.37716615e-01 5.61084971e-02 -4.05862451e-01
5.11551738e-01 -1.51538491e-01 4.43770409e-01 1.06715751e+00
4.32886137e-03 1.07728481e-01 3.67378980e-01 7.14568138e-01
-2.50167161e-01 7.12981105e-01 -5.40372014e-01 -4.82669890e-01
2.30268463e-01 1.35827959e+00 -9.10459101e-01 -1.47075266e-01
-6.69602156e-01 4.91202205e-01 7.59405270e-02 9.52061862e-02
-9.27014768e-01 4.72954428e-03 4.56703186e-01 5.83070874e-01
1.05841517e-01 6.32864609e-02 -3.91809434e-01 -6.71701789e-01
-1.08656339e-01 -1.03836548e+00 4.30098951e-01 -2.49342516e-01
-1.14263725e+00 5.50891817e-01 -1.29856184e-01 -1.03116858e+00
3.08908778e-03 -4.82783407e-01 -1.95167020e-01 5.80263495e-01
-1.28876483e+00 -9.71873045e-01 -5.87868094e-02 1.02928586e-01
4.72659141e-01 1.49854153e-01 7.20091820e-01 5.71711659e-01
-2.52208620e-01 3.36039186e-01 -3.91782969e-01 1.41981885e-01
8.78165364e-01 -1.07167888e+00 -1.80031750e-02 4.72791553e-01
2.80159146e-01 6.58315539e-01 1.02203798e+00 -9.61267173e-01
-8.23892355e-01 -8.14468205e-01 1.26177824e+00 -3.20578992e-01
1.09304428e+00 -4.20963705e-01 -7.70683825e-01 5.20835459e-01
6.47222325e-02 -5.86627722e-01 1.21043372e+00 6.41059637e-01
-4.29852694e-01 1.69052109e-01 -1.05607557e+00 3.95284355e-01
7.33199358e-01 -4.56435084e-01 -4.95003194e-01 7.73447633e-01
4.94801491e-01 -8.59470889e-02 -8.44676495e-01 6.20879196e-02
6.25100374e-01 -5.59632957e-01 2.07226768e-01 -5.97102106e-01
3.77116889e-01 -2.16301262e-01 -7.66775981e-02 -9.54929352e-01
-2.32545897e-01 -3.49016368e-01 4.65709984e-01 1.42321718e+00
1.07584441e+00 -3.50725263e-01 8.12044680e-01 1.27099323e+00
8.54989290e-02 -4.20360893e-01 -5.14236271e-01 -5.00444412e-01
-4.76954401e-01 -5.92077672e-01 2.03265175e-01 1.17231405e+00
3.60410184e-01 5.65246880e-01 -3.97637337e-01 2.49575347e-01
2.09289312e-01 9.75553021e-02 8.44874084e-01 -1.43035579e+00
-3.59521061e-01 -1.78922296e-01 -2.67372012e-01 -7.26599872e-01
5.89690693e-02 -7.68461585e-01 -1.30716741e-01 -1.41386223e+00
1.84497476e-01 -6.46987379e-01 -4.54345010e-02 5.58655620e-01
-1.05526103e-02 3.88005048e-01 3.17316093e-02 4.40277696e-01
-7.84626961e-01 -4.44707423e-02 1.12826514e+00 -1.68948263e-01
-3.40639174e-01 2.12310165e-01 -1.17672992e+00 7.56742477e-01
6.89195573e-01 -7.61361837e-01 -1.65378541e-01 -1.33083627e-01
7.05212831e-01 -3.80765319e-01 -8.08172990e-06 -5.96194804e-01
3.97019833e-02 -2.39552364e-01 -1.37246391e-02 -1.99819088e-01
5.89472475e-03 -1.16686141e+00 1.95410952e-01 3.94065589e-01
-8.49963427e-01 -2.80126929e-01 -6.46061674e-02 6.60921276e-01
-4.37730014e-01 -4.66261744e-01 3.94148022e-01 -1.37663350e-01
-2.43283808e-01 -1.38324216e-01 -3.91879231e-01 -2.26775244e-01
1.07491016e+00 -3.64065617e-02 -2.81901389e-01 -5.64749599e-01
-8.33089590e-01 1.53867662e-01 2.67629176e-01 5.18730938e-01
-7.87265152e-02 -1.07400477e+00 -7.10434496e-01 -3.37972224e-01
2.56738901e-01 -5.87703288e-01 -6.70628771e-02 9.76585448e-01
-1.12191707e-01 5.50365448e-01 1.95671573e-01 -4.43230450e-01
-1.64409196e+00 3.29757750e-01 3.48538533e-02 -4.61736321e-01
-3.03583831e-01 5.31239748e-01 7.58193657e-02 -3.99896242e-02
4.13535208e-01 1.98358409e-02 -7.19248533e-01 2.61266977e-01
6.51821434e-01 1.72646597e-01 -3.67295481e-02 -6.49806023e-01
-2.56607104e-02 2.30065305e-02 -5.14925182e-01 -8.00196975e-02
1.28991652e+00 -1.44205809e-01 -2.01712474e-02 1.04543425e-01
8.66913259e-01 4.54968333e-01 -7.43195295e-01 -1.16297729e-01
4.82425809e-01 -7.31047153e-01 1.19476080e-01 -1.10725701e+00
-8.47361267e-01 3.30682814e-01 4.01467979e-01 8.89232099e-01
5.61590850e-01 1.30347898e-02 6.06552958e-01 2.26965964e-01
2.92355150e-01 -1.37382174e+00 -1.03679359e-01 -2.32811347e-02
7.48812735e-01 -1.34503067e+00 5.51215257e-04 -9.18056071e-01
-8.13208044e-01 8.60667109e-01 4.27789152e-01 4.14232373e-01
2.78210431e-01 6.91124052e-02 2.91822940e-01 -4.58669841e-01
-4.37651575e-01 -4.29128148e-02 4.56015706e-01 2.50843644e-01
9.59432840e-01 1.48690715e-01 -1.19062054e+00 6.15844548e-01
-5.34937456e-02 -9.96086001e-02 2.70341694e-01 6.95403397e-01
-7.03362226e-01 -1.47258103e+00 -4.08819884e-01 5.68067133e-01
-9.89975274e-01 3.17344852e-02 -9.09318507e-01 6.91309631e-01
2.30255142e-01 1.22797358e+00 -3.33248705e-01 -2.14897990e-01
3.28315765e-01 5.69640798e-03 -9.78640392e-02 -9.13628101e-01
-8.78149331e-01 3.84235054e-01 8.79027605e-01 -3.87969822e-01
-7.10087478e-01 -5.92182398e-01 -9.74473178e-01 -1.41667277e-01
-8.47123861e-01 8.43050480e-01 9.78225887e-01 1.05736482e+00
2.19954506e-01 2.08068579e-01 5.74394524e-01 -9.84814167e-02
-7.14389622e-01 -1.02302217e+00 -5.89659214e-01 8.16134334e-01
-3.42144310e-01 -5.64773619e-01 -3.52144450e-01 1.32446736e-01] | [10.025749206542969, 6.406435966491699] |
bf368426-7c13-455e-ad2b-27182dd961d0 | distributionally-robust-learning-for-2 | null | null | https://openreview.net/forum?id=qRdED5QjM9e | https://openreview.net/pdf?id=qRdED5QjM9e | Distributionally Robust Learning for Unsupervised Domain Adaptation | We propose a distributionally robust learning (DRL) method for unsupervised domain adaptation (UDA) that scales to modern computer-vision benchmarks. DRL can be naturally formulated as a competitive two-player game between a predictor and an adversary that is allowed to corrupt the labels, subject to certain constraints, and reduces to incorporating a density ratio between the source and target domains (under the standard log loss). This formulation motivates the use of two neural networks that are jointly trained --- a discriminative network between the source and target domains for density-ratio estimation, in addition to the standard classification network. The use of a density ratio in DRL prevents the model from being overconfident on target inputs far away from the source domain. Thus, DRL provides conservative confidence estimation in the target domain, even when the target labels are not available. This conservatism motivates the use of DRL in self-training for sample selection, and we term the approach distributionally robust self-training (DRST). In our experiments, DRST generates more calibrated probabilities and achieves state-of-the-art self-training accuracy on benchmark datasets. We demonstrate that DRST captures shape features more effectively, and reduces the extent of distributional shift during self-training. | ['Anima Anandkumar', 'Yisong Yue', 'Zhiding Yu', 'Anqi Liu', 'Haoxuan Wang'] | 2020-09-28 | null | null | null | null | ['density-ratio-estimation'] | ['methodology'] | [ 3.83498847e-01 2.79086471e-01 -3.95853281e-01 -4.31265146e-01
-1.10464907e+00 -8.22952747e-01 6.69112921e-01 -3.06242588e-03
-7.62072921e-01 9.28990483e-01 -1.61881790e-01 -3.26743364e-01
6.92796484e-02 -7.61520505e-01 -1.02794135e+00 -9.50082481e-01
1.98383987e-01 8.22015882e-01 2.89936364e-01 2.41117164e-01
-2.16308057e-01 4.76683468e-01 -1.22372234e+00 -1.52265772e-01
9.38524246e-01 1.01608968e+00 -3.45395841e-02 5.72941482e-01
1.31576687e-01 5.97377062e-01 -7.24909961e-01 -6.31767213e-01
4.63190705e-01 -4.15901244e-01 -6.96808815e-01 -1.82575751e-02
5.50424039e-01 -4.04438525e-01 -1.40454963e-01 1.38065553e+00
5.76399922e-01 1.52962819e-01 1.33420980e+00 -1.34126937e+00
-8.23663294e-01 5.94386280e-01 -7.07499862e-01 7.24145398e-02
-7.70148039e-02 8.32551271e-02 8.81093085e-01 -6.21566772e-01
4.96768802e-01 1.23745513e+00 6.96849406e-01 8.96321714e-01
-1.57682991e+00 -8.43811154e-01 1.68958046e-02 -1.77472696e-01
-1.38343477e+00 -4.66399759e-01 8.38464379e-01 -5.46309590e-01
4.09478664e-01 -8.82940367e-03 -6.72618151e-02 1.55532503e+00
-4.08015633e-03 9.38351810e-01 1.23075378e+00 -5.15530825e-01
7.62302995e-01 5.56241572e-01 4.42089848e-02 2.10828409e-01
3.55577677e-01 4.95177686e-01 -1.64077550e-01 -5.94220579e-01
8.31926286e-01 -3.88732165e-01 6.41412884e-02 -9.39498663e-01
-8.19929004e-01 1.07526958e+00 1.06054343e-01 -1.30339777e-02
-1.47669718e-01 -1.52511686e-01 6.11683965e-01 3.51308078e-01
7.06011415e-01 4.13497120e-01 -3.85988593e-01 1.24411888e-01
-8.21832240e-01 1.30709618e-01 7.37316310e-01 9.83910978e-01
6.37486160e-01 1.79896444e-01 -1.83180690e-01 1.02168047e+00
8.78500119e-02 7.97720134e-01 4.71756399e-01 -1.05933452e+00
2.35114962e-01 1.00244381e-01 1.01426519e-01 -5.58786213e-01
-1.22276368e-02 -4.37434673e-01 -1.00219131e+00 4.83944982e-01
7.91723132e-01 -3.89797628e-01 -8.61510396e-01 2.24965978e+00
4.50248301e-01 3.02393407e-01 2.82234818e-01 7.57213175e-01
1.89422905e-01 4.16255981e-01 1.91093057e-01 -2.43573382e-01
8.92817616e-01 -4.86693501e-01 -2.96507835e-01 -3.58492762e-01
5.94474137e-01 -2.88426697e-01 1.21336460e+00 3.79434526e-01
-8.20435524e-01 -5.54324985e-01 -1.09248340e+00 3.09844613e-01
-2.88067788e-01 -7.35369474e-02 1.44025594e-01 8.23253810e-01
-8.72045219e-01 6.05627120e-01 -6.10792994e-01 -2.74977505e-01
8.09823275e-01 3.77534807e-01 -5.24833322e-01 -1.23961054e-01
-1.25859940e+00 8.48492742e-01 4.08995867e-01 -5.78045726e-01
-1.05314577e+00 -7.37425566e-01 -1.09692800e+00 -2.81176239e-01
2.62390196e-01 -5.58970273e-01 1.35703957e+00 -1.34976053e+00
-1.61900485e+00 1.26029038e+00 -2.81627662e-02 -9.09542024e-01
8.51043284e-01 -1.11669108e-01 -2.44297087e-01 -3.42482254e-02
4.00303751e-01 5.78855813e-01 1.28045225e+00 -1.38243258e+00
-6.53093219e-01 -3.98004442e-01 -1.98145896e-01 1.23328485e-01
-3.26693863e-01 -9.76840630e-02 -1.91108435e-01 -7.72342324e-01
-3.86176109e-01 -9.24502015e-01 -1.38347208e-01 8.69671702e-02
-5.17335236e-01 -3.95167977e-01 8.99592638e-01 -2.23134354e-01
8.28218281e-01 -2.37298441e+00 -8.96608829e-02 3.90178144e-01
1.51381880e-01 4.48421389e-01 -2.71250337e-01 -2.29789123e-01
-2.79684722e-01 -1.55912163e-02 -5.74162185e-01 -6.16980493e-01
8.27224702e-02 4.51262087e-01 -6.91397667e-01 8.43814015e-01
2.17335135e-01 6.19843543e-01 -1.01846170e+00 -5.09981573e-01
2.48004422e-02 2.00487643e-01 -4.57180411e-01 4.02614504e-01
-3.10135275e-01 4.57555890e-01 -2.80001909e-01 3.05846304e-01
9.06203389e-01 -4.33122739e-02 -3.81313488e-02 3.14400375e-01
4.00202572e-01 1.21841401e-01 -1.20953417e+00 1.22524309e+00
-3.36658508e-01 3.65153998e-01 2.50275973e-02 -1.11070907e+00
9.88733053e-01 2.90490631e-02 2.90954441e-01 -5.06219566e-01
2.72779733e-01 2.92657405e-01 -2.19698057e-01 -4.98551801e-02
-1.30213471e-02 -3.72610301e-01 -2.14902237e-01 4.69431311e-01
3.09423983e-01 -1.20006666e-01 -9.83353555e-02 1.33483052e-01
9.03218389e-01 8.56041983e-02 5.02798855e-01 -3.66750717e-01
3.13999176e-01 -1.35251313e-01 8.32417667e-01 1.09754944e+00
-5.55991709e-01 5.38397610e-01 4.67011929e-01 -6.09803312e-02
-1.24261248e+00 -1.52658463e+00 -3.04464072e-01 1.33683729e+00
5.71640059e-02 2.28193954e-01 -7.84815490e-01 -1.30647302e+00
3.76380861e-01 1.11962402e+00 -7.88819671e-01 -5.48841715e-01
-3.53257239e-01 -4.11839098e-01 8.38101149e-01 5.91741741e-01
4.39061046e-01 -8.89260173e-01 -2.24567235e-01 -1.30751595e-01
2.28135616e-01 -9.67612267e-01 -6.80642068e-01 6.74196601e-01
-6.18482947e-01 -9.01560068e-01 -8.87523770e-01 -9.35678065e-01
6.79346144e-01 -1.50780424e-01 1.07876706e+00 -7.70884216e-01
1.78845346e-01 3.96471173e-01 -7.02453628e-02 -5.43830991e-01
-8.05236042e-01 -4.68167104e-02 5.74870765e-01 1.07236713e-01
4.97835428e-01 -6.72285378e-01 -9.13405418e-02 3.97451669e-01
-7.94982314e-01 -4.83931601e-01 3.98572415e-01 1.02599037e+00
8.06747496e-01 1.69188529e-01 6.70785546e-01 -1.45166671e+00
5.04178524e-01 -6.64589405e-01 -7.44133890e-01 1.31113023e-01
-4.86687422e-01 2.53782868e-01 9.57751751e-01 -1.12158895e+00
-9.71951723e-01 1.58545181e-01 -5.57781197e-04 -9.03606415e-01
-4.58997399e-01 -2.84953369e-03 -5.27196586e-01 -4.07717191e-02
1.08115900e+00 3.02751064e-01 1.31996050e-01 -2.87824869e-01
4.43171352e-01 8.73327315e-01 8.80003572e-01 -9.29806530e-01
1.08431816e+00 4.15756345e-01 -1.93086252e-01 -6.60002172e-01
-1.05901742e+00 -3.97175580e-01 -6.62885666e-01 1.62584558e-01
4.92409825e-01 -9.04543161e-01 -2.99655795e-01 6.33952737e-01
-8.93464148e-01 -6.34561837e-01 -9.75713611e-01 3.71879458e-01
-8.15592945e-01 3.00222903e-01 -2.57538557e-01 -1.04026127e+00
-8.01226497e-02 -8.89209926e-01 8.24529827e-01 1.29424661e-01
-2.78471619e-01 -1.23832476e+00 2.42828339e-01 -7.34557770e-03
2.46360362e-01 2.73908585e-01 8.01930130e-01 -1.30601084e+00
1.49697214e-01 -2.28432789e-01 -1.15652800e-01 1.04900110e+00
1.18174076e-01 -3.44343603e-01 -1.26913261e+00 -5.47400653e-01
2.59811163e-01 -7.57242143e-01 8.84466767e-01 5.35752296e-01
1.25437164e+00 -4.78945166e-01 -2.79372931e-01 6.87852025e-01
1.08652306e+00 1.03431270e-01 3.44043761e-01 3.30316812e-01
6.17793858e-01 4.89169627e-01 6.03239179e-01 4.61513221e-01
1.77931696e-01 3.57271284e-01 2.67662346e-01 -1.28349140e-01
-6.21288195e-02 -4.96817052e-01 4.64172989e-01 2.60662824e-01
6.31292641e-01 -2.32623369e-01 -7.25905597e-01 7.84440517e-01
-1.65786958e+00 -8.16168487e-01 4.10093009e-01 2.58645368e+00
1.25360608e+00 3.50003511e-01 4.82812196e-01 -8.57050717e-02
9.16479528e-01 -2.59279087e-03 -1.16149819e+00 -3.23883384e-01
-3.10354978e-01 2.58796811e-01 8.83816838e-01 5.77769518e-01
-1.52725339e+00 8.64473820e-01 6.36819077e+00 1.40039694e+00
-9.93733943e-01 1.58901572e-01 8.97755682e-01 2.00592041e-01
-1.46106601e-01 -2.83726722e-01 -7.50670075e-01 5.70212305e-01
8.65629077e-01 -2.52208382e-01 3.04472685e-01 1.40103662e+00
-2.93603122e-01 6.89959328e-04 -1.25160778e+00 9.72140670e-01
1.36756711e-02 -9.41855609e-01 -7.65801966e-02 3.45918462e-02
7.94137776e-01 5.64489067e-02 5.29862165e-01 4.37889695e-01
1.00357771e+00 -9.55439866e-01 7.33256876e-01 1.43682435e-01
1.30044305e+00 -9.51715052e-01 7.59741247e-01 6.50987625e-01
-6.26703799e-01 -3.18059400e-02 -5.71765482e-01 3.32053185e-01
-3.76277775e-01 7.20375478e-01 -9.11301732e-01 2.32630596e-01
5.64267695e-01 5.00367403e-01 -2.88358659e-01 7.98372388e-01
-1.52102530e-01 8.89768362e-01 -4.97064918e-01 2.42183566e-01
-3.26157175e-02 -8.83393548e-03 7.51074493e-01 1.20983267e+00
-1.01278611e-01 -2.99933165e-01 2.80484736e-01 9.39993799e-01
-3.43208492e-01 -1.38756737e-01 -7.78149366e-01 1.34345740e-01
7.13751495e-01 6.71228945e-01 -2.12955683e-01 -3.34884346e-01
-1.41547816e-02 1.13330269e+00 6.15791440e-01 3.94284457e-01
-7.96032488e-01 -3.27076703e-01 8.38490665e-01 1.21104799e-01
2.30431631e-01 1.57200947e-01 -3.79202396e-01 -9.88807797e-01
-1.60113141e-01 -9.10952687e-01 6.92472398e-01 -3.08212101e-01
-2.14265299e+00 4.39974874e-01 9.77335796e-02 -1.22863340e+00
-3.88395578e-01 -6.24943495e-01 -5.74679315e-01 1.00055146e+00
-1.43162537e+00 -9.99242485e-01 3.16731989e-01 8.11641812e-01
1.94262743e-01 -3.90935570e-01 9.14141178e-01 -2.98043545e-02
-4.44950610e-01 1.15767539e+00 5.79736292e-01 4.11756754e-01
1.13881433e+00 -1.60945141e+00 3.51605684e-01 8.33934724e-01
-1.97417606e-02 4.86944795e-01 6.86495781e-01 -5.63421786e-01
-6.42446518e-01 -1.45742154e+00 6.03272557e-01 -5.31154633e-01
6.20471716e-01 -5.19078553e-01 -1.04554427e+00 6.24941468e-01
-2.44058087e-01 3.66402686e-01 7.51119375e-01 -5.24836406e-02
-9.10312295e-01 -1.52411595e-01 -1.67809498e+00 4.62168902e-01
6.98300302e-01 -7.87173152e-01 -6.44925117e-01 2.05154940e-01
6.08833432e-01 -2.93526053e-01 -6.15395248e-01 3.10862899e-01
3.02081436e-01 -7.43225574e-01 9.85655427e-01 -7.05934763e-01
7.42590949e-02 -2.06534103e-01 -2.14374691e-01 -1.46524823e+00
-3.78103226e-01 -5.82698464e-01 -1.69653833e-01 1.41394615e+00
2.59839088e-01 -7.82010138e-01 8.80659342e-01 5.23207188e-01
2.73839951e-01 -4.29517210e-01 -1.24108350e+00 -1.26649022e+00
7.24169016e-01 -5.78572929e-01 3.24470282e-01 1.16068363e+00
-2.94728905e-01 2.63413906e-01 -3.71133089e-01 3.03936511e-01
1.08036554e+00 -2.25680739e-01 6.90537453e-01 -1.31512761e+00
-4.02373314e-01 -3.66825014e-01 -2.60570079e-01 -1.17306066e+00
7.20167339e-01 -8.21903408e-01 2.60536581e-01 -7.93488622e-01
1.29362196e-01 -6.56451344e-01 -3.94334406e-01 4.89448845e-01
-1.18647136e-01 2.21897215e-01 -6.74861819e-02 2.32941315e-01
-5.89820683e-01 6.46847844e-01 9.33211803e-01 -2.92445540e-01
-1.38219550e-01 3.14026654e-01 -9.32565808e-01 7.93074250e-01
7.45489657e-01 -7.62131333e-01 -4.85334575e-01 5.97101031e-03
-4.04350460e-01 -3.26152831e-01 3.08762133e-01 -8.74484539e-01
1.56542554e-01 -2.50646919e-01 5.31737089e-01 -2.79076785e-01
4.54911441e-02 -8.30279112e-01 -2.74420470e-01 2.28194892e-01
-6.14073277e-01 -6.02312207e-01 2.52959400e-01 7.17787743e-01
4.19775285e-02 -1.91307560e-01 1.48487806e+00 2.30137900e-01
-4.24504131e-01 3.00407916e-01 -1.31527901e-01 5.65571547e-01
1.08355844e+00 -2.68156528e-01 -1.91850856e-01 -3.38842273e-01
-5.47037184e-01 1.46512851e-01 6.56330109e-01 1.15840130e-01
3.93294632e-01 -1.42963850e+00 -7.39708483e-01 3.92981768e-01
3.01596820e-01 3.07372570e-01 5.58077246e-02 3.31819803e-01
1.60513725e-02 1.66492257e-02 -5.35274111e-02 -6.33097947e-01
-9.69197989e-01 7.42021024e-01 4.24539149e-01 -3.30829173e-01
-2.96264172e-01 1.22601151e+00 6.46465659e-01 -7.78367162e-01
3.84234697e-01 3.73817198e-02 7.41486549e-02 -2.26977065e-01
5.25389433e-01 1.92402184e-01 -3.08465958e-01 -6.66531920e-01
-2.83072859e-01 1.96921751e-01 -2.16763765e-01 -1.04734272e-01
9.76723313e-01 -4.17101160e-02 2.26176694e-01 5.18745482e-01
1.26276886e+00 1.47669911e-01 -1.69841886e+00 -6.80647194e-01
-8.89587998e-02 -3.59598845e-01 -5.18494248e-02 -8.74097288e-01
-7.20518112e-01 7.21369684e-01 6.11001194e-01 1.49130821e-01
9.84029710e-01 5.36014661e-02 5.26622117e-01 2.03771695e-01
3.33887517e-01 -1.14756668e+00 5.01412759e-03 6.65182829e-01
5.10856807e-01 -1.32161748e+00 -2.80666351e-01 -1.04997136e-01
-1.00276780e+00 7.53334343e-01 7.67907798e-01 -4.94183570e-01
6.09924257e-01 4.65227127e-01 6.13418296e-02 5.48627853e-01
-3.97505820e-01 -8.46045613e-02 2.97160745e-01 1.28209925e+00
-2.08210379e-01 2.21403182e-01 4.34773624e-01 8.07705402e-01
-1.69076636e-01 -2.94690758e-01 1.76841319e-01 6.20290339e-01
-2.45755479e-01 -1.08958828e+00 -4.58412081e-01 4.53787297e-01
-3.22483093e-01 5.21410219e-02 -4.40657258e-01 6.84986293e-01
2.98585624e-01 7.25642264e-01 2.46615767e-01 -3.46235931e-01
2.10491210e-01 1.15986057e-01 2.90607065e-01 -6.28423512e-01
-1.67235985e-01 -1.92059800e-02 -1.66213766e-01 -2.94928312e-01
-1.99465111e-01 -6.39492691e-01 -9.59965706e-01 -2.80662268e-01
-3.76061738e-01 1.75709546e-01 1.91165388e-01 9.41971302e-01
2.49482378e-01 6.09989390e-02 8.45543087e-01 -5.62414825e-01
-1.18313491e+00 -9.67726111e-01 -9.85996902e-01 4.78144079e-01
5.56668520e-01 -7.57830977e-01 -6.62347257e-01 5.77601306e-02] | [10.295648574829102, 3.2252726554870605] |
48c7a5fd-6940-4f89-8714-cdab8bb1c6ac | mtfnet-mutual-transformer-fusion-network-for | 2112.01177 | null | https://arxiv.org/abs/2112.01177v3 | https://arxiv.org/pdf/2112.01177v3.pdf | MutualFormer: Multi-Modality Representation Learning via Cross-Diffusion Attention | Aggregating multi-modality data to obtain reliable data representation attracts more and more attention. Recent studies demonstrate that Transformer models usually work well for multi-modality tasks. Existing Transformers generally either adopt the Cross-Attention (CA) mechanism or simple concatenation to achieve the information interaction among different modalities which generally ignore the issue of modality gap. In this work, we re-think Transformer and extend it to MutualFormer for multi-modality data representation. Rather than CA in Transformer, MutualFormer employs our new design of Cross-Diffusion Attention (CDA) to conduct the information communication among different modalities. Comparing with CA, the main advantages of the proposed CDA are three aspects. First, the crossaffinities in CDA are defined based on the individual modality affinities in the metric space which thus can naturally avoid the issue of modality/domain gap in feature based CA definition. Second, CDA provides a general scheme which can either be used for multimodality representation or serve as the post-optimization for existing CA models. Third, CDA is implemented efficiently. We successfully apply the MutualFormer on different multi-modality learning tasks (i.e., RGB-Depth SOD, RGB-NIR object ReID). Extensive experiments demonstrate the effectiveness of the proposed MutualFormer. | ['Bin Luo', 'Jin Tang', 'Bo Jiang', 'Xiao Wang', 'Xixi Wang'] | 2021-12-02 | null | null | null | null | ['rgb-d-salient-object-detection'] | ['computer-vision'] | [-5.85849397e-02 -3.00345898e-01 -1.48144916e-01 -3.65311921e-01
-9.92158532e-01 -3.99906695e-01 5.89566469e-01 -2.02978905e-02
-3.94341528e-01 3.67432505e-01 5.53214431e-01 -5.44672161e-02
-3.19328487e-01 -6.87058568e-01 -4.99952674e-01 -9.93559837e-01
5.89734554e-01 2.77353246e-02 8.08460638e-02 -2.65934736e-01
1.09465890e-01 2.95433700e-01 -1.36638415e+00 3.16781342e-01
9.71745193e-01 1.17815602e+00 3.68734270e-01 1.22333206e-01
-3.96544486e-01 5.64909339e-01 -2.66079724e-01 -4.93584692e-01
6.14270195e-02 -4.29988235e-01 -7.77197778e-01 8.82846639e-02
1.29052565e-01 -1.49250954e-01 -4.27034587e-01 1.06531537e+00
6.99701965e-01 2.39040852e-01 6.30875349e-01 -1.38672042e+00
-9.97634053e-01 6.59209609e-01 -9.28440750e-01 1.94870815e-01
3.31455112e-01 -1.25529006e-01 1.15732837e+00 -1.15910709e+00
2.06352592e-01 1.47109616e+00 5.05139589e-01 4.58449334e-01
-8.22823584e-01 -6.15909278e-01 4.66259092e-01 3.41531277e-01
-1.49875021e+00 -2.96063095e-01 9.57901716e-01 -2.18916282e-01
6.92495704e-01 4.06155735e-01 5.27731955e-01 9.06570196e-01
-2.70585380e-02 1.27654433e+00 1.13456988e+00 -3.51432979e-01
-1.87647179e-01 3.14007364e-02 1.69800326e-01 4.80788112e-01
-9.84912664e-02 -2.87702411e-01 -5.83936334e-01 -2.25962717e-02
8.68601918e-01 3.04148436e-01 -4.35765415e-01 -2.71578103e-01
-1.69457173e+00 7.16243207e-01 7.20356643e-01 5.16664982e-01
-3.44716966e-01 -2.25867145e-02 4.62950051e-01 2.88132310e-01
3.40185344e-01 5.78377172e-02 -1.94080502e-01 1.10813500e-02
-3.36952150e-01 -1.88841939e-01 2.73175873e-02 9.40802276e-01
7.59230971e-01 -6.95764869e-02 -1.76248223e-01 1.14618003e+00
6.71821833e-01 4.64234263e-01 8.77990603e-01 -5.09110689e-01
6.71247244e-01 7.29619086e-01 -2.43127510e-01 -1.05068898e+00
-3.82886708e-01 -2.59247720e-01 -1.05909407e+00 -1.48728967e-01
1.17093399e-01 -6.32768869e-02 -7.81667829e-01 1.80573034e+00
3.47326219e-01 -1.99523754e-02 2.56390363e-01 1.12262464e+00
1.22725511e+00 5.24797857e-01 1.90114632e-01 -1.72380909e-01
1.38297224e+00 -1.11432433e+00 -9.90418851e-01 8.49079266e-02
2.95019299e-01 -7.27029204e-01 1.02047873e+00 1.46894678e-01
-9.80748117e-01 -6.25288486e-01 -9.28960502e-01 -3.09355706e-01
-5.71853817e-01 -3.77570428e-02 7.98246324e-01 3.82051021e-01
-9.92490530e-01 -1.49254967e-02 -6.82822227e-01 -4.10794854e-01
3.24687839e-01 3.72438997e-01 -6.75198913e-01 -1.09443121e-01
-1.25739467e+00 8.48767519e-01 5.07978737e-01 4.57714587e-01
-5.17597258e-01 -4.54679966e-01 -9.19915497e-01 -7.44770542e-02
2.88795769e-01 -7.60420918e-01 9.07770216e-01 -1.20655954e+00
-1.41608512e+00 6.85597599e-01 -2.88260162e-01 2.00685516e-01
2.31732130e-01 -2.41196603e-01 -5.55918634e-01 2.24138480e-02
-8.48618057e-03 6.74278438e-01 7.03921854e-01 -1.38410723e+00
-7.70597100e-01 -4.39672083e-01 2.63938695e-01 7.25346029e-01
-7.16843843e-01 -1.74261883e-01 -7.90332317e-01 -7.78015316e-01
5.64269245e-01 -7.40331590e-01 1.06691509e-01 -1.04826326e-02
-4.15661097e-01 -6.28081083e-01 8.31298709e-01 -2.84379780e-01
1.29964519e+00 -2.27541423e+00 7.05002069e-01 1.90155789e-01
3.84330004e-01 -3.56189758e-02 -2.59567022e-01 4.94802564e-01
-1.80563390e-01 1.73854828e-03 -1.96859643e-01 -5.77505291e-01
5.87353893e-02 2.21946031e-01 -3.75398286e-02 4.63069588e-01
2.18138054e-01 1.00180113e+00 -7.60257483e-01 -5.96237957e-01
2.58703530e-01 7.32897162e-01 -2.61353225e-01 3.14711660e-01
2.95142531e-01 4.50274974e-01 -6.36714280e-01 9.53429937e-01
7.37833917e-01 -2.80414641e-01 -1.18254565e-01 -8.33367348e-01
-8.68214890e-02 -9.63957906e-02 -1.15693796e+00 2.16677928e+00
-6.08988822e-01 2.97456801e-01 1.70965604e-02 -8.69990528e-01
6.94841087e-01 2.64935315e-01 6.07707262e-01 -8.34923804e-01
3.22525501e-01 1.51773557e-01 -9.48749632e-02 -5.78373373e-01
4.70904648e-01 -3.78221452e-01 -2.18448765e-03 4.12586242e-01
1.20745242e-01 2.17898563e-01 -1.01657659e-01 1.08437240e-01
4.97737348e-01 8.08940977e-02 1.49323568e-01 -2.12694436e-01
7.96662569e-01 -3.38449627e-01 6.22540891e-01 3.89942139e-01
-2.53311872e-01 7.85018623e-01 1.13199279e-01 3.85207636e-03
-4.13704395e-01 -9.85902965e-01 -6.07975274e-02 1.22882771e+00
6.96145892e-01 -2.82085896e-01 -2.38535658e-01 -7.81971395e-01
-6.73774332e-02 1.16565391e-01 -6.96484804e-01 -2.01180249e-01
-2.47981787e-01 -7.84214556e-01 3.68647486e-01 7.34998584e-01
8.43829453e-01 -8.64288330e-01 -2.03693032e-01 4.58890572e-02
-5.08592486e-01 -8.21871459e-01 -6.43902898e-01 -2.55491491e-02
-7.07301676e-01 -8.18783939e-01 -1.01425529e+00 -8.94936860e-01
5.13464391e-01 7.20529735e-01 7.23217726e-01 -7.00363666e-02
2.11671650e-01 7.23834395e-01 -5.96982360e-01 -2.01080114e-01
1.67765796e-01 2.33056620e-02 -2.61316989e-02 4.90945578e-01
4.07927066e-01 -5.23280203e-01 -7.75293648e-01 2.36753866e-01
-1.26177526e+00 1.69412464e-01 7.28790402e-01 1.03825164e+00
7.22246528e-01 8.42695236e-02 7.49441981e-01 -5.51443815e-01
7.33059406e-01 -7.18245983e-01 -5.14177196e-02 6.96620703e-01
-3.81199211e-01 4.06678254e-03 3.11023176e-01 -5.75641453e-01
-1.27662659e+00 -1.37004375e-01 -2.31222615e-01 -6.63305044e-01
6.29593804e-02 8.80191505e-01 -5.33536255e-01 -1.62636653e-01
4.16029468e-02 3.24576706e-01 1.14845159e-02 -6.17460966e-01
4.70370680e-01 7.35494435e-01 2.83934832e-01 -6.60697281e-01
4.81949896e-01 5.03311336e-01 -2.29182094e-01 -4.35880035e-01
-6.23948812e-01 -4.88449097e-01 -5.21336555e-01 -2.26011455e-01
9.15760696e-01 -1.16768324e+00 -8.25268567e-01 7.85561621e-01
-9.48147893e-01 1.90007523e-01 6.20772280e-02 6.50406241e-01
-1.60018921e-01 5.68006396e-01 -5.57623327e-01 -7.66825616e-01
-3.61565530e-01 -1.29551339e+00 1.18644321e+00 5.68454802e-01
3.91269416e-01 -1.24714196e+00 -2.13287592e-01 4.43325311e-01
5.52469969e-01 6.34570001e-03 8.47158670e-01 -3.62504065e-01
-3.72585684e-01 9.16934982e-02 -5.76393485e-01 2.26892561e-01
5.44852495e-01 -2.97675759e-01 -1.03039622e+00 -2.75693715e-01
-6.42503947e-02 -4.48713034e-01 8.65375578e-01 2.36707926e-01
1.14218271e+00 7.80193508e-02 -2.99264997e-01 4.49355721e-01
1.55392277e+00 7.63261765e-02 6.05414331e-01 4.02310789e-01
1.17114913e+00 5.66720307e-01 6.66230440e-01 3.40968817e-01
9.40663397e-01 6.90364301e-01 3.72722238e-01 -4.39986795e-01
-1.33482307e-01 -1.29626602e-01 3.03215861e-01 1.18000495e+00
-3.53313722e-02 -2.66460240e-01 -7.09006727e-01 6.11752570e-01
-2.05467463e+00 -7.32011676e-01 -7.55197182e-02 2.11097646e+00
7.76287735e-01 -2.90082157e-01 2.45301262e-01 -5.43529093e-02
7.42061198e-01 -5.58044994e-04 -5.58816969e-01 1.20783979e-02
-5.31154335e-01 -2.93645710e-01 1.36956528e-01 3.16778034e-01
-1.12743759e+00 5.50683916e-01 5.43556881e+00 1.01441431e+00
-1.25107002e+00 3.90866697e-01 3.80520910e-01 2.28054309e-03
-7.29198635e-01 -2.33663201e-01 -4.99298364e-01 3.85656089e-01
2.12225094e-01 -8.99139419e-02 2.90196061e-01 3.66975486e-01
-1.15260586e-01 -1.56076103e-01 -9.01243210e-01 1.50698519e+00
2.00552434e-01 -8.85847807e-01 2.02264875e-01 -6.78743348e-02
5.10293663e-01 -1.01336753e-02 2.04269692e-01 3.09044659e-01
3.84690426e-02 -7.78275013e-01 7.99803376e-01 5.63256800e-01
5.98888993e-01 -7.24010706e-01 7.94924259e-01 1.38184562e-01
-1.44763184e+00 -1.54756621e-01 -2.48096943e-01 3.64253551e-01
2.29637533e-01 3.83570164e-01 1.62308738e-01 1.17149627e+00
7.15546429e-01 1.05620372e+00 -7.10209012e-01 9.44910109e-01
1.40108451e-01 9.25077870e-02 -4.19651777e-01 2.14382201e-01
2.96308696e-01 -3.09637487e-01 3.87150228e-01 1.10619807e+00
2.76565731e-01 7.69460723e-02 1.94765195e-01 5.19364655e-01
1.06125645e-01 2.45670602e-01 -3.42774570e-01 6.70759305e-02
3.92011553e-01 1.21838474e+00 -3.70267600e-01 -2.46083990e-01
-8.41955483e-01 1.00258374e+00 3.90242100e-01 4.94274527e-01
-9.12226737e-01 -3.53573799e-01 5.32171905e-01 -4.33661610e-01
3.42243314e-01 -4.23211195e-02 -2.14429989e-01 -1.43812799e+00
1.37657747e-01 -8.68538082e-01 7.40956008e-01 -8.96892369e-01
-1.81300318e+00 8.66266608e-01 1.84155270e-01 -1.48438776e+00
4.06077653e-01 -3.37736696e-01 -3.56673241e-01 1.03145766e+00
-1.83631527e+00 -1.66016710e+00 -3.66521537e-01 1.06728935e+00
4.90672201e-01 -1.08739892e-02 5.69499075e-01 6.17287695e-01
-7.65444040e-01 7.20707357e-01 -1.08317966e-02 -1.42215090e-02
7.38330603e-01 -1.16067922e+00 -4.34690267e-01 7.79679894e-01
-6.03871420e-02 8.47925842e-01 2.83966660e-01 -3.42118531e-01
-1.66639161e+00 -7.60672271e-01 5.78530729e-01 -2.88372129e-01
7.00328648e-01 3.50548476e-02 -9.80324626e-01 4.92999226e-01
6.17086589e-01 -6.70003965e-02 9.55415964e-01 2.36502618e-01
-5.42680502e-01 -3.85126382e-01 -9.36962068e-01 4.35539365e-01
9.73729551e-01 -6.75279915e-01 -6.45440578e-01 8.41982216e-02
5.74041307e-01 -3.60068023e-01 -1.20110941e+00 5.66503108e-01
6.00159883e-01 -8.43448281e-01 7.66498148e-01 -3.69699925e-01
3.20466816e-01 -5.81036568e-01 -3.96689415e-01 -1.24749863e+00
-3.95695448e-01 -2.07342729e-01 -8.58201925e-03 1.63055956e+00
2.98033297e-01 -8.07452798e-01 1.64745525e-02 6.23039663e-01
-7.52573907e-02 -7.30728507e-01 -1.03764319e+00 -4.09424394e-01
9.44792405e-02 -3.43001455e-01 7.49189019e-01 1.12205470e+00
1.71702310e-01 4.13801372e-01 -3.81190509e-01 1.10005476e-01
4.92375582e-01 3.51191431e-01 2.81798661e-01 -9.05777693e-01
-2.72034347e-01 -6.66191161e-01 -2.79985607e-01 -1.40784287e+00
9.23284963e-02 -8.47818315e-01 5.01641724e-03 -1.65799296e+00
4.59632039e-01 -7.23545969e-01 -9.08768058e-01 6.70614064e-01
-4.39230561e-01 1.93342403e-01 2.87742972e-01 4.38546747e-01
-6.31448209e-01 9.95841503e-01 1.43080080e+00 -1.79755747e-01
-1.22004375e-01 -3.13712060e-01 -1.03591394e+00 3.72322798e-01
5.85061431e-01 2.79300194e-02 -5.71144164e-01 -8.68667841e-01
1.39964044e-01 -8.11125636e-02 2.98066407e-01 -6.47040546e-01
4.10856634e-01 -1.35265157e-01 1.76659688e-01 -5.38485646e-01
3.99596393e-01 -1.14362001e+00 7.58441612e-02 -1.31949514e-01
-2.31515303e-01 2.65507072e-01 1.42910510e-01 7.37910330e-01
-6.43229306e-01 1.78528488e-01 5.09670973e-01 4.70550582e-02
-9.52572107e-01 4.05954987e-01 -7.57743493e-02 -3.09993565e-01
8.32856894e-01 -2.84353793e-01 -4.04323399e-01 -3.49901080e-01
-6.02636993e-01 4.64491427e-01 1.79458678e-01 8.09345007e-01
7.41649389e-01 -1.82734787e+00 -5.16965985e-01 1.52706042e-01
4.10589576e-01 1.45439841e-02 6.07372224e-01 1.35902762e+00
-8.16699769e-03 2.43837163e-01 -1.74622938e-01 -7.43240118e-01
-1.15220797e+00 5.43594837e-01 4.11472857e-01 1.29404347e-02
-4.00175929e-01 9.68358755e-01 5.51855087e-01 -3.03258151e-01
1.65300786e-01 -1.08751133e-01 -4.57827657e-01 2.76663482e-01
5.00986457e-01 2.58525293e-02 -1.24413349e-01 -1.07419348e+00
-5.71798027e-01 8.14216495e-01 -1.31355494e-01 -1.38203323e-01
1.19946384e+00 -5.60588658e-01 -2.55819678e-01 6.79925501e-01
1.28971910e+00 -8.70553851e-02 -1.06880891e+00 -5.66115201e-01
-3.89217705e-01 -5.18182039e-01 3.37605059e-01 -6.74603939e-01
-1.55795097e+00 9.01451707e-01 7.62650371e-01 2.60323465e-01
1.63806367e+00 1.26642019e-01 7.51625359e-01 -4.44202572e-02
2.71861643e-01 -8.71314585e-01 -6.58249308e-04 1.75809294e-01
1.02176893e+00 -1.40805030e+00 -8.02615136e-02 -4.03451413e-01
-1.03714228e+00 1.03683007e+00 8.51651073e-01 3.31122965e-01
7.75762677e-01 -1.44788951e-01 2.64219195e-01 -2.92194158e-01
-5.37694991e-01 -6.41598165e-01 5.43991208e-01 4.71331745e-01
5.22564411e-01 -8.11061263e-02 -3.88636976e-01 7.29201198e-01
4.43079084e-01 -2.02033296e-01 1.14280619e-01 9.37010527e-01
-8.35505202e-02 -1.17656827e+00 -3.68271202e-01 2.14944199e-01
-1.66993186e-01 -5.44287935e-02 -1.32274985e-01 5.77679396e-01
1.90089494e-01 1.15476263e+00 -1.17492452e-01 -4.98602211e-01
4.14121717e-01 -1.76556617e-01 5.11306286e-01 -2.89076269e-01
-6.44190371e-01 4.54535604e-01 -3.00345480e-01 -3.43318820e-01
-1.13115907e+00 -6.65313840e-01 -9.94675815e-01 -1.91367015e-01
-7.37235665e-01 9.65938787e-04 5.36651254e-01 1.12454295e+00
5.22146165e-01 5.13889015e-01 6.98517144e-01 -6.04634464e-01
-9.75666493e-02 -9.89789248e-01 -5.56433499e-01 5.26697993e-01
4.05361176e-01 -9.26179051e-01 -1.95593014e-01 -1.37471169e-01] | [13.0941801071167, 4.965790748596191] |
59f4460d-088c-4497-bd63-9563657c283f | vast-the-valence-assessing-semantics-test-for | 2203.07504 | null | https://arxiv.org/abs/2203.07504v1 | https://arxiv.org/pdf/2203.07504v1.pdf | VAST: The Valence-Assessing Semantics Test for Contextualizing Language Models | VAST, the Valence-Assessing Semantics Test, is a novel intrinsic evaluation task for contextualized word embeddings (CWEs). VAST uses valence, the association of a word with pleasantness, to measure the correspondence of word-level LM semantics with widely used human judgments, and examines the effects of contextualization, tokenization, and LM-specific geometry. Because prior research has found that CWEs from GPT-2 perform poorly on other intrinsic evaluations, we select GPT-2 as our primary subject, and include results showing that VAST is useful for 7 other LMs, and can be used in 7 languages. GPT-2 results show that the semantics of a word incorporate the semantics of context in layers closer to model output, such that VAST scores diverge between our contextual settings, ranging from Pearson's rho of .55 to .77 in layer 11. We also show that multiply tokenized words are not semantically encoded until layer 8, where they achieve Pearson's rho of .46, indicating the presence of an encoding process for multiply tokenized words which differs from that of singly tokenized words, for which rho is highest in layer 0. We find that a few neurons with values having greater magnitude than the rest mask word-level semantics in GPT-2's top layer, but that word-level semantics can be recovered by nullifying non-semantic principal components: Pearson's rho in the top layer improves from .32 to .76. After isolating semantics, we show the utility of VAST for understanding LM semantics via improvements over related work on four word similarity tasks, with a score of .50 on SimLex-999, better than the previous best of .45 for GPT-2. Finally, we show that 8 of 10 WEAT bias tests, which compare differences in word embedding associations between groups of words, exhibit more stereotype-congruent biases after isolating semantics, indicating that non-semantic structures in LMs also mask biases. | ['Aylin Caliskan', 'Robert Wolfe'] | 2022-03-14 | null | null | null | null | ['word-similarity'] | ['natural-language-processing'] | [ 9.42451321e-03 -6.93787187e-02 -2.00872645e-01 -2.34732226e-01
-5.33987284e-01 -8.48981261e-01 6.26114130e-01 4.72674459e-01
-8.92166436e-01 2.02412114e-01 7.22755492e-01 -2.81638712e-01
6.59806058e-02 -6.32554114e-01 -4.79081511e-01 -5.21892786e-01
-2.38272667e-01 1.06067315e-01 -7.73461536e-02 -4.83364940e-01
3.37837815e-01 1.58000931e-01 -1.54298615e+00 5.17148733e-01
4.59561378e-01 9.40423906e-01 2.00277105e-01 3.10932994e-01
-2.51145273e-01 1.41782641e-01 -5.58846176e-01 -3.35889518e-01
5.92515953e-02 -3.57054889e-01 -6.11884892e-01 -6.32711470e-01
1.00864041e+00 3.48022014e-01 4.44870368e-02 8.39663386e-01
5.95191956e-01 4.58105087e-01 9.43999946e-01 -9.92540717e-01
-1.19240701e+00 8.15863013e-01 -1.51521146e-01 2.36116678e-01
2.93110192e-01 3.86766344e-01 1.77477145e+00 -1.30751848e+00
6.02749109e-01 1.60090363e+00 9.71831679e-01 4.76787835e-01
-1.50407505e+00 -7.14199603e-01 3.44816506e-01 -7.93661475e-02
-1.44379759e+00 -2.57474124e-01 5.29150069e-01 -3.64932775e-01
1.46998656e+00 2.20218942e-01 7.82003403e-01 1.28239012e+00
2.77079016e-01 2.74420023e-01 1.41790617e+00 -3.03800255e-01
3.10187310e-01 2.86663324e-01 1.39995679e-01 1.78848699e-01
3.75843555e-01 2.80631091e-02 -7.58114398e-01 9.69383691e-04
4.55341309e-01 -4.88575071e-01 -1.47505805e-01 -8.54731277e-02
-1.34915388e+00 8.72693002e-01 5.28260946e-01 4.57508087e-01
-1.07729070e-01 2.35048145e-01 6.21720135e-01 3.55151147e-01
5.22122383e-01 1.09730840e+00 -4.58768427e-01 -7.91802406e-02
-7.77924955e-01 3.87732238e-01 5.51494837e-01 7.27232993e-01
6.69157863e-01 3.69873494e-01 -2.85352528e-01 1.09604931e+00
1.29183531e-01 6.34349823e-01 8.82612050e-01 -6.81324601e-01
2.60230780e-01 3.47591519e-01 -1.49554878e-01 -1.17523050e+00
-5.43278635e-01 -4.73733246e-01 -1.44252151e-01 -9.36223716e-02
4.17244583e-02 5.06932288e-02 -5.95550179e-01 2.48148727e+00
-2.75294602e-01 -1.61396980e-01 7.96506777e-02 8.39220583e-01
9.69868064e-01 4.69326943e-01 7.47615039e-01 4.53948416e-02
1.58179688e+00 -4.55932021e-01 -5.10274291e-01 -8.85561764e-01
9.86136317e-01 -6.97185338e-01 2.05174565e+00 1.32222846e-01
-1.02305257e+00 -8.51648092e-01 -1.35178280e+00 -2.22310126e-01
-9.29986238e-01 -4.12943691e-01 6.29505336e-01 7.64392853e-01
-1.33173525e+00 6.27869964e-01 -2.29698405e-01 -5.63974380e-01
3.42322737e-01 1.88497722e-01 -4.39779729e-01 2.16972809e-02
-1.61996794e+00 1.58918643e+00 2.93671161e-01 -3.14850330e-01
-4.62676704e-01 -9.16921020e-01 -1.18228090e+00 1.14213973e-01
-2.83080637e-01 -3.96987110e-01 8.37677479e-01 -1.05027866e+00
-8.59972000e-01 1.09857702e+00 -3.32038313e-01 -4.86439764e-02
-3.79670292e-01 -9.87633914e-02 -7.81432807e-01 -1.46728158e-01
2.03503653e-01 9.56774771e-01 5.66635966e-01 -1.19058239e+00
-3.43856364e-01 -1.50967345e-01 3.42146046e-02 4.74137485e-01
-1.03810644e+00 -2.18806788e-01 1.38027281e-01 -8.05343449e-01
-8.56377631e-02 -8.26626182e-01 1.28754020e-01 -2.04095349e-01
8.07125643e-02 -4.32745427e-01 3.30959231e-01 -5.42805910e-01
1.33342350e+00 -2.32992959e+00 -1.52715966e-01 3.14492583e-01
5.73300160e-02 -1.03579275e-01 -7.02160656e-01 4.80555534e-01
-5.34889817e-01 6.46849036e-01 -2.05986634e-01 -4.42926675e-01
4.84345704e-01 1.33470044e-01 -2.01837540e-01 3.90553355e-01
3.90902370e-01 1.11431146e+00 -8.76001716e-01 -2.39010632e-01
1.61299452e-01 4.95288163e-01 -6.68307781e-01 -3.24613482e-01
-5.40313348e-02 -4.12305117e-01 4.27047700e-01 6.42435327e-02
4.65458751e-01 1.03928745e-01 1.72183916e-01 -2.71090358e-01
-1.41019374e-01 7.57101297e-01 -8.89795482e-01 1.72705841e+00
-8.25232029e-01 1.07697618e+00 -2.47392088e-01 -4.78445292e-01
8.80605459e-01 1.15888231e-02 -9.68244001e-02 -1.07102311e+00
6.46643341e-02 8.64433870e-02 4.56405342e-01 -2.04516068e-01
8.44616771e-01 -7.94867098e-01 -4.11250830e-01 4.69875693e-01
-2.09983606e-02 -4.80431437e-01 -8.27539265e-02 1.30694523e-01
8.99666369e-01 -1.59908324e-01 4.10248153e-02 -8.59637916e-01
1.19983116e-02 -6.19488955e-02 4.24259841e-01 4.32605743e-01
-9.37780216e-02 5.32611668e-01 5.60726225e-01 1.71280563e-01
-1.03324711e+00 -1.56938624e+00 -5.07453740e-01 1.34962809e+00
2.80105546e-02 -6.10717416e-01 -5.64851701e-01 -1.78857788e-01
2.05029368e-01 1.49749517e+00 -9.19133008e-01 -5.67355573e-01
-2.54910380e-01 -6.51684105e-01 7.09682763e-01 8.24680150e-01
-1.06416963e-01 -1.14939463e+00 -5.04793763e-01 -5.92077076e-02
-2.94125248e-02 -9.56062615e-01 -3.91063511e-01 4.25452083e-01
-7.41778135e-01 -5.39375603e-01 -2.60856241e-01 -9.52214658e-01
4.13130760e-01 2.28052996e-02 1.44492924e+00 8.46636370e-02
-2.44371563e-01 5.27353585e-01 -2.63287425e-01 -3.33490610e-01
-1.19891718e-01 7.03862682e-02 3.11546654e-01 -7.36961961e-01
6.94682777e-01 -4.38134611e-01 -4.86493617e-01 1.07679367e-01
-9.39429104e-01 -3.50890160e-01 3.77586544e-01 7.72270143e-01
4.14051712e-01 -9.07028019e-02 7.74101079e-01 -5.39494693e-01
9.06044304e-01 -5.38424551e-01 8.90887156e-02 -1.41975552e-01
-7.50775278e-01 4.92002852e-02 4.77720499e-01 -6.51910484e-01
-7.24606156e-01 -8.09222937e-01 -1.28515456e-02 -2.24229127e-01
4.76067606e-03 3.65024209e-01 -2.78932191e-02 2.66056180e-01
8.93030643e-01 -2.68547624e-01 -1.04252070e-01 -1.63422093e-01
5.57101905e-01 3.23743999e-01 2.27596909e-01 -8.43466520e-01
7.31432676e-01 2.64839053e-01 -2.40703791e-01 -8.91094029e-01
-8.22916567e-01 -1.63340315e-01 -3.20740283e-01 3.40677947e-01
1.03537691e+00 -1.05312312e+00 -7.46562064e-01 -1.20364703e-01
-8.39682102e-01 -5.01801670e-01 -5.47937870e-01 6.54901147e-01
-3.17385405e-01 5.35744876e-02 -6.52782798e-01 -3.96269381e-01
-1.10709555e-01 -9.31037009e-01 7.78804481e-01 -3.31649661e-01
-1.30490327e+00 -1.58009648e+00 1.86718285e-01 -1.53830528e-01
5.65034330e-01 -1.28880711e-02 1.51588261e+00 -9.71871614e-01
4.39886928e-01 1.45192131e-01 -2.35974327e-01 7.01112747e-01
1.54613435e-01 -1.94174856e-01 -1.30217862e+00 -2.53082603e-01
-8.32086354e-02 -3.77777368e-01 1.05272770e+00 2.13097230e-01
8.88870835e-01 -4.79648970e-02 -1.24135586e-02 5.15123129e-01
1.48818052e+00 -5.38557619e-02 5.60669899e-01 3.74665827e-01
6.78838909e-01 8.41037571e-01 4.29579973e-01 7.03344168e-03
3.49333107e-01 3.80072474e-01 1.89934999e-01 -3.51441205e-02
-2.53970146e-01 -3.93121481e-01 8.60275805e-01 9.70955193e-01
5.01556754e-01 -1.28394872e-01 -9.14846659e-01 8.04266155e-01
-1.16007507e+00 -8.40756357e-01 -1.61941260e-01 2.37864828e+00
8.73828351e-01 3.67235333e-01 -3.05325210e-01 -8.52689072e-02
4.34953988e-01 4.91832078e-01 -4.43628073e-01 -1.14054310e+00
-5.77990174e-01 8.36654186e-01 4.54831392e-01 6.55630410e-01
-6.37161613e-01 1.44261479e+00 7.07258892e+00 9.55592811e-01
-9.86174107e-01 8.10422823e-02 3.43119740e-01 -5.44289231e-01
-1.06370759e+00 3.87836457e-03 -4.76679921e-01 2.71531790e-01
1.24660540e+00 -1.02516659e-01 3.78431171e-01 7.19894886e-01
1.85183659e-02 -1.15502112e-01 -1.58943701e+00 9.01881099e-01
3.92689198e-01 -9.06918049e-01 2.67987490e-01 -1.65092107e-02
8.21756303e-01 -6.36242032e-02 7.01186121e-01 5.68811417e-01
1.02853946e-01 -1.66076326e+00 1.00156832e+00 4.86302562e-02
9.60472703e-01 -9.83955383e-01 5.24377882e-01 -2.94316292e-01
-1.15687275e+00 9.00152847e-02 -6.84036076e-01 -5.91050625e-01
-1.51897490e-01 4.95289773e-01 -7.03844249e-01 -2.05242038e-01
5.76169133e-01 6.56603098e-01 -7.39631951e-01 2.89211810e-01
-3.01884830e-01 6.42569661e-01 -1.26049802e-01 -1.67962641e-01
3.28743219e-01 2.29194120e-01 2.59954959e-01 1.61648679e+00
3.13691258e-01 -2.91557223e-01 -2.69313008e-01 1.09255981e+00
-1.07878551e-01 4.82615292e-01 -8.12576115e-01 -2.86980093e-01
7.22853541e-01 1.18658030e+00 -6.30916536e-01 -2.29647160e-01
-4.47794557e-01 1.05456984e+00 3.50593567e-01 4.05139536e-01
-7.88641810e-01 -4.19701546e-01 1.24111736e+00 1.59284398e-01
2.30005562e-01 -3.12080294e-01 -7.72597969e-01 -7.54089534e-01
-1.14238881e-01 -7.20462561e-01 6.12605922e-02 -1.01105189e+00
-1.58543956e+00 4.55318570e-01 -5.28269671e-02 -7.35164940e-01
8.09326172e-02 -9.59087968e-01 -6.34749115e-01 1.25252962e+00
-1.20554876e+00 -8.00756514e-01 -3.47419418e-02 4.30719882e-01
2.72859603e-01 1.19726852e-01 1.10262024e+00 -8.67243037e-02
-1.48311600e-01 8.61572862e-01 -2.86726713e-01 3.34063470e-02
1.15553570e+00 -1.29708374e+00 6.94446087e-01 4.08881158e-01
2.32412830e-01 1.19313443e+00 6.27735317e-01 -6.33312285e-01
-1.04265034e+00 -7.82185316e-01 1.11800623e+00 -8.55055690e-01
7.86528230e-01 -5.89481831e-01 -8.42794657e-01 6.24659002e-01
4.63309586e-01 -4.31793064e-01 1.10811031e+00 5.84922075e-01
-9.64210808e-01 1.51665002e-01 -8.52381766e-01 1.09452045e+00
1.30186629e+00 -1.05139875e+00 -1.04394794e+00 5.49230799e-02
1.09010577e+00 1.65200159e-01 -9.66026366e-01 1.33443266e-01
5.85744798e-01 -7.09591091e-01 1.08138883e+00 -6.24496818e-01
6.07688546e-01 1.88513175e-02 -6.95511580e-01 -1.89684081e+00
-5.69696128e-01 6.01697937e-02 6.58192873e-01 1.12192953e+00
6.90474570e-01 -7.36889660e-01 2.69678831e-01 5.08996129e-01
-2.61363626e-01 -6.63752615e-01 -8.44021440e-01 -9.84619677e-01
7.87262440e-01 -9.66153741e-01 3.87688905e-01 1.32900202e+00
2.17189372e-01 6.54546976e-01 4.65299994e-01 -2.46896878e-01
3.16646278e-01 -4.40505207e-01 -4.80688252e-02 -1.10520315e+00
-8.08177739e-02 -8.01472604e-01 -3.40058357e-01 -4.75009680e-01
6.70417786e-01 -1.43180525e+00 -3.69050652e-02 -1.63840449e+00
1.31826997e-01 -3.85469049e-01 -5.53716481e-01 5.39137244e-01
-7.70261586e-02 4.30872649e-01 3.11785400e-01 -1.59707069e-01
-3.69506925e-02 4.66648638e-01 1.00288272e+00 -5.38844950e-02
-2.45704744e-02 -1.06737173e+00 -1.25940216e+00 7.72969067e-01
8.22769344e-01 -2.05539778e-01 -6.66146874e-01 -5.16299486e-01
7.08809495e-01 -8.00757647e-01 4.06104356e-01 -1.03693259e+00
-3.89234096e-01 2.70394236e-02 7.68837333e-01 -5.66657782e-02
6.20135427e-01 -6.30001903e-01 -2.25108325e-01 3.18642646e-01
-6.44226432e-01 4.23591465e-01 7.28243470e-01 7.13586509e-02
9.53191519e-03 -1.79145738e-01 6.55253470e-01 -1.15003966e-01
-8.69568348e-01 -1.90001756e-01 -4.91331488e-01 6.89189732e-01
6.01276934e-01 -4.72441494e-01 -3.87374490e-01 -1.32091820e-01
-5.39145291e-01 4.24549878e-02 7.61291564e-01 7.51304626e-01
6.44914806e-01 -1.62650156e+00 -5.75643539e-01 1.34583116e-01
4.97773826e-01 -5.98258495e-01 1.00840837e-01 6.40560448e-01
-5.29099554e-02 2.53519267e-01 -1.51342139e-01 -3.58662218e-01
-9.48603511e-01 5.09878874e-01 5.97071797e-02 2.89482117e-01
-1.82220459e-01 1.06624913e+00 4.99212116e-01 -3.53550673e-01
-1.36535436e-01 -6.46602035e-01 -9.09475386e-02 5.91744423e-01
3.00198823e-01 2.47251928e-01 -3.61756831e-02 -8.05579066e-01
-6.04251325e-01 8.14494073e-01 1.45821497e-01 -6.04772925e-01
1.06164408e+00 4.40517887e-02 -2.20720962e-01 1.12118351e+00
1.65777552e+00 2.85645306e-01 -6.55509174e-01 1.98726699e-01
-5.17193414e-02 -1.66073650e-01 2.98480298e-02 -8.56664598e-01
-6.14358902e-01 1.07586396e+00 6.48034751e-01 -4.04081792e-01
6.42831743e-01 -6.77124336e-02 7.03468919e-01 3.11384916e-01
-2.62808390e-02 -1.50742435e+00 1.72374502e-01 8.42852414e-01
8.71420622e-01 -7.71047950e-01 -9.10270512e-02 3.78080308e-02
-8.96443963e-01 6.55622184e-01 8.66781473e-01 -2.19818935e-01
4.48905259e-01 1.83687538e-01 -3.05405371e-02 -1.56258658e-01
-8.65339339e-01 -1.64870918e-01 3.48289728e-01 5.88067532e-01
9.33757305e-01 3.24679643e-01 -3.70608747e-01 8.19057763e-01
-8.34370732e-01 -9.33328986e-01 1.56150728e-01 6.11248076e-01
-5.58451891e-01 -8.72505784e-01 -2.64938116e-01 4.29049611e-01
-2.08731428e-01 -1.03677964e+00 -5.13275206e-01 1.06614912e+00
2.71372408e-01 7.30628252e-01 7.59592652e-01 -6.29680753e-01
2.88705945e-01 5.27255356e-01 4.51949120e-01 -9.63572085e-01
-8.59693289e-01 -2.61467427e-01 3.14935446e-01 -6.70003116e-01
-1.15453936e-02 -5.49103916e-01 -1.68087828e+00 -3.59597564e-01
4.05647419e-02 8.40154737e-02 7.05477238e-01 6.57419741e-01
1.70001447e-01 4.39268082e-01 1.43040031e-01 -6.26039028e-01
-2.51946032e-01 -9.85336244e-01 -6.84340835e-01 9.02108133e-01
1.47672594e-01 -7.17673659e-01 -8.12000573e-01 -4.11742389e-01] | [10.404618263244629, 8.959829330444336] |
6e908737-1765-4610-abfa-4829c47dda97 | understanding-dataset-design-choices-for | 1904.12106 | null | http://arxiv.org/abs/1904.12106v1 | http://arxiv.org/pdf/1904.12106v1.pdf | Understanding Dataset Design Choices for Multi-hop Reasoning | Learning multi-hop reasoning has been a key challenge for reading
comprehension models, leading to the design of datasets that explicitly focus
on it. Ideally, a model should not be able to perform well on a multi-hop
question answering task without doing multi-hop reasoning. In this paper, we
investigate two recently proposed datasets, WikiHop and HotpotQA. First, we
explore sentence-factored models for these tasks; by design, these models
cannot do multi-hop reasoning, but they are still able to solve a large number
of examples in both datasets. Furthermore, we find spurious correlations in the
unmasked version of WikiHop, which make it easy to achieve high performance
considering only the questions and answers. Finally, we investigate one key
difference between these datasets, namely span-based vs. multiple-choice
formulations of the QA task. Multiple-choice versions of both datasets can be
easily gamed, and two models we examine only marginally exceed a baseline in
this setting. Overall, while these datasets are useful testbeds,
high-performing models may not be learning as much multi-hop reasoning as
previously thought. | ['Jifan Chen', 'Greg Durrett'] | 2019-04-27 | understanding-dataset-design-choices-for-1 | https://aclanthology.org/N19-1405 | https://aclanthology.org/N19-1405.pdf | naacl-2019-6 | ['multi-hop-question-answering'] | ['knowledge-base'] | [-1.70398932e-02 5.05921721e-01 1.63270459e-01 -2.81094253e-01
-1.26878464e+00 -9.09771442e-01 4.87615883e-01 2.76880056e-01
-5.88754177e-01 8.16995740e-01 4.70243424e-01 -8.16380441e-01
-6.05790436e-01 -9.40082490e-01 -7.99365938e-01 -1.65689453e-01
3.17549944e-01 8.93490255e-01 5.08561909e-01 -6.95769489e-01
1.67042106e-01 -8.10850486e-02 -1.54821694e+00 6.46943092e-01
1.19601727e+00 4.47009295e-01 1.59769624e-01 1.10570800e+00
6.28123879e-02 1.22963750e+00 -6.22410953e-01 -6.02091253e-01
1.15740307e-01 -5.46956360e-01 -1.53074217e+00 -5.69665849e-01
9.43601787e-01 -4.09972548e-01 -2.46024325e-01 6.05483890e-01
4.21726674e-01 3.53422731e-01 5.90949059e-01 -1.11459303e+00
-6.73105001e-01 7.53671348e-01 -1.92044377e-01 4.34519172e-01
8.31068277e-01 3.48111480e-01 1.72010887e+00 -4.11138326e-01
5.68573952e-01 1.34573483e+00 5.33972144e-01 4.98449355e-01
-1.25734484e+00 -1.52105749e-01 1.75828952e-02 5.41546226e-01
-7.94707835e-01 -3.26701492e-01 5.50228596e-01 -1.99932277e-01
1.07921410e+00 5.19200385e-01 3.90665382e-01 1.01324654e+00
-1.38103083e-01 1.00337756e+00 1.39343286e+00 -4.33931142e-01
3.45928334e-02 -2.61420816e-01 5.99774718e-01 7.60283411e-01
8.08305219e-02 -8.83057714e-02 -7.18646824e-01 -1.12925097e-02
3.13886017e-01 -4.59752560e-01 -4.14245844e-01 -3.06247652e-01
-1.38288987e+00 9.01477277e-01 3.18978012e-01 2.31245041e-01
-1.20756805e-01 -2.72191074e-02 1.56702906e-01 8.29368651e-01
4.86252308e-02 1.14401615e+00 -7.43142128e-01 -5.05835414e-01
-8.06060135e-01 9.93741572e-01 1.19725263e+00 6.83019519e-01
6.45758927e-01 -6.03888512e-01 -5.62089741e-01 6.48173809e-01
-1.85667232e-01 1.94767386e-01 3.09675127e-01 -1.29251766e+00
9.46480036e-01 5.33564091e-01 2.98372179e-01 -8.56689215e-01
-8.03169012e-01 -1.85616210e-01 -2.22711012e-01 -1.49558574e-01
1.21290243e+00 -1.71832725e-01 -5.13441205e-01 1.97609806e+00
4.12236415e-02 -1.89292535e-01 1.54588372e-01 9.24282432e-01
9.30247307e-01 4.19528186e-01 -1.11256197e-01 1.53620556e-01
1.63796163e+00 -1.40299153e+00 -4.89295840e-01 -4.84258682e-01
9.84812677e-01 -4.37720776e-01 1.71622181e+00 5.51114380e-01
-1.54611051e+00 -3.93761754e-01 -8.84066105e-01 -4.95601058e-01
-2.91064620e-01 -4.85985309e-01 7.88175762e-01 4.15982753e-01
-1.18747449e+00 3.62359226e-01 -3.82495552e-01 -2.24305108e-01
1.45681649e-01 -1.20323583e-01 -1.35716796e-01 -5.83051026e-01
-1.47355783e+00 1.29018974e+00 2.96113580e-01 -2.68188238e-01
-6.71205103e-01 -7.74977028e-01 -6.24039471e-01 3.84264261e-01
6.66118801e-01 -7.62918413e-01 1.72939920e+00 -4.33894753e-01
-1.15941882e+00 8.12214792e-01 -2.57217199e-01 -2.53974795e-01
7.09199488e-01 -3.21695954e-01 -1.10028058e-01 2.89145559e-01
2.25444928e-01 5.86038530e-01 1.99088618e-01 -9.37895536e-01
-4.11131769e-01 -3.34935963e-01 8.23937058e-01 4.38018709e-01
4.13053483e-02 -3.31261218e-01 -1.23307914e-01 -3.28849256e-01
2.11175624e-02 -6.30783200e-01 9.52024013e-02 -2.66019285e-01
-3.10179949e-01 -4.77079451e-01 3.85557950e-01 -7.52097547e-01
1.08633685e+00 -1.80680895e+00 2.51391053e-01 -2.15660393e-01
4.13939923e-01 1.47148773e-01 -6.47326827e-01 6.05121732e-01
1.11319341e-01 3.48675400e-01 -6.46812394e-02 -1.43243298e-01
3.84214491e-01 3.27883571e-01 -1.87831506e-01 -9.84173790e-02
2.75087863e-01 1.45731688e+00 -9.82461214e-01 -4.35708880e-01
-2.98997909e-01 -3.55316550e-01 -9.37679648e-01 2.67026871e-01
-9.33436990e-01 1.47281274e-01 -2.32292846e-01 3.07062387e-01
5.77924848e-01 -5.07646799e-01 4.49597798e-02 1.29691899e-01
2.66673684e-01 8.55902433e-01 -8.18274379e-01 1.76742744e+00
-5.23191035e-01 6.35704279e-01 -1.56113133e-01 -9.83457327e-01
2.33236134e-01 9.97087061e-02 1.24479737e-02 -1.18499064e+00
-2.59722084e-01 -2.23036557e-02 4.82264668e-01 -8.29990923e-01
6.73166633e-01 -1.76287830e-01 -3.95003967e-02 8.25290442e-01
-1.28206667e-02 -3.36102843e-01 5.52363992e-01 5.45798182e-01
1.61673737e+00 -1.50004476e-01 -1.00471042e-01 -2.07825273e-01
1.80374280e-01 2.67233789e-01 3.24820876e-01 1.26015317e+00
-1.96032077e-01 6.42566085e-01 1.06903791e+00 -1.58439666e-01
-7.78942823e-01 -1.15548265e+00 5.14125861e-02 1.27576518e+00
1.37834743e-01 -5.51049232e-01 -6.86914504e-01 -7.76005864e-01
-1.61395520e-01 8.61073434e-01 -5.19596159e-01 -7.62957707e-02
-5.57757914e-01 -5.28073788e-01 8.68693590e-01 4.62085903e-01
6.18378699e-01 -9.42161560e-01 -7.28316486e-01 1.79137215e-01
-6.91167116e-01 -1.09631920e+00 -1.03884578e-01 1.90309912e-01
-5.18196404e-01 -1.41030669e+00 -4.81295079e-01 -6.96161628e-01
7.35938177e-02 4.18295354e-01 1.92911124e+00 5.65231979e-01
8.84556919e-02 5.90005994e-01 -6.42245531e-01 -3.09800595e-01
-2.80577838e-01 4.73211199e-01 -5.07971227e-01 -6.27403021e-01
5.63996673e-01 -4.61857885e-01 -5.51998854e-01 2.68329114e-01
-7.34373689e-01 1.98029190e-01 6.63795829e-01 9.93672907e-01
-2.52515972e-02 -3.56352255e-02 7.66970038e-01 -1.08374119e+00
1.08209264e+00 -6.01463556e-01 -3.25438797e-01 5.89794636e-01
-3.68789315e-01 3.02214533e-01 6.58323348e-01 -1.08395278e-01
-9.70378697e-01 -7.53374219e-01 -1.97488114e-01 2.54623890e-01
-1.73576087e-01 7.54644692e-01 -3.36831063e-02 2.35953584e-01
8.83093059e-01 -4.80639227e-02 -8.12882781e-02 -3.91198665e-01
5.93958139e-01 3.16082239e-01 3.79163206e-01 -1.08292973e+00
8.35515618e-01 -3.87385450e-02 -2.72372067e-01 -6.86653614e-01
-1.25945055e+00 -2.63720214e-01 -2.99559146e-01 1.54440820e-01
1.00378323e+00 -8.28365743e-01 -1.03950143e+00 3.27627271e-01
-1.21304941e+00 -8.35913479e-01 -2.31497645e-01 1.13939978e-01
-6.69050455e-01 2.89840907e-01 -7.99516499e-01 -4.73112732e-01
1.56370223e-01 -1.06737053e+00 7.40750492e-01 2.41823792e-01
-6.11222804e-01 -1.21440637e+00 3.95467505e-02 9.85399663e-01
4.89314765e-01 -1.14671558e-01 1.60344684e+00 -9.67785776e-01
-8.30807745e-01 2.48905301e-01 -3.83044749e-01 6.15049489e-02
-3.50335419e-01 -3.13996106e-01 -9.62202370e-01 -9.17246044e-02
3.65942828e-02 -1.14806473e+00 9.56673324e-01 -1.37738669e-02
1.06985116e+00 -2.59553343e-01 1.32952750e-01 1.45328850e-01
9.93810475e-01 -2.36066580e-01 7.14384496e-01 3.18621516e-01
4.47858244e-01 7.40210295e-01 5.01062989e-01 -6.66174367e-02
1.22514391e+00 5.86363435e-01 3.12972039e-01 2.40697160e-01
-5.56818657e-02 -3.64914268e-01 6.44531175e-02 7.55638778e-01
2.64948130e-01 -4.62785691e-01 -1.23335993e+00 6.78449571e-01
-1.87570739e+00 -1.08881402e+00 -3.14681888e-01 1.84592152e+00
1.01054788e+00 2.16760576e-01 2.42264420e-01 1.55024573e-01
5.30708581e-02 4.39779103e-01 -4.13322240e-01 -4.96541858e-01
-3.06626916e-01 6.01535797e-01 -5.77869415e-02 7.13141203e-01
-6.45910859e-01 7.89447248e-01 7.01058626e+00 5.86820245e-01
-5.85735261e-01 4.77995314e-02 4.84008789e-01 -9.11975875e-02
-8.86439800e-01 1.51550323e-01 -3.57960582e-01 2.36797467e-01
1.03470743e+00 6.47421032e-02 6.77532136e-01 2.72216439e-01
-9.21094790e-02 -5.52883863e-01 -1.45978498e+00 6.21983051e-01
3.05169541e-02 -1.17371976e+00 7.49806836e-02 -3.10805738e-01
5.07636905e-01 -1.62268654e-01 3.95982303e-02 7.97992229e-01
5.76916814e-01 -1.45367825e+00 6.21508956e-01 2.84291655e-01
4.37827259e-01 -4.96846139e-01 5.21744013e-01 8.20455849e-01
-4.68594968e-01 -2.61419177e-01 -2.57907838e-01 -6.26132607e-01
8.11087489e-02 3.56286943e-01 -4.45308685e-01 5.12320817e-01
5.29890239e-01 2.37710953e-01 -1.05413103e+00 8.75111699e-01
-5.24477303e-01 7.52867460e-01 -2.20848188e-01 -3.51505488e-01
3.04545313e-01 5.68892919e-02 1.61116317e-01 6.98872030e-01
-5.48277535e-02 3.61958027e-01 8.82268772e-02 7.94029653e-01
-2.25656286e-01 -2.10377946e-01 -3.34146798e-01 -2.21074149e-01
4.98479813e-01 9.01999831e-01 -2.17029139e-01 -9.21307504e-02
-7.28501022e-01 6.44265294e-01 9.83876467e-01 3.93019080e-01
-7.22989202e-01 -2.85711378e-01 5.35937548e-01 6.02597445e-02
-1.71823781e-02 -1.61385685e-01 -4.18231934e-01 -1.50866950e+00
3.55723888e-01 -1.45020366e+00 5.93833268e-01 -1.06598294e+00
-1.44416142e+00 1.62438974e-01 -1.02632754e-01 -3.86902511e-01
-3.44062269e-01 -6.30034983e-01 -6.37585402e-01 9.21441197e-01
-1.71260118e+00 -9.63072598e-01 -5.10620952e-01 5.30121088e-01
4.93316114e-01 2.14482620e-01 8.79739642e-01 9.03370455e-02
-3.25159460e-01 6.81420386e-01 -1.55300424e-01 1.59283862e-01
8.50104570e-01 -1.60705829e+00 4.04819876e-01 7.84290671e-01
4.63714927e-01 6.16426766e-01 6.97312951e-01 -1.62269726e-01
-1.37482548e+00 -5.21740735e-01 9.63455737e-01 -1.00234234e+00
6.34039879e-01 -3.24069709e-01 -1.24547052e+00 9.16982591e-01
4.04396147e-01 -3.58189374e-01 4.75893587e-01 7.43929386e-01
-7.08156109e-01 3.10458541e-01 -8.75875652e-01 8.75267804e-01
1.16916203e+00 -6.95892870e-01 -1.17335081e+00 5.92498362e-01
9.69245255e-01 -6.57674551e-01 -6.67131662e-01 3.37805673e-02
3.94227624e-01 -1.32474935e+00 8.48705769e-01 -1.04838359e+00
9.96862710e-01 3.75612937e-02 4.17015441e-02 -1.58412361e+00
-2.63014853e-01 -5.08529484e-01 -1.57975778e-01 1.03084970e+00
6.92757964e-01 -5.62178075e-01 8.88990283e-01 8.89923871e-01
4.78604957e-02 -8.43565702e-01 -8.07009399e-01 -6.53584421e-01
8.21926296e-01 -3.78831953e-01 6.34747684e-01 8.84315252e-01
3.35795254e-01 7.10424483e-01 4.72395867e-02 -2.18856707e-02
3.69135141e-01 1.44110963e-01 8.10390532e-01 -1.08613908e+00
-7.43114114e-01 -5.39433300e-01 1.70857951e-01 -1.35113513e+00
2.56785810e-01 -9.25136685e-01 -8.18725526e-02 -1.74226630e+00
1.49803832e-01 -6.41153812e-01 2.98907682e-02 4.17099029e-01
-5.97129047e-01 -2.05139861e-01 2.80487448e-01 -1.67679921e-01
-8.82823825e-01 2.48878077e-01 1.52581120e+00 -6.07828721e-02
1.58887193e-01 -1.92640111e-01 -1.14540255e+00 4.41812605e-01
7.98083544e-01 -1.43719390e-01 -7.32032776e-01 -1.02229571e+00
7.64747620e-01 4.41916555e-01 6.24318838e-01 -9.11718071e-01
3.41521025e-01 -2.43768290e-01 7.11298827e-03 -3.22644204e-01
2.75173813e-01 -4.31169033e-01 -4.52971429e-01 5.76034971e-02
-8.00916791e-01 4.36208427e-01 7.42739439e-02 3.98548663e-01
-2.77628541e-01 -4.21414763e-01 5.41901588e-01 -4.20247793e-01
-5.48171520e-01 -1.22575626e-01 -3.35404575e-01 1.05684876e+00
6.90900862e-01 6.94700405e-02 -8.78665328e-01 -6.81200862e-01
-4.13617194e-01 7.19031274e-01 3.52886707e-01 3.88786137e-01
2.94375360e-01 -8.15614641e-01 -8.69466305e-01 -1.98729560e-01
2.96700388e-01 4.11963582e-01 4.44106787e-01 7.67783701e-01
-6.31005406e-01 5.39451838e-01 -1.00761279e-01 -2.59517193e-01
-1.02744341e+00 6.09471142e-01 3.22919279e-01 -7.59914756e-01
-3.60728204e-01 9.28157151e-01 8.91467370e-03 -8.06515276e-01
3.51658128e-02 -3.43570352e-01 -1.89221531e-01 1.52754635e-01
5.44257402e-01 2.57550120e-01 1.67255729e-01 -2.81168967e-02
-3.25179920e-02 2.99694926e-01 -2.82868683e-01 -1.96234345e-01
1.18905163e+00 -1.47528648e-02 -4.62499224e-02 3.44901770e-01
9.99448836e-01 -3.82746868e-02 -9.03140366e-01 -2.57520229e-01
1.81564584e-01 -3.02123219e-01 -4.35822397e-01 -1.28841507e+00
-5.13183832e-01 1.07505381e+00 -2.97689974e-01 3.45050812e-01
9.24295843e-01 -2.89196689e-02 8.57245624e-01 8.42788696e-01
3.19411367e-01 -8.66804063e-01 3.84013206e-01 8.79223883e-01
7.08083987e-01 -1.35465121e+00 -2.68559188e-01 -1.55145213e-01
-5.23806691e-01 8.02422881e-01 9.85707462e-01 2.08616525e-01
5.14357314e-02 5.79662547e-02 1.11009464e-01 -4.07548398e-01
-1.35676992e+00 -3.33616227e-01 4.19087522e-02 5.51027775e-01
4.19268280e-01 -1.06021591e-01 -1.99348345e-01 6.05914056e-01
-7.60045648e-01 -2.00993717e-01 7.64254093e-01 9.35732007e-01
-3.62431377e-01 -9.62148368e-01 -1.90645158e-01 6.23569548e-01
-2.41704702e-01 -2.60505110e-01 -5.12259245e-01 9.18293357e-01
-4.12699640e-01 1.26842868e+00 -1.00146927e-01 -3.05190235e-01
5.25035441e-01 3.36356252e-01 6.95590079e-01 -5.87801754e-01
-5.58364153e-01 -9.34672713e-01 3.95493090e-01 -5.27670503e-01
-1.32090807e-01 -4.27800655e-01 -8.77749324e-01 -6.52376115e-01
-1.04688346e-01 3.81695241e-01 3.91336232e-02 1.27263641e+00
2.22363800e-01 5.72259963e-01 3.36525007e-03 -2.22817466e-01
-1.00084937e+00 -8.94345582e-01 -4.16704655e-01 6.68969810e-01
4.60370034e-01 -4.43344593e-01 -4.93373752e-01 -4.00713950e-01] | [11.058050155639648, 7.993850231170654] |
db72d3bf-96b2-4453-8623-5c71215998ce | a-latent-feature-analysis-based-approach-for | 2208.07739 | null | https://arxiv.org/abs/2208.07739v1 | https://arxiv.org/pdf/2208.07739v1.pdf | A Latent Feature Analysis-based Approach for Spatio-Temporal Traffic Data Recovery | Missing data is an inevitable and common problem in data-driven intelligent transportation systems (ITS). In the past decade, scholars have done many research on the recovery of missing traffic data, however how to make full use of spatio-temporal traffic patterns to improve the recovery performance is still an open problem. Aiming at the spatio-temporal characteristics of traffic speed data, this paper regards the recovery of missing data as a matrix completion problem, and proposes a spatio-temporal traffic data completion method based on hidden feature analysis, which discovers spatio-temporal patterns and underlying structures from incomplete data to complete the recovery task. Therefore, we introduce spatial and temporal correlation to capture the main underlying features of each dimension. Finally, these latent features are applied to recovery traffic data through latent feature analysis. The experimental and evaluation results show that the evaluation criterion value of the model is small, which indicates that the model has better performance. The results show that the model can accurately estimate the continuous missing data. | ['Di wu', 'Yuting Ding'] | 2022-08-16 | null | null | null | null | ['matrix-completion'] | ['methodology'] | [-3.62904556e-02 -6.71485543e-01 -4.59153265e-01 -4.04913694e-01
-5.77874064e-01 2.84686297e-01 2.97707260e-01 -5.02438247e-01
-2.37624310e-02 8.18818688e-01 7.10243881e-01 -3.17999333e-01
-6.75338805e-01 -8.17519069e-01 -3.30096960e-01 -8.30859721e-01
-1.93279739e-02 2.34572351e-01 1.59180671e-01 -2.84466594e-01
1.51635811e-01 3.05476606e-01 -1.74494338e+00 2.87069887e-01
1.07819355e+00 6.79973960e-01 3.91583979e-01 7.38146752e-02
-3.11275274e-01 8.47589970e-01 -2.26767406e-01 -1.35985967e-02
1.45605743e-01 -1.57203794e-01 -3.41637313e-01 4.35225695e-01
-3.57599556e-01 -5.46867430e-01 -7.82910943e-01 7.27640986e-01
9.66461748e-02 2.37645015e-01 5.52040219e-01 -1.80534899e+00
-4.71027195e-01 2.09223986e-01 -5.93794465e-01 2.59615272e-01
5.03109694e-02 1.39970019e-01 5.75754166e-01 -1.11812484e+00
2.05445960e-01 1.35975015e+00 5.65302610e-01 1.33986965e-01
-1.01351273e+00 -8.29888046e-01 8.12716112e-02 5.81157804e-01
-1.75478339e+00 -6.94831789e-01 8.41095269e-01 -6.79808259e-01
5.15407801e-01 2.10876226e-01 3.17789584e-01 8.24006200e-01
6.08793944e-02 9.75389659e-01 8.60639691e-01 1.45658627e-02
-7.69046620e-02 -7.52153993e-02 1.78266734e-01 2.75104910e-01
4.39235508e-01 2.40108356e-01 -3.75768453e-01 -2.50342965e-01
4.99900728e-01 7.30322182e-01 1.08721264e-01 -1.36551529e-01
-1.14629459e+00 7.07410157e-01 -6.80232281e-03 1.60244614e-01
-6.48960769e-01 -2.30476886e-01 1.94547728e-01 1.97456211e-01
4.80290592e-01 -7.47542322e-01 -1.41535267e-01 -3.26094657e-01
-9.77964282e-01 2.70540059e-01 2.23106265e-01 1.18739176e+00
1.02648556e+00 2.87480503e-01 -1.61620036e-01 7.24140286e-01
2.43809924e-01 1.00233841e+00 3.75914350e-02 -9.89153802e-01
1.03473413e+00 8.88236880e-01 2.60074645e-01 -1.38588631e+00
-3.35744321e-01 -8.73292387e-02 -1.29308975e+00 -2.11015463e-01
3.25219244e-01 -1.61247492e-01 -5.08920908e-01 1.39904988e+00
3.12738836e-01 5.32317519e-01 3.40438634e-02 9.26908791e-01
3.51018876e-01 8.57035816e-01 -5.33303013e-03 -5.76212645e-01
9.71011877e-01 -4.45581347e-01 -1.21966434e+00 2.04233393e-01
4.60178673e-01 -7.25057065e-01 6.23417199e-01 1.91185728e-01
-6.75066650e-01 -7.40056992e-01 -5.41640520e-01 5.85110746e-02
-6.59487844e-02 4.42952216e-01 5.07243454e-01 2.42516145e-01
-2.55160213e-01 1.03682987e-01 -8.39653611e-01 -5.51116429e-02
2.90864050e-01 1.59697592e-01 -4.66299117e-01 -6.45245433e-01
-1.30554605e+00 5.16035557e-01 3.00950527e-01 6.05794132e-01
-6.36066735e-01 -6.11265481e-01 -5.34197271e-01 -7.96290413e-02
5.74889183e-01 -4.34963018e-01 5.45699477e-01 -1.84452459e-01
-6.66202426e-01 2.69505605e-02 -8.11367750e-01 1.12754935e-02
3.91123414e-01 1.97831094e-01 -1.14802551e+00 -3.23685884e-01
5.95048130e-01 -1.58362389e-01 8.21914613e-01 -1.06547487e+00
-1.01046634e+00 -4.30813164e-01 -5.04581690e-01 -1.22595020e-01
-1.98905185e-01 -3.25874686e-01 -3.54524881e-01 -5.83717644e-01
4.51397568e-01 -8.36261809e-01 -2.18890622e-01 -3.16013098e-01
-3.10015202e-01 -2.64270872e-01 1.04601681e+00 -9.07046318e-01
1.64771962e+00 -2.28252649e+00 -4.64491732e-02 3.80327523e-01
2.05113754e-01 4.33649644e-02 -3.11419349e-02 8.80673170e-01
7.68714249e-02 -2.19016656e-01 -4.72115427e-01 -2.23988593e-01
-1.02537259e-01 6.11472607e-01 -5.32462299e-01 5.03208458e-01
8.51417482e-02 7.03254580e-01 -6.21022224e-01 -4.23779488e-01
5.08392632e-01 4.44698244e-01 -1.78436086e-01 -6.50988007e-03
3.18052948e-01 6.26341820e-01 -8.21483016e-01 4.46764588e-01
1.14881384e+00 3.59446518e-02 -1.65064752e-01 -1.42483979e-01
-5.65984726e-01 -1.71621203e-01 -1.49285173e+00 1.43204570e+00
-1.53894380e-01 3.44145030e-01 -2.25754417e-02 -9.71565068e-01
1.19565070e+00 2.31607124e-01 8.72293413e-01 -1.15524828e+00
-1.93918511e-01 2.03079030e-01 -3.26756090e-01 -1.16633475e+00
5.94885945e-01 -4.60203290e-02 3.47592793e-02 3.61067593e-01
-7.70350754e-01 7.77383864e-01 1.70353919e-01 2.17126176e-01
9.89346027e-01 -1.57404423e-01 -3.62638146e-01 1.47743896e-01
7.56029606e-01 3.62560451e-01 1.12481618e+00 2.07805231e-01
-1.36341020e-01 3.59944969e-01 2.37940654e-01 -5.77803195e-01
-1.10896909e+00 -6.94243431e-01 -8.48136395e-02 6.03313565e-01
1.35215819e-01 -1.57285869e-01 -1.31192267e-01 -2.29968384e-01
2.94447392e-01 4.80324298e-01 -4.81417358e-01 -2.60567516e-01
-6.32378995e-01 -8.17747474e-01 2.77325183e-01 3.49102259e-01
6.50188029e-01 -6.51216745e-01 1.62319630e-01 3.70428443e-01
-8.81052732e-01 -1.02913463e+00 -3.09528530e-01 -6.82956755e-01
-9.88705873e-01 -1.14903474e+00 -5.75299025e-01 -5.51070452e-01
7.33271897e-01 1.19356692e+00 3.89659286e-01 1.60175875e-01
-9.72122177e-02 -4.15988341e-02 -3.84074420e-01 2.20129713e-01
-2.48742457e-02 2.32750140e-02 1.46804243e-01 6.38971329e-01
7.46945739e-01 -7.31601834e-01 -3.97231132e-01 7.16918945e-01
-1.00647533e+00 2.35464856e-01 9.10185695e-01 6.55894935e-01
4.45453674e-01 6.92837477e-01 6.02564752e-01 -4.07065541e-01
7.24133313e-01 -1.01372719e+00 -4.55134898e-01 7.48982728e-02
-5.56722343e-01 6.70194551e-02 3.28174561e-01 -1.69378698e-01
-1.15584826e+00 5.29559776e-02 1.38063550e-01 -5.76567650e-01
-1.75459459e-01 7.54401684e-01 -6.31970465e-01 5.24092495e-01
6.32092431e-02 8.04906011e-01 3.09592217e-01 -8.49501789e-01
2.42474838e-03 9.33061063e-01 3.25044572e-01 -3.88956964e-01
9.56063807e-01 8.01081479e-01 2.75425881e-01 -9.64753926e-01
-4.93508279e-01 -7.80232847e-01 -7.42375255e-01 -1.29692197e-01
4.94164407e-01 -1.08121693e+00 -8.03412199e-01 2.24932730e-01
-9.57644165e-01 2.08758473e-01 -7.96092302e-02 9.32074428e-01
-4.06431824e-01 4.89658803e-01 -2.93798327e-01 -9.70597565e-01
2.70884454e-01 -9.25826013e-01 8.20549190e-01 -2.90553629e-01
2.76926428e-01 -7.36357868e-01 2.63835728e-01 5.67622066e-01
5.14970422e-01 1.83642954e-01 9.09418225e-01 8.99385586e-02
-9.56309855e-01 -2.22242519e-01 -4.99243885e-01 6.03890195e-02
3.56551111e-01 1.02682877e-02 -5.38561881e-01 -7.83758983e-02
1.23473750e-02 4.81955439e-01 9.55693722e-01 4.19507802e-01
8.22701216e-01 -5.25449395e-01 -3.61281931e-01 3.23145479e-01
1.13370025e+00 3.58175300e-02 9.54413712e-01 1.75240740e-01
7.24130213e-01 9.80886757e-01 9.62877631e-01 6.89001739e-01
9.13728893e-01 4.99603271e-01 3.81261140e-01 -1.54099974e-03
-6.42919913e-03 -5.29146552e-01 1.69533402e-01 1.22450292e+00
-7.42716268e-02 1.61014840e-01 -8.49445224e-01 7.98839271e-01
-2.43059850e+00 -1.61647677e+00 -1.01983964e+00 2.09409165e+00
1.41075537e-01 -1.43360987e-01 3.54935616e-01 5.93692005e-01
9.66392338e-01 8.27208906e-03 -5.06605208e-01 3.15264910e-01
-2.65649170e-01 -7.05745578e-01 4.78615314e-01 4.20789719e-01
-7.00247884e-01 5.19958973e-01 6.15124130e+00 9.47169125e-01
-6.08390212e-01 -7.03363074e-03 1.66587695e-01 1.92593187e-01
-5.41574895e-01 2.99627781e-01 -7.88515329e-01 9.22471404e-01
8.41704965e-01 -1.87816754e-01 4.56351191e-01 4.80918229e-01
1.08926165e+00 1.04589416e-02 -4.28607225e-01 1.03761625e+00
-2.90941447e-01 -1.11266196e+00 2.92262971e-01 6.36896312e-01
7.24897146e-01 -1.84626564e-01 3.65248695e-02 3.00773084e-01
1.34755090e-01 -8.25640619e-01 2.15780526e-01 1.23038399e+00
5.73494792e-01 -1.00363982e+00 6.32824898e-01 8.97990108e-01
-1.46705091e+00 -3.42301071e-01 -6.91591144e-01 -2.89391845e-01
5.89362085e-01 9.71536875e-01 -3.21634829e-01 8.22524488e-01
3.42061043e-01 1.13371706e+00 -4.33156282e-01 1.24082184e+00
2.16927931e-01 6.15788937e-01 -5.60677461e-02 5.91244400e-01
1.17518632e-02 -6.81411147e-01 4.11028564e-01 7.17782974e-01
5.52239597e-01 2.36823261e-01 4.21863228e-01 7.73858726e-01
3.87200147e-01 -2.82198424e-03 -7.80480504e-01 2.57567674e-01
5.98936856e-01 8.90556395e-01 5.26576117e-02 -1.63119808e-01
-5.68711460e-01 3.87771368e-01 -1.34547919e-01 5.92652321e-01
-8.57837021e-01 -1.93978205e-01 6.78658128e-01 4.00468260e-01
1.96639746e-01 -7.38112926e-01 -2.25356668e-01 -1.14378440e+00
4.36081946e-01 -4.70854193e-01 2.93333292e-01 -7.05893099e-01
-1.36436343e+00 1.61039338e-01 1.72350332e-01 -1.82846212e+00
-4.14417200e-02 1.10219754e-01 -5.21116555e-01 9.81199801e-01
-1.60460925e+00 -1.21011007e+00 -4.53105390e-01 1.19361699e+00
3.37130308e-01 -2.79823005e-01 3.64107013e-01 8.36555898e-01
-9.34457242e-01 2.12719408e-03 5.50758660e-01 1.61642894e-01
2.05374941e-01 -2.98622102e-01 2.72026688e-01 1.00593519e+00
-3.78215820e-01 6.51101410e-01 4.85757947e-01 -9.71003354e-01
-1.63707507e+00 -1.28789985e+00 1.30685043e+00 -1.86962143e-01
5.10133684e-01 -9.13324505e-02 -1.01758909e+00 5.92021644e-01
-4.66516405e-01 5.92935905e-02 6.77026570e-01 1.17868006e-01
-1.59884587e-01 -5.70003688e-01 -1.01852763e+00 3.22125405e-01
1.05358922e+00 -5.23603201e-01 -4.42457557e-01 1.57493025e-01
6.92751348e-01 3.53996783e-01 -6.51514292e-01 4.09205645e-01
4.24394161e-01 -7.21841574e-01 8.18196177e-01 -6.59264803e-01
-2.32758597e-02 -7.88142800e-01 -4.46143359e-01 -8.25092912e-01
-6.54756665e-01 -3.22496831e-01 -6.84123933e-02 1.41277552e+00
1.66949570e-01 -4.95500624e-01 7.61517227e-01 8.90774190e-01
-1.44399554e-02 -3.50678340e-02 -1.29197526e+00 -8.37086082e-01
-2.96352714e-01 -7.56108403e-01 1.11632001e+00 9.00819123e-01
-2.43096292e-01 2.68570274e-01 -1.10743225e+00 2.74253100e-01
8.02453220e-01 1.90917626e-01 1.05782557e+00 -1.51272786e+00
3.75449657e-01 8.06407332e-02 -3.00585508e-01 -1.09491026e+00
1.18773349e-01 -6.29596829e-01 -2.58388847e-01 -1.53334320e+00
2.62395024e-01 -7.41542757e-01 -2.33695164e-01 3.59729826e-01
-1.23031614e-02 -3.08234990e-01 -1.89354986e-01 8.09085846e-01
-5.78395307e-01 1.07002854e+00 1.21225297e+00 -3.16931546e-01
-2.59033740e-01 3.82866770e-01 -5.78846395e-01 1.25162631e-01
6.72842681e-01 -6.13121867e-01 -5.36845267e-01 -6.20375991e-01
6.03234768e-02 5.54955244e-01 4.16740835e-01 -9.56808925e-01
4.85883981e-01 -7.90709615e-01 1.26878664e-01 -1.18838751e+00
3.43866229e-01 -1.39001155e+00 5.70986032e-01 2.81279981e-01
3.56892087e-02 2.79013157e-01 -8.52070600e-02 9.10608768e-01
-2.95382619e-01 3.33313763e-01 -6.62735105e-02 1.60119817e-01
-7.99543560e-01 7.34045029e-01 -5.97868741e-01 -1.24758393e-01
9.36966181e-01 -3.40651453e-01 -2.18752980e-01 -3.36171687e-01
-7.44302213e-01 5.81024945e-01 7.19598979e-02 5.97337902e-01
9.67601895e-01 -1.92969525e+00 -1.02571845e+00 5.35517097e-01
2.35413104e-01 -2.72681057e-01 9.09265578e-01 1.12123513e+00
5.28665865e-03 6.18246257e-01 -1.65173247e-01 -7.21888125e-01
-1.03428137e+00 8.34866464e-01 -2.03448132e-01 9.81770009e-02
-6.04623258e-01 -2.62042165e-01 -2.60169744e-01 -3.69340628e-01
-8.62492025e-02 -8.17496628e-02 -2.50495583e-01 3.10672168e-02
6.91518843e-01 1.11161768e+00 -5.01788072e-02 -1.25220263e+00
-2.69964129e-01 5.77915549e-01 3.31638783e-01 -6.98846504e-02
1.36895382e+00 -8.36580694e-01 -1.62215590e-01 4.91223097e-01
1.22478461e+00 -1.01828665e-01 -1.30700684e+00 -6.13637984e-01
5.34962490e-02 -9.89112675e-01 -3.93835828e-02 -1.78961232e-01
-1.17167687e+00 1.02496588e+00 4.64609444e-01 6.28707260e-02
8.76403570e-01 -5.91687143e-01 1.04324543e+00 2.03164771e-01
5.02646029e-01 -9.80285585e-01 -3.48166376e-01 4.38132674e-01
6.25649095e-01 -1.16469657e+00 4.63486016e-02 -5.47275007e-01
-6.87828541e-01 8.22479248e-01 2.90203035e-01 8.75941738e-02
8.73196781e-01 -1.77052960e-01 -3.18053186e-01 -2.74525732e-02
-7.81619787e-01 -6.90511763e-01 1.31109253e-01 5.75397074e-01
-2.45890722e-01 2.31441513e-01 -2.73700118e-01 4.63098258e-01
6.33375049e-02 2.85741538e-01 3.72543454e-01 9.41607654e-01
-6.95865214e-01 -1.20359719e+00 -4.93744373e-01 3.43988746e-01
1.61672756e-01 3.54253769e-01 2.22130209e-01 5.82462549e-01
2.85457790e-01 1.52163422e+00 -1.05321087e-01 -6.50145948e-01
6.01817191e-01 -8.19030404e-02 -3.20154727e-01 -1.07570268e-01
4.42299694e-01 -2.83682533e-02 -1.63071722e-01 -4.68555033e-01
-5.03776610e-01 -7.72763968e-01 -1.13460159e+00 -9.68005776e-01
-2.37424776e-01 4.58641469e-01 4.97556120e-01 1.02077222e+00
6.06842816e-01 3.09594691e-01 1.16830170e+00 -2.90678352e-01
-2.85471618e-01 -7.23198235e-01 -8.39322627e-01 6.50531411e-01
5.08437514e-01 -9.01845813e-01 -2.48947337e-01 -1.13027304e-01] | [6.55159854888916, 2.0862841606140137] |
7b356c16-c684-419c-9bba-b67fd24e213c | attentive-memory-networks-efficient-machine | 1712.07229 | null | http://arxiv.org/abs/1712.07229v1 | http://arxiv.org/pdf/1712.07229v1.pdf | Attentive Memory Networks: Efficient Machine Reading for Conversational Search | Recent advances in conversational systems have changed the search paradigm.
Traditionally, a user poses a query to a search engine that returns an answer
based on its index, possibly leveraging external knowledge bases and
conditioning the response on earlier interactions in the search session. In a
natural conversation, there is an additional source of information to take into
account: utterances produced earlier in a conversation can also be referred to
and a conversational IR system has to keep track of information conveyed by the
user during the conversation, even if it is implicit.
We argue that the process of building a representation of the conversation
can be framed as a machine reading task, where an automated system is presented
with a number of statements about which it should answer questions. The
questions should be answered solely by referring to the statements provided,
without consulting external knowledge. The time is right for the information
retrieval community to embrace this task, both as a stand-alone task and
integrated in a broader conversational search setting.
In this paper, we focus on machine reading as a stand-alone task and present
the Attentive Memory Network (AMN), an end-to-end trainable machine reading
algorithm. Its key contribution is in efficiency, achieved by having an
hierarchical input encoder, iterating over the input only once. Speed is an
important requirement in the setting of conversational search, as gaps between
conversational turns have a detrimental effect on naturalness. On 20 datasets
commonly used for evaluating machine reading algorithms we show that the AMN
achieves performance comparable to the state-of-the-art models, while using
considerably fewer computations. | ['Maarten de Rijke', 'Tom Kenter'] | 2017-12-19 | null | null | null | null | ['conversational-search'] | ['natural-language-processing'] | [ 6.87916756e-01 6.82487130e-01 -1.33751750e-01 -4.88411993e-01
-9.37212586e-01 -8.55190575e-01 1.00787044e+00 3.35337162e-01
-5.84667563e-01 6.09429598e-01 5.22969365e-01 -6.77736521e-01
-1.81035623e-01 -8.66824269e-01 -4.83558178e-01 -2.86121517e-01
2.20523119e-01 1.13097703e+00 2.11945325e-01 -6.15077615e-01
2.24497586e-01 6.22307137e-02 -1.37347698e+00 4.44582075e-01
4.75233942e-01 8.32397461e-01 3.25560093e-01 1.00519001e+00
-3.43360603e-01 1.16252494e+00 -5.06050944e-01 -5.71059585e-01
-1.69101894e-01 -7.02080369e-01 -1.95001602e+00 -4.26575057e-02
-1.34826396e-02 -2.92954177e-01 -4.78704758e-02 6.64088249e-01
2.77455300e-01 4.69904602e-01 4.74516392e-01 -8.39165032e-01
-3.80917013e-01 7.30458856e-01 1.62316158e-01 1.96638301e-01
8.51031005e-01 -6.73796842e-03 1.46962476e+00 -6.30395055e-01
5.83562493e-01 1.32345009e+00 1.08497620e-01 7.10708439e-01
-1.25288332e+00 -1.07481323e-01 3.03594291e-01 1.72257096e-01
-7.28395343e-01 -5.01544595e-01 5.53422809e-01 -3.52649182e-01
1.19042647e+00 6.95494652e-01 3.13234746e-01 9.26769435e-01
-1.54981658e-01 7.61898100e-01 7.54392922e-01 -7.90818870e-01
2.52532452e-01 4.61119354e-01 5.87065101e-01 4.69802201e-01
-5.47282934e-01 -7.89512545e-02 -5.94848037e-01 -3.07659805e-01
2.70492226e-01 -1.88928127e-01 -4.84655052e-01 -1.21060595e-01
-8.51655304e-01 1.07086527e+00 4.79115874e-01 5.33978581e-01
-5.03094316e-01 -2.24285051e-01 2.53130347e-01 7.94907629e-01
4.49684530e-01 6.86420619e-01 -4.80288088e-01 -4.40422773e-01
-4.91101742e-01 2.43830249e-01 1.48947930e+00 5.89460731e-01
6.91285610e-01 -9.86840069e-01 -1.92700669e-01 9.19897854e-01
9.09233093e-02 2.70482242e-01 4.96070296e-01 -9.14224982e-01
4.14364576e-01 6.34390235e-01 2.48655081e-01 -9.28831756e-01
-2.30897710e-01 -2.15826228e-01 -4.72299039e-01 -2.91171432e-01
3.99674714e-01 -1.56297132e-01 -4.66870368e-01 2.03395271e+00
3.24702829e-01 -2.81373262e-01 3.63839567e-01 7.64990926e-01
7.19015896e-01 7.69230902e-01 -6.34500161e-02 -4.84962761e-01
1.39856207e+00 -1.01943803e+00 -5.16992092e-01 -4.34621245e-01
6.99489415e-01 -8.26809764e-01 9.56879258e-01 2.67132938e-01
-1.27936482e+00 -2.99560368e-01 -5.97622931e-01 -3.83494049e-01
-3.98506880e-01 -4.56928074e-01 3.12478006e-01 1.06766060e-01
-1.25732732e+00 3.58933061e-01 -4.17908281e-01 -6.20160758e-01
-3.22443664e-01 3.52683008e-01 -1.26455024e-01 5.28567433e-02
-1.47222793e+00 1.18938029e+00 1.41409948e-01 2.40152955e-01
-5.06674349e-01 -1.43382624e-01 -6.36052012e-01 3.47998828e-01
6.45286858e-01 -7.40002573e-01 2.10611606e+00 -1.25662935e+00
-1.71356833e+00 1.05905497e+00 -6.34638131e-01 -5.46018183e-01
4.83981222e-01 -2.36968398e-01 -1.42912641e-01 1.74079016e-01
4.52785604e-02 5.24673760e-01 4.53921884e-01 -1.06486773e+00
-5.89655638e-01 -3.35141569e-01 8.52212250e-01 4.80260670e-01
5.24970703e-02 1.81077078e-01 -5.27302265e-01 1.03175901e-01
-7.08331168e-02 -1.06866074e+00 8.76087695e-02 -4.38773811e-01
-2.73165286e-01 -7.69811273e-01 6.14252567e-01 -6.01551056e-01
1.29670262e+00 -1.70841670e+00 4.36924458e-01 2.02201009e-01
1.87964663e-01 2.88768411e-01 -1.30636707e-01 9.21065032e-01
5.70511073e-03 6.40237406e-02 -4.72392738e-02 -2.91413248e-01
1.34163156e-01 9.43259746e-02 -6.52109325e-01 -1.51601732e-01
8.84975772e-03 9.34200168e-01 -1.00088668e+00 -3.26776326e-01
-3.25653069e-02 2.08473757e-01 -4.60414559e-01 6.26224160e-01
-6.23098016e-01 2.74433076e-01 -5.58498979e-01 -1.26796097e-01
-2.31359396e-02 -6.74757719e-01 1.70910627e-01 2.82550216e-01
6.44815415e-02 9.21811104e-01 -7.99338639e-01 1.43388391e+00
-9.01523411e-01 6.66535258e-01 3.07060659e-01 -9.68859315e-01
5.77349007e-01 6.10210299e-01 -3.97679359e-02 -8.02315712e-01
1.32361472e-01 3.33778863e-03 -7.33738393e-02 -5.29050529e-01
3.83300960e-01 -2.20275596e-01 -2.62091421e-02 1.15129471e+00
-9.07921642e-02 -2.77825929e-02 8.33971873e-02 5.13713896e-01
1.15615427e+00 -4.34587002e-01 1.83977813e-01 -8.21056217e-03
8.16743851e-01 4.81382124e-02 -1.08162940e-01 1.05654597e+00
2.20484927e-01 1.19443916e-01 5.23246586e-01 -3.54711771e-01
-5.95030785e-01 -6.43218696e-01 7.69410282e-02 1.57183337e+00
2.11371303e-01 -3.47787350e-01 -7.94619799e-01 -6.18961930e-01
-4.22331810e-01 8.24755788e-01 -6.40561104e-01 -1.56954959e-01
-6.35251343e-01 -1.54814154e-01 2.07483768e-01 1.76109031e-01
4.56952661e-01 -1.42885947e+00 -7.94112265e-01 3.72201920e-01
-6.64610445e-01 -9.22954679e-01 -4.39723432e-01 2.96543300e-01
-5.18051207e-01 -1.02086473e+00 -4.38399404e-01 -8.80131364e-01
3.51936787e-01 2.25048214e-01 1.54102921e+00 4.82173920e-01
5.75280190e-02 7.81972408e-01 -3.30513746e-01 -3.63490164e-01
-7.52104998e-01 3.26642424e-01 -5.29158652e-01 8.21716040e-02
4.69166934e-01 -4.04965103e-01 -5.26422203e-01 3.31601322e-01
-9.06924605e-01 3.85484308e-01 4.60232019e-01 9.42246616e-01
-1.38714150e-01 -2.91052908e-01 5.85379779e-01 -1.12635589e+00
1.14878011e+00 -4.96144295e-01 -3.82641673e-01 4.72647429e-01
-4.19320673e-01 3.78877342e-01 3.11893284e-01 -2.42537171e-01
-1.32085967e+00 -2.24330112e-01 -1.63319066e-01 3.27753961e-01
-1.13757893e-01 7.88620293e-01 1.27954334e-01 3.09653938e-01
6.95002437e-01 3.83775473e-01 2.23437160e-01 -4.05481517e-01
4.31171566e-01 9.48356450e-01 4.02943313e-01 -6.57169878e-01
4.36132520e-01 1.84515771e-02 -4.57316816e-01 -9.40273762e-01
-1.13555467e+00 -9.10676956e-01 -4.28445756e-01 -2.26184562e-01
7.50182867e-01 -4.63848025e-01 -1.08895588e+00 9.18207318e-02
-1.48596549e+00 -4.81914520e-01 4.89805527e-02 5.94955608e-02
-5.85278630e-01 8.57545957e-02 -5.61629891e-01 -1.01712346e+00
-4.32367265e-01 -1.02186275e+00 9.97973800e-01 6.92554563e-02
-7.55328774e-01 -1.14777017e+00 2.53194958e-01 7.28483558e-01
6.38146460e-01 -3.94468307e-01 1.18518615e+00 -1.21007860e+00
-5.04775882e-01 -1.93216816e-01 -1.19200185e-01 1.70876428e-01
1.06614269e-01 -5.85967541e-01 -1.26526701e+00 -1.34163827e-01
1.92526743e-01 -5.52327335e-01 5.65444350e-01 -1.85646713e-01
7.56538689e-01 -7.00646281e-01 -2.28860423e-01 -3.22481573e-01
9.91496921e-01 2.61194885e-01 3.66327107e-01 1.79430753e-01
-6.33013397e-02 1.06137300e+00 1.42187357e-01 -8.31740499e-02
5.01213372e-01 7.82544076e-01 1.46832556e-01 2.01530941e-02
1.90529779e-01 -1.80703536e-01 9.90383700e-02 6.13224387e-01
1.85124934e-01 -5.41797876e-01 -9.28052902e-01 5.28517902e-01
-2.02984691e+00 -1.17544484e+00 2.80573756e-01 2.30811238e+00
1.28813195e+00 1.82527512e-01 5.74251935e-02 -7.20558837e-02
5.31040251e-01 8.76374096e-02 -5.41195035e-01 -6.64970577e-01
3.96139950e-01 2.99540192e-01 -3.24271739e-01 1.29259932e+00
-8.07616115e-01 7.78140306e-01 5.88657093e+00 1.83676332e-01
-1.18786144e+00 -1.02893457e-01 6.73860729e-01 9.65184793e-02
-2.94095457e-01 1.77520722e-01 -5.88394225e-01 2.22878411e-01
1.20051098e+00 -3.78237426e-01 6.50834441e-01 6.27740741e-01
1.28652498e-01 -3.51923168e-01 -1.70326805e+00 6.79283142e-01
1.22525789e-01 -1.21814466e+00 3.48447785e-02 -1.19300105e-01
1.43923849e-01 1.48514728e-03 -2.46576831e-01 5.76816022e-01
3.85006160e-01 -1.12037206e+00 1.64293095e-01 5.46773732e-01
9.19631273e-02 -4.47606266e-01 8.33178699e-01 8.47692490e-01
-7.33147502e-01 -6.59128372e-03 1.10426925e-01 -3.50178391e-01
2.45496467e-01 4.64020818e-02 -1.27932477e+00 2.31407806e-01
2.78160810e-01 -2.04817578e-03 -2.93670028e-01 5.50408185e-01
-1.08929969e-01 5.86980999e-01 -3.27534616e-01 -4.42250162e-01
4.59258169e-01 -6.57864809e-02 4.06785578e-01 1.25024152e+00
-2.21531585e-01 4.79284674e-01 2.29171589e-01 6.87533855e-01
-2.47437954e-01 1.86036676e-01 -5.66430449e-01 -4.39818539e-02
3.12148631e-01 1.01150346e+00 -2.83761054e-01 -5.33085227e-01
-3.67314845e-01 9.79792893e-01 5.05514264e-01 4.16120708e-01
-2.44049594e-01 -3.01260173e-01 3.49615455e-01 2.79101189e-02
9.43590105e-02 1.57931820e-01 2.04914421e-01 -9.53198731e-01
2.19319433e-01 -1.27048230e+00 5.01570880e-01 -8.62522900e-01
-1.04174876e+00 8.08232427e-01 -7.12499395e-02 -5.94540119e-01
-1.01407647e+00 -2.88175017e-01 -6.38415158e-01 1.07656038e+00
-1.40957808e+00 -7.48328805e-01 -2.12714911e-01 4.34443086e-01
8.55251908e-01 3.24988663e-01 1.16519165e+00 -1.80850513e-02
-1.29344627e-01 3.04991305e-01 -3.59951973e-01 2.74039805e-01
6.21593952e-01 -1.11782861e+00 1.19475592e-02 4.58356321e-01
4.04062688e-01 1.04015529e+00 8.16503704e-01 -1.97950438e-01
-1.38815773e+00 -5.41719317e-01 1.71948624e+00 -7.41630971e-01
7.68181205e-01 -3.05499077e-01 -1.17526376e+00 8.49404216e-01
6.28539920e-01 -6.77561462e-01 6.66281164e-01 5.90842903e-01
-1.73810720e-01 1.00684240e-01 -7.19685674e-01 5.13684392e-01
6.80833161e-01 -1.08299518e+00 -1.20914626e+00 5.18223882e-01
9.47390914e-01 -3.32374454e-01 -4.07651603e-01 2.62452252e-02
3.83128494e-01 -8.12913895e-01 7.62461960e-01 -8.75084281e-01
3.58077198e-01 1.40626714e-01 9.65191573e-02 -1.19275880e+00
8.47520977e-02 -9.55959022e-01 2.02468093e-02 1.06213319e+00
8.46669495e-01 -7.27350652e-01 4.92079884e-01 1.30906260e+00
2.03604534e-01 -6.38658285e-01 -8.33892703e-01 -2.42522672e-01
-3.72080645e-03 -3.35087121e-01 3.82031351e-01 6.09499335e-01
6.63781822e-01 1.30328929e+00 -1.72673538e-01 -1.28809293e-03
3.65807414e-02 4.16503251e-01 8.01258385e-01 -1.41503859e+00
-5.81140697e-01 -4.86836344e-01 2.50331819e-01 -1.65968740e+00
2.18403265e-01 -7.62523293e-01 3.60770285e-01 -1.38006413e+00
2.86432117e-01 -1.52011186e-01 -7.01611042e-02 3.83804888e-01
-1.38721168e-01 -3.27773064e-01 1.40780255e-01 2.75190443e-01
-7.39874244e-01 2.91833490e-01 1.06826019e+00 -2.31296375e-01
-2.91946232e-01 4.18883324e-01 -7.24133611e-01 7.03550100e-01
5.62199533e-01 -1.63511187e-01 -7.38478541e-01 -4.90389019e-01
5.12864769e-01 6.34104848e-01 3.26096237e-01 -4.97073174e-01
8.92955780e-01 -5.09155635e-03 -3.08396399e-01 -3.82238716e-01
5.78197241e-01 -7.33170748e-01 -7.50568956e-02 1.91606432e-01
-1.21225739e+00 1.26730070e-01 -6.38997778e-02 5.19002616e-01
-4.82072204e-01 -4.14444774e-01 4.26767528e-01 -2.83065259e-01
-3.52620125e-01 -7.84449279e-02 -5.32952666e-01 1.80762023e-01
5.33249259e-01 9.59338620e-02 -2.02846572e-01 -1.04126596e+00
-9.52555060e-01 4.49073941e-01 8.16563517e-02 4.42005873e-01
2.72519231e-01 -7.17704296e-01 -5.39863467e-01 2.05549803e-02
1.45146877e-01 -3.89691209e-03 -9.92601439e-02 5.40317237e-01
-4.42238152e-02 1.03051460e+00 4.88073528e-01 -4.92582887e-01
-1.47756028e+00 3.50442946e-01 4.15098995e-01 -5.90840697e-01
-3.30340445e-01 9.24767137e-01 3.37166876e-01 -5.61796010e-01
6.02320015e-01 -2.48430297e-01 -3.76471460e-01 2.64300644e-01
7.67503023e-01 -1.13842808e-01 2.82420963e-01 -3.69157046e-01
-1.22628592e-01 3.17544639e-01 -2.90229321e-01 -5.06970525e-01
1.19096434e+00 -3.31005514e-01 -2.69155413e-01 5.86946070e-01
1.32102513e+00 -2.04799265e-01 -4.89866346e-01 -8.48789811e-01
1.84480712e-01 -1.20629393e-01 2.81570922e-03 -1.24884295e+00
-3.49320799e-01 7.63367891e-01 7.54064992e-02 8.66129220e-01
8.50184083e-01 4.55889046e-01 8.27020943e-01 1.12273943e+00
3.17265332e-01 -1.01974940e+00 1.99193388e-01 8.48297477e-01
1.18985534e+00 -1.40698981e+00 -4.05215651e-01 -1.89403862e-01
-5.24278343e-01 1.14855468e+00 3.13305050e-01 3.57717037e-01
4.29189295e-01 -1.99999049e-01 2.80802906e-01 -4.97873485e-01
-1.32365060e+00 -1.50395945e-01 3.60330939e-01 1.15214303e-01
6.16114259e-01 -1.96165651e-01 -1.72641963e-01 2.36936495e-01
-3.74715388e-01 -8.09014067e-02 2.06852227e-01 9.38834369e-01
-5.70667863e-01 -1.29143262e+00 1.46783320e-02 2.02186346e-01
-4.24897105e-01 -3.10360491e-01 -9.27774131e-01 5.29838979e-01
-5.74957788e-01 1.43246794e+00 8.56095999e-02 9.87183489e-03
2.46761799e-01 5.41850746e-01 8.03444535e-02 -8.22297871e-01
-8.39428902e-01 -3.01151574e-01 6.13072574e-01 -5.29721737e-01
-4.42010492e-01 -3.62752229e-01 -1.03805637e+00 -1.35593325e-01
-4.66811717e-01 8.65700722e-01 5.41779220e-01 1.33996797e+00
4.22254950e-01 1.66162252e-01 7.01938629e-01 -3.78758818e-01
-7.46902347e-01 -9.42640662e-01 2.70298541e-01 4.78587061e-01
6.80456161e-01 -2.13799670e-01 -5.34917772e-01 7.90709481e-02] | [12.174091339111328, 7.840701580047607] |
f6f13b06-8753-4522-8707-b36ec5f9fbb7 | protecting-the-intellectual-properties-of | 2104.09203 | null | https://arxiv.org/abs/2104.09203v1 | https://arxiv.org/pdf/2104.09203v1.pdf | Protecting the Intellectual Properties of Deep Neural Networks with an Additional Class and Steganographic Images | Recently, the research on protecting the intellectual properties (IP) of deep neural networks (DNN) has attracted serious concerns. A number of DNN copyright protection methods have been proposed. However, most of the existing watermarking methods focus on verifying the copyright of the model, which do not support the authentication and management of users' fingerprints, thus can not satisfy the requirements of commercial copyright protection. In addition, the query modification attack which was proposed recently can invalidate most of the existing backdoor-based watermarking methods. To address these challenges, in this paper, we propose a method to protect the intellectual properties of DNN models by using an additional class and steganographic images. Specifically, we use a set of watermark key samples to embed an additional class into the DNN, so that the watermarked DNN will classify the watermark key sample as the predefined additional class in the copyright verification stage. We adopt the least significant bit (LSB) image steganography to embed users' fingerprints into watermark key images. Each user will be assigned with a unique fingerprint image so that the user's identity can be authenticated later. Experimental results demonstrate that, the proposed method can protect the copyright of DNN models effectively. On Fashion-MNIST and CIFAR-10 datasets, the proposed method can obtain 100% watermark accuracy and 100% fingerprint authentication success rate. In addition, the proposed method is demonstrated to be robust to the model fine-tuning attack, model pruning attack, and the query modification attack. Compared with three existing watermarking methods (the logo-based, noise-based, and adversarial frontier stitching watermarking methods), the proposed method has better performance on watermark accuracy and robustness against the query modification attack. | ['Weiqiang Liu', 'Jian Wang', 'Mingfu Xue', 'Shichang Sun'] | 2021-04-19 | null | null | null | null | ['image-steganography'] | ['computer-vision'] | [ 6.51650190e-01 -3.26225579e-01 -5.12374461e-01 1.44843921e-01
8.09487998e-02 -5.99984109e-01 2.91213304e-01 -3.00012112e-01
-6.65303290e-01 6.51073635e-01 -3.22204411e-01 -5.02523422e-01
1.18316654e-02 -8.62082243e-01 -6.17883980e-01 -6.98555410e-01
1.37620538e-01 -3.96836251e-01 6.82957351e-01 -1.90557949e-02
6.19508922e-01 5.51697493e-01 -1.25162697e+00 -2.40025539e-02
4.93152678e-01 1.17047107e+00 1.52524188e-01 2.71687448e-01
-1.91814810e-01 4.22412574e-01 -9.86629367e-01 -3.90822500e-01
6.65652931e-01 -2.99739063e-01 -3.43743414e-01 -2.50412613e-01
3.28798741e-01 -8.32735240e-01 -8.79080117e-01 1.66825461e+00
5.62434316e-01 -3.49428147e-01 1.13770641e-01 -1.70962763e+00
-7.75236309e-01 5.94487071e-01 -7.46106148e-01 2.37108335e-01
-2.33315825e-01 -1.36919037e-01 5.53934395e-01 -3.50158781e-01
7.17721701e-01 1.16942370e+00 6.74377322e-01 7.93113649e-01
-9.00649130e-01 -1.69570327e+00 -2.02807337e-02 3.90838265e-01
-1.48397195e+00 -4.50628102e-01 9.55190599e-01 -5.35413213e-02
2.48159990e-01 2.21306190e-01 5.51539421e-01 8.46301615e-01
2.42162302e-01 4.77011949e-01 9.20530200e-01 -4.24083561e-01
2.27022246e-02 2.00227574e-01 -2.43180897e-02 6.26775444e-01
9.89952385e-01 4.47029203e-01 -2.87701666e-01 -3.07973832e-01
1.14620912e+00 2.31761038e-01 -7.37329423e-01 -2.44041175e-01
-1.16753125e+00 7.15278387e-01 3.00254434e-01 3.28053623e-01
1.10979497e-01 5.06513119e-01 4.26540613e-01 5.14839768e-01
-2.46364683e-01 -1.91374093e-01 -4.49909508e-01 3.74571145e-01
-8.76581490e-01 9.61194485e-02 6.51026547e-01 1.05458319e+00
5.06894648e-01 2.22398296e-01 3.73446643e-01 3.18778545e-01
9.97435331e-01 6.05077088e-01 8.69164407e-01 -6.96500361e-01
4.74317849e-01 2.61382192e-01 -2.35297114e-01 -1.38811243e+00
-1.37220994e-02 -3.91807377e-01 -8.13978255e-01 3.20367575e-01
2.10381970e-01 -2.95622528e-01 -9.73127723e-01 1.71487474e+00
1.87386438e-01 5.67418754e-01 3.84342611e-01 4.47194487e-01
8.42025340e-01 7.27360785e-01 -9.89654213e-02 -6.98136836e-02
1.51176310e+00 -7.24573672e-01 -1.02470517e+00 -1.46750897e-01
2.66553730e-01 -1.02730191e+00 1.88795194e-01 1.98680326e-01
-6.00922227e-01 -6.80689096e-01 -1.70721161e+00 3.01739007e-01
-4.08277065e-01 -6.05600514e-02 3.33194017e-01 1.55437207e+00
-7.27775335e-01 3.38421702e-01 -5.38286805e-01 -9.88517404e-02
6.69785261e-01 7.61282980e-01 -4.47658956e-01 -7.32139573e-02
-1.68580317e+00 4.38990057e-01 8.47660959e-01 2.76749671e-01
-7.30215549e-01 -5.24300635e-01 -7.13294566e-01 -5.57402298e-02
-1.54787481e-01 -5.25345020e-02 8.01988900e-01 -1.00603950e+00
-1.16326380e+00 4.38894749e-01 4.34878618e-01 -5.95770419e-01
4.89460975e-01 5.82279325e-01 -1.04164219e+00 4.22372341e-01
-3.34443212e-01 7.90377915e-01 9.54755843e-01 -1.16704071e+00
-6.74104989e-01 -1.93631098e-01 -8.28887001e-02 -4.74811047e-01
-7.36314714e-01 5.99598736e-02 -2.26603791e-01 -1.07726026e+00
4.07102525e-01 -8.09884727e-01 6.80788830e-02 6.03629410e-01
-2.37241104e-01 6.25686169e-01 1.59108996e+00 -6.87255859e-01
1.30824292e+00 -2.46437120e+00 -6.17460251e-01 7.95151353e-01
2.41509844e-02 8.09011221e-01 -2.07730860e-01 2.42505729e-01
5.54048270e-02 4.77878243e-01 -1.85421005e-01 2.93282419e-01
3.46294767e-03 2.67453432e-01 -4.32016850e-01 6.46553099e-01
-1.96528673e-01 6.92771852e-01 -5.40496409e-01 -5.89759231e-01
-1.59040943e-01 7.37348914e-01 -3.74106258e-01 -5.00184357e-01
1.14485078e-01 -1.40867615e-02 -5.91222882e-01 6.13476098e-01
1.34740162e+00 2.04297140e-01 3.42005253e-01 -2.87098199e-01
1.91847146e-01 -3.52880687e-01 -1.62526286e+00 1.08595335e+00
2.47222811e-01 7.46844649e-01 -3.11235040e-02 -6.98957086e-01
1.15843713e+00 6.32072628e-01 2.64598399e-01 -5.12208223e-01
2.92678654e-01 5.38593471e-01 1.63442999e-01 -5.03886878e-01
2.62617230e-01 -1.35918379e-01 3.27333510e-01 4.58411962e-01
-1.46633536e-01 5.97953379e-01 -2.09368244e-01 -2.87437826e-01
8.22553456e-01 -1.35159537e-01 -1.97969645e-01 -1.64854392e-01
9.76544380e-01 -4.77664888e-01 8.95945191e-01 4.59691733e-01
-4.93962824e-01 1.07071489e-01 4.19941097e-01 -1.63104028e-01
-8.44986856e-01 -7.22013891e-01 -3.09523761e-01 2.77492225e-01
4.16498333e-01 1.12782367e-01 -9.05807316e-01 -5.98748446e-01
1.89227015e-01 1.19656876e-01 -2.57855177e-01 -5.04554629e-01
-5.31746089e-01 -4.04067457e-01 1.50990117e+00 2.57173926e-01
1.38896644e+00 -9.69097197e-01 -4.74599957e-01 3.10561866e-01
4.22219634e-02 -1.15940225e+00 -7.22954690e-01 -3.91776919e-01
-1.13753211e+00 -1.09139895e+00 -9.59460795e-01 -1.55505323e+00
9.36174989e-01 3.12114924e-01 -1.95070043e-01 5.13455629e-01
3.11675202e-02 2.43231878e-02 -1.91931263e-01 -3.61530513e-01
-5.61462939e-01 1.09880362e-02 5.19851670e-02 2.27992356e-01
2.20440626e-01 -4.57844138e-01 -5.38768053e-01 6.04638994e-01
-1.47526538e+00 -4.13623273e-01 6.62554860e-01 6.40998423e-01
3.64890784e-01 7.52259493e-01 7.31688321e-01 -7.03505218e-01
5.05221009e-01 -3.40750515e-02 -8.72865677e-01 3.66030008e-01
-1.00696719e+00 2.86610611e-02 4.50594932e-01 -9.07613337e-01
-6.08790696e-01 -1.50931194e-01 -5.20578548e-02 -4.46501851e-01
3.16784412e-01 4.73168164e-01 -6.78271115e-01 -1.04093838e+00
1.96182624e-01 4.31229651e-01 2.97818154e-01 -5.85052133e-01
-1.03399962e-01 9.16647673e-01 5.35215735e-01 -2.92683035e-01
1.35568297e+00 3.96499187e-01 1.72084987e-01 -7.38734484e-01
2.86682248e-01 1.18991807e-01 -1.33212611e-01 -2.24839915e-02
5.43894410e-01 -7.18905628e-01 -7.64701784e-01 1.18048072e+00
-1.30656874e+00 3.26869369e-01 3.01915169e-01 6.67568505e-01
3.80078293e-02 9.12563026e-01 -5.71451724e-01 -6.23448133e-01
-4.28247720e-01 -1.35037982e+00 1.68015540e-01 5.28620481e-01
4.68221515e-01 -8.50763798e-01 -4.20262814e-01 1.55828819e-01
4.75399137e-01 4.74511981e-01 1.06247687e+00 -7.33776867e-01
-8.23664010e-01 -5.68033516e-01 -3.80284607e-01 5.21870375e-01
2.11659372e-01 4.45453562e-02 -8.43741894e-01 -5.81849515e-01
1.00376219e-01 2.47294769e-01 7.11064517e-01 8.11248347e-02
8.62161696e-01 -5.01739860e-01 -3.69830668e-01 6.61917508e-01
1.51971436e+00 7.88751125e-01 1.04818964e+00 7.44453132e-01
5.52348435e-01 2.76886165e-01 2.45718211e-01 2.87525505e-01
4.32097614e-02 2.21423477e-01 5.12368560e-01 9.59124416e-02
2.11155117e-01 -3.53287607e-01 4.39329654e-01 6.81473374e-01
2.17290759e-01 -1.82959199e-01 -4.16231394e-01 1.49390653e-01
-1.46998847e+00 -1.05878401e+00 -9.83485505e-02 2.10133743e+00
8.16034794e-01 5.85978866e-01 -4.20100719e-01 7.08261728e-01
1.19914448e+00 3.93965811e-01 -5.01235723e-01 -1.17282562e-01
-1.36433482e-01 2.19655067e-01 1.17815578e+00 2.06274763e-01
-9.58018601e-01 6.30766928e-01 5.07638121e+00 8.83883953e-01
-1.19761920e+00 9.43806916e-02 9.79146436e-02 4.94819939e-01
-4.10416424e-01 2.01910749e-01 -9.91334915e-01 7.08782852e-01
6.23214483e-01 -1.38836175e-01 3.99650216e-01 3.42798322e-01
-3.71895619e-02 3.81615251e-01 -5.76901436e-01 8.36855114e-01
-1.03657812e-01 -1.35513198e+00 2.93551147e-01 3.76816958e-01
5.72788179e-01 -4.57101971e-01 3.19482148e-01 4.64378856e-03
-5.16402841e-01 -5.65045536e-01 8.18131030e-01 4.48242158e-01
8.14831972e-01 -9.87591743e-01 8.48639965e-01 1.50380373e-01
-1.29911005e+00 -1.88921511e-01 -6.71085417e-01 3.67741734e-01
-1.53487489e-01 1.37634575e-01 -2.45164007e-01 5.44900060e-01
4.39747840e-01 3.96291852e-01 -3.35641146e-01 1.23071074e+00
-1.33791193e-01 4.11286980e-01 -2.51639009e-01 4.22768220e-02
2.28817314e-01 1.11340493e-01 3.42540890e-01 7.45132387e-01
5.07948458e-01 -5.25158308e-02 -1.72370940e-01 6.77313268e-01
-5.19402921e-01 7.57335573e-02 -3.76133949e-01 -3.92562419e-01
7.91077018e-01 6.71946824e-01 -7.55975366e-01 -1.32993668e-01
-3.54634821e-01 6.99172378e-01 -7.92741537e-01 4.09578592e-01
-9.13032234e-01 -1.20001495e+00 5.10369241e-01 -9.05072689e-02
7.45597780e-01 -2.92473614e-01 1.59157105e-02 -7.86826670e-01
-1.99922966e-03 -1.14741158e+00 1.47776887e-01 -4.59987521e-01
-7.63482392e-01 2.68925816e-01 -3.16638529e-01 -1.43205476e+00
5.78946233e-01 -5.81184804e-01 -4.64840084e-01 8.39212835e-01
-1.90705287e+00 -1.01418316e+00 2.08748318e-02 6.62774980e-01
-1.88958541e-01 -4.22803968e-01 7.00785637e-01 8.53869557e-01
-5.34120500e-01 1.06333220e+00 3.27243090e-01 7.07614303e-01
6.55095756e-01 -1.62831530e-01 5.21214724e-01 1.03796482e+00
-1.45427644e-01 9.48585987e-01 4.55504596e-01 -9.21510518e-01
-1.25546181e+00 -1.00485218e+00 8.55454624e-01 5.48186541e-01
4.69225734e-01 -4.32983898e-02 -8.65063012e-01 7.91955471e-01
-4.11410118e-03 2.03097075e-01 7.19703436e-01 -1.17315602e+00
-5.09108722e-01 -4.81303275e-01 -1.78170812e+00 4.50801700e-01
5.77130198e-01 -4.95989472e-01 -3.79944056e-01 -2.23091543e-01
8.38561952e-01 -3.68726730e-01 -8.05304289e-01 3.05299848e-01
1.06423807e+00 -3.99095029e-01 1.07256973e+00 -3.32053840e-01
-3.66932638e-02 -7.22030282e-01 -2.30669335e-01 -3.22648168e-01
9.62206051e-02 -6.81206822e-01 -6.34654909e-02 1.50187433e+00
1.95996135e-01 -1.20611823e+00 8.54462802e-01 4.24659461e-01
5.08829415e-01 -2.71718323e-01 -1.13967061e+00 -1.02079690e+00
-2.19529286e-01 -1.41092151e-01 1.23206747e+00 1.11387670e+00
-4.30976331e-01 -5.46611071e-01 -3.94356251e-01 5.59611976e-01
8.55293334e-01 -5.69580019e-01 5.03268361e-01 -1.39497435e+00
1.17565461e-01 -4.39989746e-01 -9.07054007e-01 -8.83901715e-01
4.97486070e-02 -8.51987243e-01 -5.46769738e-01 -1.14330935e+00
-3.71830702e-01 -4.77963388e-01 -8.98001909e-01 4.78588253e-01
3.90308321e-01 4.06973690e-01 2.89837807e-01 3.70808899e-01
2.48543695e-01 1.43266350e-01 1.35050881e+00 -4.43717778e-01
9.88939311e-03 9.46495160e-02 -5.57998478e-01 4.09492046e-01
8.46929252e-01 -7.99662054e-01 -6.28596485e-01 -3.59368920e-01
-4.37044837e-02 -1.60456479e-01 4.41470087e-01 -1.18261135e+00
5.06935000e-01 -9.40778106e-02 4.21346962e-01 -4.97940034e-01
-1.00902013e-01 -1.41503203e+00 5.02108574e-01 1.24722600e+00
-1.08826205e-01 1.60836391e-02 3.73873115e-01 6.80248082e-01
-5.54814488e-02 -7.69654036e-01 7.50440419e-01 1.32759035e-01
-8.35559547e-01 4.55285281e-01 -3.36531013e-01 -2.58858651e-01
1.00790632e+00 -7.06823230e-01 -6.20066285e-01 7.23164454e-02
-4.77356017e-02 1.76547199e-01 4.00420010e-01 3.43035102e-01
9.30149019e-01 -1.52998078e+00 -2.96239048e-01 7.59218812e-01
-6.17945082e-02 -4.81667101e-01 5.68017848e-02 4.04661596e-01
-9.97751474e-01 2.28917405e-01 -6.07984602e-01 8.26617796e-03
-1.31600094e+00 5.88208318e-01 4.00703043e-01 8.68576989e-02
-3.14171314e-01 5.44229984e-01 -3.80962908e-01 -1.83362752e-01
5.09906590e-01 -3.00751776e-01 -3.56923491e-01 2.23285165e-02
5.82006633e-01 4.35728192e-01 -2.77399391e-01 -6.74088061e-01
-3.74364018e-01 8.70572865e-01 -2.84802407e-01 -3.04708034e-01
8.68586361e-01 -7.16293752e-02 -2.06424817e-01 -3.35768729e-01
1.49886787e+00 8.80206600e-02 -9.31039751e-01 -3.60955536e-01
-3.34070483e-03 -5.46198249e-01 2.83956915e-01 -4.89146382e-01
-1.65701663e+00 7.25530028e-01 1.06691062e+00 1.83381781e-01
9.77644205e-01 -9.86562133e-01 1.51397777e+00 3.08209568e-01
4.66131151e-01 -8.78802657e-01 -3.94469947e-01 6.24168385e-03
1.63930148e-01 -7.41414785e-01 1.58235297e-01 -5.75397536e-02
-5.91723761e-03 1.43898964e+00 3.81959587e-01 4.70425896e-02
1.01300585e+00 3.43198739e-02 2.22926423e-01 1.92041978e-01
-6.50758222e-02 5.27318537e-01 -2.77707893e-02 6.85062170e-01
-3.39687377e-01 -3.66983503e-01 -5.46055198e-01 6.72631025e-01
8.67617782e-03 3.52040440e-01 6.94678426e-01 1.27035081e+00
-7.54210889e-01 -1.58595526e+00 -6.42229676e-01 8.69399309e-02
-7.42065012e-01 -6.98202057e-03 -6.16590353e-03 7.89164603e-01
3.98771793e-01 8.00648272e-01 -2.79461414e-01 -6.52814567e-01
2.75649935e-01 -4.30201106e-02 2.90900856e-01 4.01698686e-02
-3.63939553e-01 3.20765097e-03 -3.64306152e-01 5.04946262e-02
-4.39034730e-01 -3.31186444e-01 -1.49271727e+00 -6.29242778e-01
-7.08399773e-01 1.11800656e-02 8.59259307e-01 6.50906980e-01
-2.08399668e-02 4.14087623e-01 7.90675223e-01 -1.94217965e-01
-6.52915657e-01 -3.49403203e-01 -8.10052156e-01 -1.98938310e-01
5.49892128e-01 -4.39721733e-01 -4.64771897e-01 1.16343714e-01] | [5.339414596557617, 7.86707878112793] |
cca4b9d9-6fe2-4685-8955-a37e70bbffb8 | denoising-bottleneck-with-mutual-information | 2305.14652 | null | https://arxiv.org/abs/2305.14652v3 | https://arxiv.org/pdf/2305.14652v3.pdf | Denoising Bottleneck with Mutual Information Maximization for Video Multimodal Fusion | Video multimodal fusion aims to integrate multimodal signals in videos, such as visual, audio and text, to make a complementary prediction with multiple modalities contents. However, unlike other image-text multimodal tasks, video has longer multimodal sequences with more redundancy and noise in both visual and audio modalities. Prior denoising methods like forget gate are coarse in the granularity of noise filtering. They often suppress the redundant and noisy information at the risk of losing critical information. Therefore, we propose a denoising bottleneck fusion (DBF) model for fine-grained video multimodal fusion. On the one hand, we employ a bottleneck mechanism to filter out noise and redundancy with a restrained receptive field. On the other hand, we use a mutual information maximization module to regulate the filter-out module to preserve key information within different modalities. Our DBF model achieves significant improvement over current state-of-the-art baselines on multiple benchmarks covering multimodal sentiment analysis and multimodal summarization tasks. It proves that our model can effectively capture salient features from noisy and redundant video, audio, and text inputs. The code for this paper is publicly available at https://github.com/WSXRHFG/DBF. | ['Shaoxiang Wu', 'Zhifang Sui', 'Yunbo Cao', 'Binghuai Lin', 'Tianyu Liu', 'Ziwei Qin', 'Damai Dai'] | 2023-05-24 | null | null | null | null | ['multimodal-sentiment-analysis', 'sentiment-analysis', 'multimodal-sentiment-analysis'] | ['computer-vision', 'natural-language-processing', 'natural-language-processing'] | [ 2.33661950e-01 -3.28028381e-01 -1.61811598e-02 -1.78867102e-01
-1.22426748e+00 -4.37993377e-01 4.66783792e-01 1.51859179e-01
-4.00054544e-01 5.48997462e-01 9.16253924e-01 2.34804705e-01
2.38101214e-01 -1.73490882e-01 -8.26704621e-01 -8.43864202e-01
3.60767037e-01 -4.18975353e-01 4.09485102e-02 -3.12376976e-01
8.66505504e-02 -1.75862700e-01 -1.72147298e+00 9.94960606e-01
7.76246607e-01 1.08286524e+00 3.97650123e-01 8.22252095e-01
2.80087572e-02 1.16493917e+00 -3.78058344e-01 -5.53493142e-01
-1.69178694e-02 -3.61463994e-01 -5.30417383e-01 2.15221241e-01
5.86143374e-01 -6.06631815e-01 -8.67187440e-01 1.31035399e+00
8.25022995e-01 3.83480459e-01 3.98611456e-01 -1.34874833e+00
-3.53486180e-01 7.73019314e-01 -9.58474576e-01 1.06670298e-01
7.25109279e-01 2.48181313e-01 1.02425754e+00 -1.20052230e+00
6.66757941e-01 1.47771883e+00 4.68445271e-01 4.83057350e-01
-1.03956234e+00 -4.74201381e-01 5.04425824e-01 3.43250006e-01
-1.29721558e+00 -8.56719017e-01 6.59181714e-01 -1.71770588e-01
7.38088012e-01 4.22457755e-01 4.47021365e-01 1.38497519e+00
1.82739720e-01 1.34424305e+00 6.28326416e-01 -1.54590696e-01
-1.14717208e-01 -2.39135265e-01 1.47606228e-02 5.61651409e-01
-2.73308188e-01 -4.18417960e-01 -1.07893825e+00 -1.67387426e-01
2.67580509e-01 4.46493387e-01 -5.86137235e-01 2.21584216e-01
-1.40931773e+00 5.48234344e-01 2.42757890e-02 2.20056057e-01
-4.76857811e-01 1.94322228e-01 5.93138635e-01 4.84225929e-01
3.53786170e-01 -1.59971118e-01 -2.73343116e-01 -2.54835725e-01
-9.53103006e-01 1.39852852e-01 5.25806785e-01 9.47165191e-01
6.96405232e-01 -3.96757089e-02 -5.45219064e-01 9.43496346e-01
3.44932586e-01 5.61458290e-01 3.36770087e-01 -1.35614514e+00
7.83512533e-01 3.59306753e-01 -2.19681486e-01 -1.02163208e+00
-2.44093210e-01 4.20386121e-02 -1.07304740e+00 -2.39864364e-01
-4.13086824e-02 -2.35694274e-01 -8.99454176e-01 1.68290806e+00
1.99197039e-01 2.29016513e-01 -8.54698271e-02 1.11318994e+00
1.36506498e+00 8.86801958e-01 -1.36399781e-02 -4.52243358e-01
1.42510498e+00 -1.10405433e+00 -1.08609605e+00 4.56245616e-02
2.00580046e-01 -1.02837777e+00 9.23708975e-01 4.78299260e-01
-1.39983141e+00 -4.63752538e-01 -8.25038433e-01 -4.78320867e-01
-9.42432508e-02 -2.28949562e-02 2.58106858e-01 1.45493984e-01
-1.04586387e+00 3.75656366e-01 -8.36651921e-01 -2.62637377e-01
3.51049930e-01 1.37477204e-01 -6.26585007e-01 -4.43308353e-01
-1.09420645e+00 4.58033651e-01 1.63835108e-01 9.82036814e-02
-1.02212584e+00 -5.23451507e-01 -1.04658365e+00 6.16815984e-02
6.42542899e-01 -8.99358213e-01 1.26781857e+00 -1.10241437e+00
-1.23990214e+00 3.41521382e-01 -6.49525344e-01 -2.18444854e-01
3.56101334e-01 -3.88140291e-01 -3.29215974e-01 5.94741106e-01
-3.28086577e-02 1.00497103e+00 1.33811927e+00 -1.28249419e+00
-7.20846772e-01 -2.01073736e-01 6.54428527e-02 6.00201130e-01
-4.83004838e-01 1.08789653e-01 -9.90117848e-01 -9.59812760e-01
1.06639653e-01 -5.34669995e-01 -3.09062060e-02 -2.72768468e-01
-3.96942705e-01 7.73702338e-02 9.57581937e-01 -8.94491255e-01
1.47314072e+00 -2.35579848e+00 6.58690929e-01 -1.15131892e-01
5.02574801e-01 -1.73239619e-01 -5.60103238e-01 6.00260377e-01
1.48021653e-02 5.98964132e-02 -3.20207775e-02 -9.09001470e-01
2.55255103e-02 8.46513659e-02 -2.59843379e-01 3.78018826e-01
1.87523872e-01 8.28789651e-01 -7.07019269e-01 -6.26035392e-01
2.87904739e-01 7.40898550e-01 -4.92996335e-01 4.97475341e-02
-2.83663999e-03 5.51119566e-01 -2.36941263e-01 9.89317715e-01
7.78658152e-01 -1.20750569e-01 -7.04187676e-02 -7.49308407e-01
7.41338283e-02 -1.22625800e-02 -1.22723997e+00 2.20428038e+00
-4.75948900e-02 6.70929730e-01 6.20654464e-01 -7.75968075e-01
1.71714768e-01 5.61810732e-01 6.44568980e-01 -6.91068292e-01
4.44525063e-01 -4.70281504e-02 -4.55702841e-01 -5.90340257e-01
8.88988674e-01 1.67980209e-01 -2.09212467e-01 8.14068764e-02
5.23657560e-01 8.93478394e-02 4.41522866e-01 7.76781261e-01
1.13227296e+00 -8.55086818e-02 -2.14680117e-02 3.16109359e-01
6.22730553e-01 -3.81627947e-01 6.27677560e-01 8.40049803e-01
-2.65890628e-01 1.02293515e+00 5.88471353e-01 1.05951890e-01
-7.12766051e-01 -8.63153398e-01 3.42348397e-01 1.50706208e+00
3.62788469e-01 -9.03492033e-01 -6.83802247e-01 -5.30858040e-01
-1.83608308e-01 3.07477921e-01 -4.54243988e-01 -2.33511180e-01
-2.64978856e-01 -5.29181302e-01 4.59078789e-01 2.84029126e-01
2.87058741e-01 -6.70778632e-01 1.80533361e-02 3.99404466e-02
-1.01481485e+00 -1.23716414e+00 -9.61552978e-01 4.02585827e-02
-6.47348464e-01 -8.98782492e-01 -7.67144501e-01 -5.69638789e-01
4.28413600e-01 7.68953145e-01 9.71874714e-01 -6.74198940e-02
-7.74166640e-03 8.49805832e-01 -6.49312496e-01 -1.60071224e-01
-1.47315562e-01 -1.35618329e-01 -5.65919355e-02 3.06958079e-01
2.04645991e-01 -3.75193208e-01 -6.87601924e-01 2.10423842e-01
-1.30207491e+00 9.33714136e-02 4.27326620e-01 9.72778678e-01
7.57319808e-01 6.09047599e-02 3.43249172e-01 -2.33183801e-01
6.63231194e-01 -5.91479480e-01 -6.54211864e-02 1.96428418e-01
1.30615622e-01 -1.92997336e-01 3.46381336e-01 -5.20061612e-01
-1.18322384e+00 1.28633440e-01 -6.34851158e-02 -7.73436129e-01
-7.78812543e-02 5.96800625e-01 -3.36384565e-01 1.86050832e-01
2.40120918e-01 2.15444326e-01 4.09170352e-02 -4.63997692e-01
3.97410661e-01 5.81246078e-01 6.78578496e-01 -3.88457298e-01
3.96273315e-01 6.55604899e-01 -2.06061035e-01 -8.93094659e-01
-6.16951585e-01 -7.01153517e-01 -3.02058190e-01 -5.26102066e-01
7.03713894e-01 -1.55262649e+00 -7.76472807e-01 5.20330250e-01
-1.08180261e+00 1.26069695e-01 -1.03431627e-01 5.54412723e-01
-3.76445979e-01 7.24952042e-01 -9.21855867e-01 -7.28479028e-01
-3.49495023e-01 -1.31901419e+00 1.50694489e+00 3.07399541e-01
-6.89506829e-02 -4.73358333e-01 -2.72200435e-01 6.66477919e-01
1.58915982e-01 -5.95590584e-02 2.61558592e-01 -2.30473533e-01
-5.36255956e-01 -9.84112248e-02 -7.24841952e-02 4.78834808e-01
-1.26046285e-01 1.60066336e-01 -1.04724944e+00 -3.44193399e-01
7.84417391e-02 -5.35205126e-01 1.69348300e+00 6.41088188e-01
9.64644969e-01 -1.95433944e-01 -4.50183339e-02 4.21465337e-01
1.04682302e+00 -1.47975326e-01 8.01108718e-01 -4.66572605e-02
8.04362237e-01 5.37244976e-01 6.86570823e-01 7.11013198e-01
5.56762338e-01 2.35513836e-01 4.83650506e-01 7.34722754e-03
-1.52929619e-01 -1.84982240e-01 8.11058879e-01 1.08643317e+00
-3.29946615e-02 -5.35949469e-01 -5.03800213e-01 4.01052028e-01
-2.22666502e+00 -1.07864666e+00 2.03029495e-02 1.81845033e+00
7.63752401e-01 -2.96207666e-01 1.39366567e-01 6.57245070e-02
7.61726618e-01 3.62892240e-01 -3.18629682e-01 1.16974376e-01
-7.27949739e-01 -3.91966820e-01 2.53502697e-01 4.09597307e-01
-1.31891513e+00 5.95970809e-01 4.98900032e+00 1.14908421e+00
-8.33452582e-01 3.05623889e-01 5.45517027e-01 -7.48690665e-01
-4.14655149e-01 -2.42091820e-01 -5.72839081e-01 5.43116391e-01
7.02055216e-01 2.50609726e-01 5.71459949e-01 2.63389926e-02
4.41879809e-01 -4.62656796e-01 -8.81478250e-01 1.35603380e+00
2.91621804e-01 -1.21715713e+00 2.28215396e-01 -3.67863953e-01
7.27606356e-01 8.01050588e-02 2.16347307e-01 1.70810372e-01
-8.16982090e-02 -8.50735486e-01 9.77168322e-01 9.66555893e-01
4.03801382e-01 -8.45380962e-01 8.88264775e-01 1.78911492e-01
-1.32328284e+00 -1.51611775e-01 -9.50980633e-02 2.57618368e-01
3.57685804e-01 6.12304568e-01 5.66272251e-02 8.57108653e-01
1.02863765e+00 9.75132883e-01 -4.81741518e-01 7.73977339e-01
8.48781690e-02 3.70791018e-01 -3.16105992e-01 4.21911210e-01
1.36390224e-01 1.11210893e-03 7.92881489e-01 1.28212881e+00
3.81359428e-01 7.11165965e-02 1.96179315e-01 1.63067579e-01
-3.58358115e-01 6.72114938e-02 -4.22149092e-01 -1.71810672e-01
3.87636930e-01 1.26773512e+00 -3.48800808e-01 -3.40325832e-01
-8.13797951e-01 9.92296576e-01 -1.13333911e-01 6.01392031e-01
-9.80355263e-01 -1.57596394e-01 6.19147420e-01 -3.35041910e-01
4.50478137e-01 1.71844158e-02 -1.41181856e-01 -1.72845888e+00
1.81039348e-01 -1.30599964e+00 6.09876215e-01 -8.64702702e-01
-1.22267473e+00 3.04673195e-01 -2.28741392e-01 -1.31896031e+00
9.34642479e-02 -2.27468818e-01 -2.44398132e-01 5.33973277e-01
-1.29002082e+00 -1.09690309e+00 -3.25569302e-01 1.12113166e+00
7.25021183e-01 -1.18254557e-01 2.78083146e-01 6.53510690e-01
-5.96636355e-01 5.12589633e-01 1.75967902e-01 -5.84530309e-02
1.16385913e+00 -8.10082734e-01 -3.26042831e-01 9.61438715e-01
-8.97830501e-02 3.97990376e-01 6.99173093e-01 -6.64616048e-01
-1.88095355e+00 -9.41051006e-01 4.61662769e-01 -9.10169855e-02
6.38862133e-01 -2.25690678e-01 -8.41237307e-01 4.65445608e-01
7.86620855e-01 -1.96983412e-01 6.71724916e-01 -2.59238124e-01
-4.54167694e-01 -1.95259973e-01 -8.17710936e-01 6.57973349e-01
7.46772110e-01 -7.15921998e-01 -3.35353613e-01 8.31643716e-02
9.15956259e-01 -2.83636868e-01 -8.11021507e-01 4.91267383e-01
5.98510444e-01 -9.30285990e-01 8.93729568e-01 -2.60965109e-01
6.39893949e-01 -4.91287857e-01 -6.09184921e-01 -1.12500274e+00
-1.22034021e-01 -9.11985397e-01 -4.99268621e-01 1.42976391e+00
1.53468758e-01 1.18014999e-02 3.02605987e-01 3.33901763e-01
-2.01605037e-01 -4.01081026e-01 -9.20843959e-01 -1.92021236e-01
-5.03599405e-01 -5.77236235e-01 1.93762794e-01 7.26689041e-01
1.50238082e-01 5.19258440e-01 -9.57171619e-01 5.24081551e-02
6.27983630e-01 -1.50210649e-01 6.21418476e-01 -6.88876987e-01
-3.63917723e-02 -3.96643758e-01 -1.55438066e-01 -1.07564771e+00
7.71387368e-02 -4.64453250e-01 1.07613824e-01 -1.43493629e+00
6.24177396e-01 7.28662372e-01 -4.16228116e-01 4.07801837e-01
-3.96571070e-01 4.08709913e-01 5.26217401e-01 1.13430798e-01
-1.28157592e+00 8.64226162e-01 1.27168536e+00 -4.64602292e-01
-8.43404531e-02 -3.73413444e-01 -8.97267699e-01 8.22593451e-01
5.66299796e-01 -3.41943145e-01 -2.13558510e-01 -6.58477664e-01
3.22004557e-01 2.29259193e-01 4.01520163e-01 -6.59172595e-01
5.93300641e-01 1.54768284e-02 4.20816272e-01 -9.50099707e-01
7.48585045e-01 -7.98321486e-01 4.67827767e-02 2.62906067e-02
-3.37957114e-01 9.67959687e-03 2.44363487e-01 8.06495011e-01
-7.97269762e-01 3.49564701e-02 5.55802166e-01 -5.48609793e-02
-7.85432875e-01 2.39812747e-01 -6.94073558e-01 -8.76329988e-02
6.26145363e-01 7.88200945e-02 -5.96691012e-01 -9.13031399e-01
-8.30276251e-01 6.46942139e-01 3.91441554e-01 4.64970678e-01
9.80049729e-01 -1.29439962e+00 -8.62279952e-01 -6.69112280e-02
2.07046643e-02 -1.79580629e-01 9.49666500e-01 1.33443177e+00
-8.89492556e-02 4.50692475e-02 1.83830075e-02 -6.12520814e-01
-1.63582897e+00 5.31962991e-01 2.30621528e-02 -3.47971208e-02
-2.59083331e-01 7.76086092e-01 3.11773270e-01 -1.19252736e-02
6.40581310e-01 -2.24042267e-01 -2.63793677e-01 5.80337465e-01
8.95670891e-01 5.33074081e-01 -4.26843390e-02 -9.12191927e-01
-2.91263878e-01 2.70907193e-01 -2.31761903e-01 -1.67552546e-01
1.22445464e+00 -8.91553581e-01 -2.93105781e-01 3.99534613e-01
1.29284716e+00 6.90296665e-02 -1.26990247e+00 -3.87547940e-01
-5.49874127e-01 -3.70579869e-01 1.95379883e-01 -5.43170154e-01
-1.19507563e+00 7.47015119e-01 3.81218374e-01 1.32551298e-01
1.70888436e+00 4.64190431e-02 7.90358722e-01 3.75716418e-01
-1.65995270e-01 -1.32164395e+00 2.84641683e-01 6.60488784e-01
1.03702962e+00 -1.40073812e+00 7.08666071e-02 -2.74659961e-01
-1.08959734e+00 1.04737353e+00 3.59183669e-01 2.48262629e-01
5.52837074e-01 5.17691135e-01 -8.10949728e-02 4.77019250e-02
-1.20907879e+00 -3.06717724e-01 4.50101107e-01 2.72194892e-01
2.31983766e-01 -1.87277228e-01 -5.92296161e-02 8.77577901e-01
3.79394293e-01 -8.67544860e-02 4.50328171e-01 1.01442814e+00
-4.67309356e-01 -7.34914362e-01 -6.60142183e-01 3.13648313e-01
-7.95575678e-01 -3.81356388e-01 -3.04620087e-01 3.02505672e-01
-1.51592242e-02 1.46050680e+00 -1.19679287e-01 -6.24395072e-01
2.66304731e-01 1.01539819e-02 3.84650320e-01 -1.53292909e-01
-6.85264230e-01 9.58797336e-01 2.15966459e-02 -9.48248208e-01
-8.39354157e-01 -7.45030761e-01 -9.02743101e-01 -5.06803930e-01
-1.82103738e-01 -1.28791645e-01 3.56344819e-01 7.39489555e-01
5.05887508e-01 6.69991791e-01 4.47862417e-01 -1.15776885e+00
-1.60863280e-01 -1.06910443e+00 -6.02984309e-01 5.28708994e-01
6.89091861e-01 -4.11473751e-01 -3.20979953e-01 3.55041683e-01] | [13.546647071838379, 4.764918804168701] |
ad7068d5-f7cc-4d14-b9e8-fc601480c5b5 | employing-weak-annotations-for-medical-image | 1708.06297 | null | http://arxiv.org/abs/1708.06297v1 | http://arxiv.org/pdf/1708.06297v1.pdf | Employing Weak Annotations for Medical Image Analysis Problems | To efficiently establish training databases for machine learning methods,
collaborative and crowdsourcing platforms have been investigated to
collectively tackle the annotation effort. However, when this concept is ported
to the medical imaging domain, reading expertise will have a direct impact on
the annotation accuracy. In this study, we examine the impact of expertise and
the amount of available annotations on the accuracy outcome of a liver
segmentation problem in an abdominal computed tomography (CT) image database.
In controlled experiments, we study this impact for different types of weak
annotations. To address the decrease in accuracy associated with lower
expertise, we propose a method for outlier correction making use of a weakly
labelled atlas. Using this approach, we demonstrate that weak annotations
subject to high error rates can achieve a similarly high accuracy as
state-of-the-art multi-atlas segmentation approaches relying on a large amount
of expert manual segmentations. Annotations of this nature can realistically be
obtained from a non-expert crowd and can potentially enable crowdsourcing of
weak annotation tasks for medical image analysis. | ['Kensaku MORI', 'Kazunari Misawa', 'Jonathan Passerat-Palmbach', 'Christian Ledig', 'Daniel Rueckert', 'Martin Rajchl', 'Lisa M. Koch'] | 2017-08-21 | null | null | null | null | ['liver-segmentation'] | ['medical'] | [-1.74146250e-03 6.50736809e-01 2.07481131e-01 -3.08154881e-01
-1.14400399e+00 -6.33485436e-01 2.90551960e-01 8.26542377e-01
-9.31289971e-01 8.11734974e-01 -2.06010304e-02 -2.07862779e-01
5.66164441e-02 -3.94755512e-01 -6.60936892e-01 -5.52533984e-01
8.07826743e-02 8.09355795e-01 5.68007112e-01 8.50096643e-02
-4.21045087e-02 2.21780419e-01 -1.08799696e+00 3.23172897e-01
8.95996988e-01 7.29895294e-01 7.79548660e-02 5.85137546e-01
9.83298048e-02 7.80484259e-01 -8.12951565e-01 -5.34199119e-01
5.90318561e-01 -2.61028945e-01 -8.58106613e-01 1.72178298e-01
2.62495577e-01 -3.12266082e-01 3.17732185e-01 9.02311027e-01
9.02662277e-01 -1.85182959e-01 3.78528953e-01 -1.11932576e+00
-1.36567131e-01 6.65081084e-01 -2.76863456e-01 4.08185333e-01
6.04431868e-01 2.00703353e-01 5.12855411e-01 -6.91161692e-01
7.09432662e-01 3.94593298e-01 1.10716164e+00 2.91289091e-01
-1.34797263e+00 -2.77655929e-01 -1.72138929e-01 -2.72965133e-01
-1.53334415e+00 -2.76215643e-01 2.12653860e-01 -7.85242379e-01
4.75363284e-01 2.58477002e-01 6.44367278e-01 8.08237076e-01
-2.14066962e-03 4.44703192e-01 1.34573925e+00 -7.22814620e-01
5.35487890e-01 4.87130314e-01 -3.02958429e-01 7.37535954e-01
4.90569115e-01 -4.03230458e-01 -3.95946920e-01 -4.84989345e-01
5.91520905e-01 -2.90614009e-01 -3.59809399e-01 -4.36743647e-01
-1.30152023e+00 7.50771701e-01 3.43498439e-01 6.58686936e-01
-4.21658188e-01 -4.17789705e-02 6.54345810e-01 1.23419374e-01
8.12938929e-01 8.09949398e-01 -4.09819901e-01 -1.71049708e-03
-1.30420160e+00 2.67512146e-02 1.17765296e+00 7.23225117e-01
3.47542018e-01 -5.03535092e-01 -5.80454648e-01 4.66626465e-01
1.63476437e-01 1.17878921e-01 6.07945919e-01 -7.19612837e-01
2.88424492e-01 7.93544710e-01 3.85240793e-01 -7.48876154e-01
-4.64587450e-01 -1.04677618e-01 -3.14920068e-01 3.51558357e-01
1.04329169e+00 -2.93265909e-01 -8.96416068e-01 1.18648946e+00
7.51943648e-01 9.30068567e-02 -3.43563795e-01 1.12705207e+00
8.06551278e-01 -4.37332094e-01 4.36392337e-01 -2.18786836e-01
1.41992939e+00 -8.49037588e-01 -6.04007185e-01 2.12366581e-01
9.80152845e-01 -9.28941846e-01 1.20758986e+00 2.76846796e-01
-1.10972834e+00 -2.21849948e-01 -7.36399651e-01 8.12812373e-02
-2.97326952e-01 3.57314736e-01 1.55214682e-01 1.03045881e+00
-1.08807659e+00 6.04750931e-01 -1.08974135e+00 -5.93788564e-01
6.37144387e-01 5.03150582e-01 -4.02718544e-01 -1.65325403e-03
-8.16193640e-01 1.26952326e+00 2.33015418e-01 -6.30395189e-02
-8.50746095e-01 -8.26939285e-01 -4.98024732e-01 -3.42486262e-01
6.06103539e-01 -6.80798590e-01 1.24904370e+00 -1.39638257e+00
-1.29386437e+00 1.28713989e+00 1.71313941e-01 -4.17512655e-01
1.36436319e+00 -1.41931906e-01 6.14012666e-02 3.06873471e-01
3.68315130e-01 5.54389358e-01 6.26198947e-01 -1.27816784e+00
-3.76828611e-01 -1.87827513e-01 1.32453457e-01 1.94239907e-03
-1.59339771e-01 2.16857120e-01 -1.52538210e-01 -5.78683019e-01
-1.52928784e-01 -1.31040967e+00 -5.71799159e-01 3.42579782e-02
-1.97380438e-01 -5.19819520e-02 2.16912031e-01 -7.65782058e-01
1.00973248e+00 -1.90092039e+00 -4.20703962e-02 2.93318301e-01
3.85392398e-01 4.36062336e-01 3.84641081e-01 1.24273099e-01
3.78313243e-01 3.52787346e-01 -2.59788662e-01 -4.92633522e-01
-1.92954317e-01 3.82788360e-01 4.43885654e-01 7.68510520e-01
1.86841693e-02 9.38036740e-01 -1.03187180e+00 -1.01175523e+00
-9.88153964e-02 1.66146860e-01 -5.05570531e-01 1.93085119e-01
-1.61610376e-02 1.13419294e+00 -4.21307117e-01 5.82466125e-01
3.03876936e-01 -4.53470260e-01 4.22227651e-01 2.16374025e-02
-3.39449309e-02 -3.08472037e-01 -1.05599773e+00 1.80787122e+00
-3.44081700e-01 2.21255571e-01 2.68373549e-01 -5.88552356e-01
4.56459075e-01 7.05220222e-01 7.27989435e-01 -4.75444496e-01
2.78507650e-01 5.94469726e-01 1.31883487e-01 -7.06696212e-01
5.04380286e-01 -2.09803715e-01 1.52099296e-01 5.04224002e-01
9.53852087e-02 -1.87971547e-01 1.55743241e-01 9.05399472e-02
1.35194409e+00 1.15236044e-01 5.32444715e-01 -6.50559187e-01
5.07214427e-01 4.74422872e-01 3.95850092e-01 1.02823842e+00
-7.51351058e-01 6.42264664e-01 2.90758759e-01 -6.32751405e-01
-1.23637748e+00 -5.73174417e-01 -1.56612575e-01 1.18453574e+00
4.46096361e-02 -2.10207433e-01 -1.04422903e+00 -1.00645804e+00
-7.33737051e-02 1.19768701e-01 -6.62948012e-01 2.58389503e-01
-5.57161987e-01 -8.73336196e-01 9.34755743e-01 3.92796963e-01
1.63957566e-01 -7.94362843e-01 -1.11520469e+00 2.50867784e-01
-2.01130539e-01 -1.44206965e+00 -2.77492434e-01 -8.31838474e-02
-7.42904782e-01 -1.21323657e+00 -1.05218995e+00 -3.85092497e-01
1.05649602e+00 -2.75961667e-01 1.57278025e+00 6.31204903e-01
-4.02232051e-01 7.67069638e-01 -7.26026535e-01 -8.08514655e-01
-5.80924928e-01 4.13017720e-01 -4.30599265e-02 -1.15683213e-01
2.36165941e-01 -1.92012355e-01 -7.85448670e-01 4.99401420e-01
-1.10738325e+00 -2.65451044e-01 3.88567179e-01 5.62339425e-01
5.41945994e-01 -6.08989298e-01 5.05836368e-01 -1.26555037e+00
5.91075838e-01 -4.02650625e-01 -5.41510701e-01 3.15232843e-01
-6.53479099e-01 -2.76993841e-01 3.10185492e-01 -6.56423032e-01
-7.58626282e-01 3.09018940e-01 1.97814971e-01 -3.36923242e-01
-1.99095160e-01 5.15926242e-01 5.37748933e-01 -6.09063506e-01
1.08631790e+00 -4.30317938e-01 -5.93357999e-03 -2.22433001e-01
1.53582156e-01 3.13985288e-01 8.58278722e-02 -6.28849208e-01
4.26948279e-01 6.02579534e-01 -2.78270599e-02 -3.12453300e-01
-9.19948399e-01 -6.51949883e-01 -1.00064659e+00 -2.75456369e-01
1.14762676e+00 -9.57851231e-01 -2.73621023e-01 2.81932466e-02
-9.72598493e-01 -5.72961569e-01 -4.40086812e-01 5.94585299e-01
-3.62925470e-01 3.91671926e-01 -4.68319863e-01 -6.10588133e-01
-2.07012653e-01 -1.43473148e+00 1.24057376e+00 6.89103082e-02
-5.73945701e-01 -1.10620654e+00 1.28047884e-01 5.08898735e-01
5.85002482e-01 6.21398211e-01 3.06242406e-01 -1.29939187e+00
-4.66106415e-01 -3.79089504e-01 9.40527488e-03 1.01593815e-01
-2.21741572e-01 -4.05862153e-01 -9.84515309e-01 -3.45641136e-01
6.00576028e-02 -4.27223414e-01 2.28525952e-01 1.56097770e-01
8.49700809e-01 -1.43380478e-01 -2.81275660e-01 4.18108441e-02
1.40214050e+00 -4.29020047e-01 3.61461848e-01 6.19300246e-01
6.16700411e-01 5.60263693e-01 7.12011218e-01 5.72107732e-01
2.93971807e-01 5.93506217e-01 1.53894931e-01 -4.25128281e-01
7.71816969e-02 3.14275235e-01 -2.51404464e-01 4.97503936e-01
-4.47495401e-01 -6.14284389e-02 -1.55220866e+00 7.07510173e-01
-1.85471976e+00 -3.38868052e-01 -3.05228919e-01 2.24568105e+00
1.00865793e+00 -5.31815365e-02 2.35866860e-01 4.63718399e-02
6.70067549e-01 -3.78716528e-01 5.80740422e-02 -5.37076406e-02
2.11556956e-01 5.47720790e-02 8.63735616e-01 1.94219664e-01
-9.38656092e-01 4.73789483e-01 6.80848169e+00 5.55839956e-01
-9.11508262e-01 8.38697195e-01 6.66859746e-01 -1.92122191e-01
3.49103846e-02 -1.31037280e-01 -3.14076960e-01 6.50318325e-01
9.32370365e-01 9.72547531e-02 1.72229577e-02 7.73298681e-01
2.14526668e-01 -6.97975516e-01 -1.27926779e+00 6.35476649e-01
1.35895804e-01 -1.11252296e+00 -3.83107752e-01 1.17113635e-01
9.12345350e-01 1.64280012e-01 -4.50238943e-01 5.80940433e-02
2.40030989e-01 -1.05518317e+00 6.37516975e-01 6.51995540e-01
6.20812058e-01 -3.04654658e-01 1.31963372e+00 5.13576210e-01
-6.44718349e-01 9.14114267e-02 1.80493649e-02 9.49267820e-02
2.68649399e-01 8.48151326e-01 -1.32508123e+00 6.56626403e-01
6.87871099e-01 -2.35390097e-01 -8.40899289e-01 1.20802987e+00
-1.08713850e-01 5.48981547e-01 -3.65830272e-01 1.18639447e-01
1.11310646e-01 2.19865292e-01 4.64837044e-01 1.21522021e+00
1.24508522e-01 2.27858946e-01 6.64497316e-01 5.42115211e-01
-7.63975531e-02 4.08405334e-01 -4.09809381e-01 2.90915728e-01
3.43497574e-01 1.44408607e+00 -1.30405700e+00 -5.52126467e-01
-3.57232720e-01 9.28424478e-01 3.14223021e-01 -7.57100955e-02
-9.24090922e-01 2.80900747e-01 -2.80250341e-01 5.08132637e-01
8.24100450e-02 6.49667308e-02 -3.39385182e-01 -8.48713756e-01
2.31209651e-01 -9.60597813e-01 3.71831000e-01 -5.73954999e-01
-1.28816390e+00 6.62178636e-01 -3.17458473e-02 -1.18483114e+00
2.21187975e-02 -3.18466932e-01 -4.16001469e-01 7.28943825e-01
-1.34674299e+00 -1.33208811e+00 -7.01692462e-01 3.37862194e-01
2.03244627e-01 9.34103876e-02 7.60718942e-01 4.76056218e-01
-2.09768161e-01 5.85045218e-01 -2.70084113e-01 1.97913349e-01
9.65280175e-01 -1.32169008e+00 -2.37443015e-01 7.00726926e-01
-5.49624003e-02 3.35069835e-01 7.69464910e-01 -7.94412732e-01
-8.23447049e-01 -1.06944883e+00 6.32409394e-01 -1.16418111e+00
5.01141429e-01 -4.25663777e-02 -8.59731853e-01 6.29458964e-01
8.82067084e-02 6.68485045e-01 9.98338938e-01 -1.28352866e-01
1.75523818e-01 4.44174796e-01 -1.64620423e+00 2.26551950e-01
8.66422772e-01 -4.46124166e-01 -4.65427727e-01 6.35587692e-01
4.10899460e-01 -8.94495904e-01 -1.33903039e+00 3.96984279e-01
3.10173184e-01 -9.52068210e-01 5.95146239e-01 -3.92810762e-01
2.29108453e-01 -3.21519196e-01 2.14893401e-01 -1.12963700e+00
1.74088344e-01 -4.46862817e-01 3.52783918e-01 1.13459241e+00
5.44673979e-01 -4.79941607e-01 8.53708684e-01 1.06243384e+00
-5.99432550e-02 -6.92068458e-01 -1.29896629e+00 -5.84488869e-01
9.22780484e-02 4.15283367e-02 3.14219713e-01 1.16009653e+00
-3.53862420e-02 -2.72353232e-01 3.95585783e-02 2.89213866e-01
2.77097434e-01 -3.97170752e-01 9.49492097e-01 -1.25291514e+00
-2.31670633e-01 3.70483622e-02 -6.03404224e-01 7.38651305e-03
-6.79658651e-02 -8.75232816e-01 1.87949136e-01 -1.32993615e+00
1.34505510e-01 -7.12830186e-01 9.18052997e-03 3.30955029e-01
-4.49808955e-01 7.31411517e-01 2.84246713e-01 6.52078450e-01
-1.14750290e+00 -1.55336976e-01 1.07937312e+00 2.92031199e-01
-1.23262867e-01 -2.61177778e-01 -2.72710770e-01 8.72414947e-01
5.86603582e-01 -9.28458810e-01 -2.50619669e-02 -5.08009374e-01
4.31587577e-01 -1.67623580e-01 4.97130156e-01 -1.07577658e+00
6.14085317e-01 2.69578844e-01 3.95681292e-01 1.60633937e-01
-1.38979211e-01 -9.82109427e-01 2.03262627e-01 4.63438600e-01
-2.84847051e-01 2.33922750e-01 1.02194928e-01 6.55336559e-01
-2.00629607e-01 -5.84908664e-01 6.19531453e-01 -7.27714658e-01
-5.73587604e-02 -1.33758157e-01 -3.45437586e-01 2.06018463e-01
1.45214164e+00 -3.12301964e-01 3.07592358e-02 -1.75209977e-02
-1.07904065e+00 1.97764650e-01 7.39636838e-01 -1.43165171e-01
-1.02373190e-01 -9.77256894e-01 -8.37152183e-01 -2.81527907e-01
2.06935942e-01 2.62726754e-01 -5.39243780e-03 1.61694014e+00
-7.75697291e-01 -1.09286886e-02 -3.43539193e-02 -8.75147462e-01
-1.20393932e+00 3.41656625e-01 5.65744281e-01 -7.00828612e-01
-4.34700966e-01 6.90567553e-01 -3.60423326e-01 -4.44923609e-01
4.19731960e-02 -3.63938808e-01 -5.21429479e-02 2.83656031e-01
2.81078190e-01 4.72395748e-01 5.84480405e-01 -5.22677124e-01
-4.89169568e-01 1.32440567e-01 8.13852400e-02 -1.49209946e-01
9.98852015e-01 -2.00054914e-01 -7.40656704e-02 4.25666064e-01
4.57963079e-01 4.33422804e-01 -9.27730441e-01 -1.01741469e-02
4.27154571e-01 -5.22526026e-01 -1.03379704e-01 -9.85983074e-01
-7.76338577e-01 2.35940099e-01 7.93828845e-01 4.61973906e-01
7.65193999e-01 1.40252590e-01 4.04831052e-01 7.03125298e-02
5.85333169e-01 -1.32022607e+00 2.52090823e-02 -5.02005741e-02
5.36621809e-01 -1.82626665e+00 2.70281494e-01 -5.18458247e-01
-8.59392107e-01 7.93835759e-01 4.26222414e-01 -3.42258699e-02
4.82738554e-01 3.90074432e-01 5.15147448e-01 -4.16749686e-01
-1.01780705e-01 -2.72940397e-01 2.03589991e-01 4.30566669e-01
6.41679108e-01 6.40346855e-02 -6.30425990e-01 4.80023950e-01
1.77168578e-01 4.19546396e-01 7.33035028e-01 1.27266479e+00
-1.06539957e-01 -9.25540209e-01 -6.67884886e-01 3.92287880e-01
-1.20594418e+00 -1.88775603e-02 -3.62860143e-01 8.44815135e-01
5.14320314e-01 9.59084809e-01 -2.14753434e-01 3.32057655e-01
4.16527539e-01 1.39418244e-01 4.66861725e-01 -8.97043645e-01
-1.33828413e+00 -1.64471567e-01 2.52777576e-01 -5.62624156e-01
-9.30645525e-01 -5.18416405e-01 -1.02079034e+00 1.52430370e-01
-6.10525727e-01 1.79324657e-01 6.52056932e-01 1.13632786e+00
2.98746318e-01 5.84245980e-01 2.56800279e-02 -9.57365930e-01
-5.34004509e-01 -1.08057177e+00 -2.35092267e-01 7.93681741e-01
3.45628113e-02 -5.79468131e-01 -3.77426207e-01 2.47787371e-01] | [14.863517761230469, -2.502560615539551] |
d4d22155-a2a1-4051-9628-65499dae3cef | generalized-lstm-based-end-to-end-text | 2011.04896 | null | https://arxiv.org/abs/2011.04896v4 | https://arxiv.org/pdf/2011.04896v4.pdf | An Empirical Study on Text-Independent Speaker Verification based on the GE2E Method | While many researchers in the speaker recognition area have started to replace the former classical state-of-the-art methods with deep learning techniques, some of the traditional i-vector-based methods are still state-of-the-art in the context of text-independent speaker verification. Google's Generalized End-to-End Loss for Speaker Verification (GE2E), a deep learning-based technique using long short-term memory units, has recently gained a lot of attention due to its speed in convergence and generalization. In this study, we aim at further studying the GE2E method and comparing different scenarios in order to investigate all of its aspects. Various experiments including the effects of a random sampling of test and enrollment utterances, test utterance duration, and the number of enrollment utterances are discussed in this article. Furthermore, we compare the GE2E method with the baseline state-of-the-art i-vector-based methods for text-independent speaker verification and show that it outperforms them by resulting in lower error rates while being end-to-end and requiring less training time for convergence. | ['Soroosh Tayebi Arasteh'] | 2020-11-10 | null | null | null | null | ['text-independent-speaker-verification'] | ['speech'] | [-1.01522394e-01 -4.94593143e-01 1.32406633e-02 -8.68742824e-01
-1.05763829e+00 -3.43327522e-01 4.66686040e-01 -7.34274387e-02
-4.81875360e-01 3.78220558e-01 2.60934770e-01 -6.26302421e-01
9.63614658e-02 -6.19437173e-02 -4.37286139e-01 -7.28974640e-01
-1.40436172e-01 3.12048405e-01 -5.42401485e-02 -1.06138304e-01
2.44289771e-01 3.66400719e-01 -1.59795558e+00 -1.33759588e-01
7.15872467e-01 1.00280595e+00 -2.04204693e-01 6.45186543e-01
6.99267304e-03 3.70762914e-01 -8.54733407e-01 -5.02844036e-01
-5.49450293e-02 -4.15186137e-01 -6.16768360e-01 1.34548634e-01
5.60116410e-01 -2.10851297e-01 -3.71143490e-01 9.16230202e-01
1.21634042e+00 4.26207155e-01 3.76382530e-01 -1.14925373e+00
-6.97202027e-01 6.24848664e-01 -3.27198654e-01 2.93615013e-01
3.24593782e-01 -2.07496807e-01 7.27183998e-01 -1.02671802e+00
6.74405620e-02 1.30852544e+00 7.88476408e-01 7.56422997e-01
-8.72856557e-01 -9.69477773e-01 3.39850903e-01 7.21362233e-01
-1.58139122e+00 -9.69744623e-01 8.09594572e-01 -1.82110235e-01
9.18044925e-01 2.24986792e-01 -9.89338160e-02 1.25014818e+00
-6.10768013e-02 1.10073817e+00 8.04252267e-01 -7.70403981e-01
2.65177995e-01 3.22502673e-01 4.88907546e-01 4.02866870e-01
-3.27465802e-01 4.13649976e-01 -8.06440175e-01 -8.93452317e-02
1.99845508e-01 -2.91670114e-01 -4.05447751e-01 3.07341721e-02
-9.42593694e-01 9.94833529e-01 1.44732162e-01 6.38288498e-01
-3.23583663e-01 -2.27772370e-01 7.26140916e-01 3.95136446e-01
5.94091952e-01 -2.38658115e-01 -3.86211485e-01 -3.50204706e-01
-1.32494187e+00 1.39238015e-01 8.07603657e-01 5.06589592e-01
1.15452647e-01 5.69996953e-01 -3.74011129e-01 1.02524447e+00
5.78992009e-01 3.12267274e-01 1.09768331e+00 -1.93228483e-01
5.04970610e-01 2.91590691e-01 -1.44716740e-01 -3.44129771e-01
-1.04357943e-01 -7.36215532e-01 -7.44620442e-01 2.24962998e-02
2.01743737e-01 -2.83464611e-01 -1.07206905e+00 1.80838585e+00
1.24703668e-01 3.33292782e-01 2.57289708e-01 7.58174837e-01
8.78650010e-01 6.78255141e-01 -1.23599343e-01 -5.83949424e-02
1.15166771e+00 -1.03313994e+00 -9.16820943e-01 -1.39960036e-01
4.52526420e-01 -8.51600945e-01 9.09863174e-01 2.58809656e-01
-7.90525079e-01 -7.34232247e-01 -1.09620929e+00 2.23447368e-01
-4.59541172e-01 3.47651504e-02 8.43499675e-02 1.41983485e+00
-1.25548911e+00 2.76568949e-01 -6.44788802e-01 -2.48262882e-01
2.94718176e-01 4.02927935e-01 -3.29632282e-01 -8.85175988e-02
-1.37784851e+00 9.71622348e-01 -2.20501926e-02 2.37591863e-01
-9.21818912e-01 -5.84974885e-01 -9.47776496e-01 2.67071068e-01
5.30681126e-02 -2.33576760e-01 1.55708146e+00 -7.78431296e-01
-1.95787430e+00 5.77910066e-01 -6.71442032e-01 -4.55901712e-01
3.77261400e-01 -1.29338965e-01 -7.74661899e-01 -3.78758967e-01
-3.19610655e-01 3.35803241e-01 9.23100293e-01 -8.12932849e-01
-3.73573154e-01 -6.77099884e-01 -4.07048374e-01 7.53809288e-02
-4.46964413e-01 4.76614535e-01 -3.11146051e-01 -4.80194360e-01
-1.95023678e-02 -8.15676153e-01 7.97431394e-02 -4.44191962e-01
-5.42812288e-01 -5.63107014e-01 1.05488420e+00 -7.67977059e-01
1.25311184e+00 -2.34840393e+00 3.73433493e-02 -4.12085913e-02
-3.91006321e-01 5.76641440e-01 -1.42468095e-01 3.91037196e-01
-2.81460196e-01 1.72916148e-02 -2.03912809e-01 -1.14367020e+00
2.27506846e-01 -1.65837795e-01 -1.24767661e-01 7.30421603e-01
-3.13610077e-01 6.34833336e-01 -3.82195622e-01 -1.70461372e-01
3.85639697e-01 1.00310647e+00 -6.62799506e-03 9.68497768e-02
3.34299475e-01 3.99863154e-01 6.51529804e-02 7.04752386e-01
7.30468214e-01 1.98437825e-01 -9.57674980e-02 3.04890603e-01
-1.40963688e-01 4.32325691e-01 -1.11755419e+00 1.55450547e+00
-5.31967819e-01 1.07633817e+00 1.94397792e-01 -9.66693103e-01
8.96773338e-01 8.03454399e-01 -3.79934423e-02 -4.97632951e-01
3.54142278e-01 3.57049942e-01 8.08609501e-02 -1.72856569e-01
2.82592952e-01 -3.57462466e-01 1.08289361e-01 3.96810532e-01
2.26437803e-02 2.55742550e-01 -2.16739506e-01 -1.39108196e-01
5.48574805e-01 -3.39896530e-01 2.46180240e-02 -7.66756311e-02
9.19942558e-01 -8.75030100e-01 3.86758298e-01 4.12731975e-01
-5.70230126e-01 5.38039267e-01 -1.58690244e-01 -1.26629218e-01
-6.32230639e-01 -6.69419169e-01 -2.86278188e-01 1.09430540e+00
-2.55793244e-01 2.71179248e-02 -9.30477798e-01 -4.65890586e-01
7.41479322e-02 1.03066015e+00 -4.86970901e-01 4.09024097e-02
-3.71367544e-01 -6.11537814e-01 9.46349025e-01 5.39764464e-01
6.92484498e-01 -7.98850179e-01 -2.33381182e-01 2.81595439e-01
-1.98600739e-01 -9.16594505e-01 -7.30653465e-01 7.73534626e-02
-6.99750960e-01 -4.95510161e-01 -1.22153497e+00 -7.76959836e-01
2.82746851e-01 1.69740334e-01 7.15704322e-01 -2.84631103e-01
9.76008996e-02 2.30733961e-01 -4.07886177e-01 -6.52719557e-01
-5.53891480e-01 1.56792521e-01 3.27354431e-01 4.44528252e-01
7.39535809e-01 -2.81777561e-01 -2.84216732e-01 5.32608569e-01
-7.39661634e-01 -7.22826660e-01 2.82548815e-01 8.97743881e-01
1.28268287e-01 -4.54041734e-02 8.56935203e-01 -3.15777302e-01
8.38114619e-01 -1.52075872e-01 -5.10059476e-01 3.64998609e-01
-6.45043314e-01 4.55052927e-02 1.98707417e-01 -5.22141397e-01
-7.85755098e-01 -2.38483682e-01 -5.72569549e-01 -6.26768053e-01
-2.64571130e-01 7.26441801e-01 -3.77983004e-01 -1.88041449e-01
3.65669519e-01 6.55869007e-01 1.24617651e-01 -6.57514513e-01
1.24603257e-01 1.34223557e+00 2.92713553e-01 6.51786476e-02
5.13606489e-01 -3.23069133e-02 -6.37955487e-01 -1.13599157e+00
-4.71241415e-01 -7.86599994e-01 -3.63762796e-01 -1.85956553e-01
5.72019458e-01 -9.12263930e-01 -8.10503840e-01 1.02582109e+00
-1.03270888e+00 -1.34913042e-01 3.48595418e-02 6.25283778e-01
-1.20362952e-01 6.42384529e-01 -5.06848454e-01 -1.23170853e+00
-6.70156002e-01 -1.53418934e+00 9.83102381e-01 2.16353014e-01
-4.16743420e-02 -1.01949584e+00 1.57920673e-01 4.87175196e-01
9.41707194e-01 -3.72656137e-01 5.50538182e-01 -1.05873609e+00
-1.05067335e-01 -7.48684227e-01 5.84063865e-02 7.38103569e-01
1.17998138e-01 -2.32863396e-01 -1.42300498e+00 -6.27631307e-01
3.65653068e-01 -1.83853563e-02 7.81866372e-01 6.87481284e-01
9.34057593e-01 -2.85178095e-01 -1.72127277e-01 3.60895634e-01
1.23936450e+00 2.86834300e-01 5.50037205e-01 2.95699269e-01
3.15430969e-01 5.10088980e-01 1.16874710e-01 2.40383863e-01
3.86811286e-01 9.79959488e-01 1.79626331e-01 5.08495513e-03
-4.86266799e-02 7.84756616e-02 7.03072488e-01 7.85212576e-01
2.78079152e-01 -6.20002210e-01 -8.65333557e-01 7.37226188e-01
-1.52985251e+00 -1.06804240e+00 2.89413750e-01 2.50355482e+00
4.64365751e-01 -7.39675239e-02 4.26747650e-01 7.64918983e-01
1.07988560e+00 2.56316483e-01 -5.51030993e-01 -5.53153992e-01
-5.46239875e-02 4.89130383e-03 3.11719000e-01 6.96173847e-01
-1.00992084e+00 5.97771347e-01 6.30890656e+00 7.56524444e-01
-1.68898940e+00 3.21510643e-01 7.07490146e-01 1.22571234e-02
1.10708676e-01 -4.81759697e-01 -1.25011754e+00 4.41534579e-01
1.56501067e+00 -1.23059452e-02 9.93060991e-02 9.99118626e-01
2.07038298e-01 2.33804330e-01 -1.11189532e+00 1.21444917e+00
5.41209877e-01 -9.00045514e-01 -2.44425341e-01 2.16302159e-03
4.64141518e-01 2.88896412e-01 2.77616888e-01 6.58862293e-01
-3.03736717e-01 -9.92341101e-01 9.17797506e-01 -8.03548470e-02
7.45490134e-01 -7.75616527e-01 1.24344254e+00 2.17786938e-01
-9.62097466e-01 -2.52289087e-01 -7.05091730e-02 1.34357452e-01
4.41784233e-01 5.17848969e-01 -7.21257627e-01 5.25059998e-01
4.56206143e-01 2.77266651e-01 -2.59301186e-01 1.13823593e+00
-1.37308789e-02 1.02882230e+00 -3.05350780e-01 -2.62857825e-01
3.87571037e-01 2.62675911e-01 5.93373716e-01 1.31071448e+00
3.54218215e-01 -2.76254654e-01 -6.02235682e-02 4.90028650e-01
-1.71434134e-01 1.20339684e-01 -2.48366371e-01 2.71842983e-02
4.80096757e-01 6.22847676e-01 -6.20614290e-02 -4.25643414e-01
-4.37165529e-01 9.15558636e-01 -7.89724365e-02 5.04268765e-01
-7.72449195e-01 -6.02843165e-01 7.17031896e-01 -1.72689576e-02
6.50011361e-01 -2.58762896e-01 -1.92666769e-01 -8.98208499e-01
1.81195691e-01 -9.98222470e-01 1.19156256e-01 -1.48699418e-01
-1.28582215e+00 9.18362319e-01 -1.63116366e-01 -1.12002981e+00
-4.92519587e-01 -3.02382141e-01 -7.57402956e-01 1.21337378e+00
-1.75215280e+00 -9.23327565e-01 -7.13672787e-02 6.74996972e-01
8.35153162e-01 -5.08592725e-01 9.97279763e-01 6.28200114e-01
-7.93117821e-01 1.40082932e+00 5.37834048e-01 3.79655182e-01
7.37069547e-01 -7.68493593e-01 7.36004531e-01 1.01697087e+00
1.53916970e-01 6.35233343e-01 7.56662309e-01 -1.21181332e-01
-1.29316688e+00 -7.30098665e-01 1.31900346e+00 -1.28724009e-01
1.97035447e-01 -4.39574540e-01 -9.18367088e-01 5.32435417e-01
2.54578054e-01 -1.59941941e-01 9.40293491e-01 3.88959646e-01
-5.79803050e-01 -2.31027991e-01 -1.23925149e+00 3.17262113e-01
4.46787089e-01 -7.60813296e-01 -5.04270911e-01 7.15607777e-02
3.97566259e-01 -2.86863357e-01 -4.87308949e-01 4.09489363e-01
6.43692017e-01 -1.03951705e+00 8.25565457e-01 -2.01239616e-01
-3.32685024e-01 -1.50571004e-01 -4.25428540e-01 -1.36374211e+00
-6.76292703e-02 -5.94275773e-01 3.41325291e-02 1.29342043e+00
6.59505546e-01 -7.59348869e-01 7.82882690e-01 5.56478381e-01
-2.69928753e-01 -6.37849331e-01 -1.60746551e+00 -1.21938682e+00
6.89012855e-02 -5.75097919e-01 6.24053657e-01 7.27727711e-01
-3.93211003e-03 5.67622244e-01 -4.15414482e-01 1.47007063e-01
5.41584551e-01 -1.72691047e-02 5.78828037e-01 -1.00675642e+00
-7.97865614e-02 -5.01642168e-01 -7.92924881e-01 -1.14214587e+00
3.37209672e-01 -5.91298103e-01 3.05596322e-01 -1.32257247e+00
-3.61973383e-02 -4.57814261e-02 -3.90518337e-01 3.63282651e-01
-3.27685833e-01 -6.16173558e-02 1.24402866e-01 -1.23435974e-01
-2.54967988e-01 8.55784893e-01 5.09984314e-01 -3.56853724e-01
-4.56905842e-01 4.46849674e-01 -4.09736603e-01 7.33826086e-02
8.02615821e-01 -2.10212946e-01 -2.87216902e-01 -4.33577389e-01
-8.48153532e-01 8.65172893e-02 -5.02764247e-02 -1.14420438e+00
3.35933208e-01 5.73153853e-01 1.06160246e-01 -7.21990585e-01
5.92238963e-01 -4.92878497e-01 -1.93815187e-01 4.03421879e-01
-3.46783429e-01 -2.65041869e-02 4.75049406e-01 4.81940448e-01
-6.61799312e-01 -2.28575930e-01 9.53040183e-01 2.61079669e-01
-4.81405318e-01 3.09458017e-01 -6.93213999e-01 -3.72834951e-01
7.29978025e-01 -4.13839668e-01 1.11575685e-01 -7.33372331e-01
-5.36466956e-01 -8.41414556e-02 2.27399766e-02 6.27371728e-01
6.59926295e-01 -9.94635284e-01 -1.21507394e+00 4.22955096e-01
5.07342815e-02 -6.05541348e-01 5.63687801e-01 6.98676050e-01
-5.04696108e-02 8.89777184e-01 1.52633160e-01 -8.26065660e-01
-1.87416756e+00 4.16669548e-01 4.48095173e-01 -8.79120603e-02
-2.32808039e-01 1.26893342e+00 -1.16210245e-01 -6.30954087e-01
9.93038118e-01 -1.24644496e-01 5.41958325e-02 -5.97726041e-03
7.82640874e-01 3.21153700e-01 4.79491889e-01 -8.05173993e-01
-7.33306944e-01 4.01524752e-01 -2.89390743e-01 -5.18145740e-01
1.00364625e+00 -1.62256688e-01 4.25747961e-01 4.34610903e-01
1.44360185e+00 8.15057009e-03 -6.16557598e-01 -3.85108501e-01
-7.08938763e-02 -3.03392649e-01 5.29843986e-01 -8.91409218e-01
-1.09610033e+00 1.18179345e+00 1.17792809e+00 -9.20472816e-02
9.80833888e-01 -3.30085695e-01 8.93351912e-01 2.50928760e-01
2.10940555e-01 -7.19141543e-01 -3.72320026e-01 5.75080991e-01
8.27384055e-01 -1.52114022e+00 -2.40600377e-01 2.64133252e-02
-4.72649515e-01 8.74852002e-01 7.52956346e-02 4.35861349e-01
9.51729774e-01 -3.28028873e-02 5.91321111e-01 2.70103842e-01
-4.04170960e-01 4.21396457e-02 3.39036763e-01 4.76998538e-01
8.03049445e-01 1.26325816e-01 6.28787978e-03 3.58404309e-01
-1.90512165e-01 -3.60077545e-02 2.90642250e-02 7.75452197e-01
-2.62187660e-01 -1.35190701e+00 -5.33039749e-01 6.98986873e-02
-6.02358460e-01 -2.21109986e-01 -3.39649051e-01 4.82464373e-01
-3.40121835e-01 1.47429645e+00 -2.80081421e-01 -5.36208153e-01
2.96189606e-01 5.06416500e-01 2.59938389e-01 -3.45657259e-01
-7.97134519e-01 -4.76789810e-02 2.36855745e-02 -1.25073954e-01
-4.32451516e-01 -7.80307353e-01 -7.80605733e-01 -5.71563721e-01
-9.92335618e-01 3.65108073e-01 1.46370101e+00 9.55580175e-01
4.91175324e-01 4.25056934e-01 7.52195477e-01 -9.97688830e-01
-9.91758049e-01 -1.54038072e+00 -5.51332533e-01 1.66572526e-01
6.61172807e-01 -5.43141901e-01 -6.29734993e-01 -2.06535369e-01] | [14.321465492248535, 6.084474563598633] |
9a8fb870-fbfd-4887-a302-8eb5999e10a7 | semi-supervised-learning-with-normalizing-1 | 1912.13025 | null | https://arxiv.org/abs/1912.13025v1 | https://arxiv.org/pdf/1912.13025v1.pdf | Semi-Supervised Learning with Normalizing Flows | Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. We propose FlowGMM, an end-to-end approach to generative semi supervised learning with normalizing flows, using a latent Gaussian mixture model. FlowGMM is distinct in its simplicity, unified treatment of labelled and unlabelled data with an exact likelihood, interpretability, and broad applicability beyond image data. We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data, tabular data, and semi-supervised image classification. We also show that FlowGMM can discover interpretable structure, provide real-time optimization-free feature visualizations, and specify well calibrated predictive distributions. | ['Pavel Izmailov', 'Andrew Gordon Wilson', 'Marc Finzi', 'Polina Kirichenko'] | 2019-12-30 | null | https://proceedings.icml.cc/static/paper_files/icml/2020/3378-Paper.pdf | https://proceedings.icml.cc/static/paper_files/icml/2020/3378-Paper.pdf | icml-2020-1 | ['semi-supervised-text-classification-1'] | ['natural-language-processing'] | [ 9.69952568e-02 2.33048841e-01 -3.68661553e-01 -8.14655662e-01
-7.14941204e-01 -7.04360306e-01 9.33395028e-01 -4.84301507e-01
1.50213838e-01 6.27024531e-01 6.54282212e-01 -3.76236349e-01
-4.31799352e-01 -6.60653234e-01 -4.22629297e-01 -7.85024822e-01
1.34604096e-01 1.15486681e+00 -4.72955376e-01 1.61468431e-01
-2.48119980e-02 5.08356571e-01 -1.19456887e+00 3.20167363e-01
7.74374008e-01 7.71952510e-01 -1.50239974e-01 7.76162803e-01
-2.68948466e-01 1.05445230e+00 -5.45798600e-01 -6.92481637e-01
1.78619355e-01 -4.66831356e-01 -8.44300747e-01 6.22194588e-01
5.98428667e-01 -2.03796670e-01 -1.60628334e-01 9.06751871e-01
3.65108103e-01 9.64002460e-02 1.30751014e+00 -1.73046780e+00
-1.13869488e+00 7.53254294e-01 -4.09526289e-01 -8.65405500e-02
5.79206422e-02 2.91762531e-01 9.80176210e-01 -7.31829226e-01
7.07670927e-01 1.81984973e+00 3.58675241e-01 3.77526432e-01
-1.70891023e+00 -3.41197103e-01 1.63480937e-02 -3.23417902e-01
-1.07795465e+00 -3.97141725e-01 6.03103340e-01 -8.58301103e-01
7.69836545e-01 3.81462663e-01 3.66188645e-01 1.23425543e+00
2.09647402e-01 9.73270476e-01 9.56727922e-01 -2.66852081e-01
2.07907036e-01 2.90261090e-01 4.32003103e-02 7.66378045e-01
-2.49194041e-01 1.42268064e-02 -6.23344779e-01 -3.05179358e-01
8.73230338e-01 2.27902189e-01 -1.25031933e-01 -7.74101377e-01
-1.18730760e+00 1.15224349e+00 2.76882499e-01 -1.84506804e-01
-9.04946849e-02 3.30092549e-01 1.57726243e-01 1.49590999e-01
7.67338574e-01 2.21459925e-01 -5.16019426e-02 -2.26895973e-01
-1.16814411e+00 3.08956336e-02 8.51074398e-01 1.16290772e+00
7.14740038e-01 5.47385037e-01 -1.56478420e-01 7.45885849e-01
7.26739645e-01 6.28003657e-01 6.10091209e-01 -1.25673378e+00
1.12063505e-01 5.14406443e-01 -2.07190603e-01 -7.28516281e-01
-3.13808680e-01 -7.85474002e-01 -1.20958078e+00 5.13985991e-01
2.33870521e-01 -5.78119606e-02 -1.10806298e+00 1.72710991e+00
5.95413521e-02 -4.96688157e-01 6.51051998e-02 5.65583706e-01
8.23412538e-01 6.74987137e-01 1.59552731e-02 5.56932837e-02
9.14223075e-01 -1.02690983e+00 -6.16688192e-01 -3.65489691e-01
3.41788769e-01 -6.48967624e-01 1.18729854e+00 3.56299341e-01
-9.73841250e-01 -4.47545201e-01 -6.25769198e-01 -3.60246927e-01
-4.58805859e-01 2.68899411e-01 8.79428923e-01 6.35429502e-01
-1.11830199e+00 6.14572704e-01 -1.06906009e+00 -2.67438948e-01
7.56961167e-01 9.81079787e-02 -3.57819945e-01 1.15781352e-01
-5.26421189e-01 4.81405288e-01 6.67363703e-01 -1.41919240e-01
-9.14956868e-01 -8.69256139e-01 -9.86452878e-01 2.89175183e-01
1.11191615e-01 -1.01668739e+00 1.25613356e+00 -8.43394995e-01
-1.50548851e+00 7.31956005e-01 -1.52846903e-01 -3.53166938e-01
8.65126014e-01 -6.71762750e-02 -1.57958955e-01 -2.12459013e-01
1.85931727e-01 1.05634320e+00 1.04178488e+00 -9.90118563e-01
-1.78814426e-01 -1.54602259e-01 -4.88442034e-01 1.17945880e-01
-3.68806273e-01 -2.94078946e-01 -1.97645217e-01 -8.81823599e-01
2.56308727e-02 -6.83754325e-01 -2.14698061e-01 1.12265430e-01
-7.47893929e-01 4.25493456e-02 9.92042065e-01 -5.55123806e-01
1.02616823e+00 -2.05594826e+00 2.38805220e-01 2.77470231e-01
4.89094257e-01 -9.69609693e-02 -9.93749127e-02 3.44191641e-01
-3.64503205e-01 2.09451020e-01 -4.82251167e-01 -7.28768349e-01
4.46330875e-01 4.30543095e-01 -5.89686096e-01 2.46206135e-01
1.92476049e-01 1.46242356e+00 -7.81092167e-01 -3.77143711e-01
4.48971629e-01 6.83265984e-01 -4.82893735e-01 2.20395193e-01
-3.64790708e-01 3.88114542e-01 9.13709924e-02 6.61176622e-01
3.84670913e-01 -7.27995574e-01 -6.08285218e-02 -9.10094082e-02
2.50748396e-01 2.91411970e-02 -1.29118335e+00 1.52164125e+00
-2.84594864e-01 8.93737197e-01 -2.41163760e-01 -4.61765528e-01
1.08736086e+00 -9.45134163e-02 3.34874451e-01 -3.32163036e-01
-3.96574615e-03 -7.86359757e-02 -4.51427996e-01 -1.27043441e-01
5.18413126e-01 -2.45778501e-01 -2.82771196e-02 8.85823131e-01
7.06365883e-01 -8.02931860e-02 5.15117764e-01 6.42502308e-01
4.55408901e-01 3.62902254e-01 4.11816806e-01 -2.87205726e-01
-4.86463606e-02 -2.28848174e-01 1.50965713e-02 7.10635126e-01
4.49199051e-01 8.21536124e-01 6.74500108e-01 -4.76613164e-01
-1.02924430e+00 -1.46239924e+00 -4.49533761e-02 1.27384686e+00
-4.83276993e-01 -5.23765862e-01 -4.94124979e-01 -5.09314239e-01
1.41718900e-02 1.03113520e+00 -8.20755482e-01 -1.95433393e-01
-1.47521511e-01 -1.09711611e+00 3.19660425e-01 8.39876771e-01
2.84422666e-01 -1.08244562e+00 -1.80297524e-01 1.14118092e-01
-2.62754057e-02 -7.43535876e-01 -7.04983473e-01 4.49334651e-01
-9.11384106e-01 -7.28094518e-01 -6.94781899e-01 -4.31255490e-01
8.84197772e-01 -9.37637240e-02 1.34897792e+00 -6.99812412e-01
-3.41187477e-01 4.40885514e-01 2.89182752e-01 -2.32661471e-01
-1.06168103e+00 2.39260733e-01 -3.11819643e-01 7.62639269e-02
2.54469756e-02 -6.58524990e-01 -8.27693120e-02 3.82071972e-01
-1.11757147e+00 3.89628351e-01 3.35649788e-01 9.13726330e-01
6.73622191e-01 -3.68563771e-01 3.30255300e-01 -1.12718260e+00
9.10087466e-01 -4.53869700e-01 -6.44344807e-01 4.66583431e-01
-1.03615367e+00 4.82427150e-01 4.53235537e-01 -4.86084998e-01
-1.26295531e+00 1.53554246e-01 4.96531092e-02 -6.79112971e-01
-3.09639424e-01 4.12248969e-01 -2.99290866e-01 3.47132772e-01
1.02365506e+00 2.11564228e-01 3.48919839e-01 -5.82794070e-01
1.15950549e+00 5.31855881e-01 1.21809185e+00 -3.11511666e-01
7.90753901e-01 6.16389573e-01 6.73015937e-02 -6.48833334e-01
-6.89626276e-01 -3.98839623e-01 -8.41968954e-01 1.82791967e-02
5.77182174e-01 -7.55148768e-01 -5.33981442e-01 4.06731427e-01
-8.53125393e-01 -4.03196484e-01 -7.25703955e-01 1.34008408e-01
-8.58577311e-01 3.19760948e-01 -5.07997155e-01 -5.65390944e-01
-5.24593115e-01 -9.06136036e-01 1.09215653e+00 1.76777273e-01
-6.18274808e-01 -1.60073256e+00 1.69871047e-01 1.48558110e-01
5.95734537e-01 2.79698998e-01 9.52388644e-01 -6.36260629e-01
-6.86420977e-01 -1.04233630e-01 -1.75582096e-01 4.42391515e-01
3.67282033e-01 3.41345042e-01 -1.08411860e+00 -1.36667073e-01
-4.09267336e-01 -3.49291146e-01 1.12429178e+00 5.11115074e-01
1.08287680e+00 -6.17568791e-01 -1.43854842e-01 1.15858245e+00
9.71607327e-01 -9.95659158e-02 5.79933524e-01 -7.69492760e-02
9.10068631e-01 4.56805736e-01 -3.17186527e-02 4.02829766e-01
1.49891242e-01 1.05168968e-01 4.37599182e-01 -3.98686200e-01
-1.79216504e-01 -5.45141101e-01 2.18320057e-01 5.16808748e-01
3.09368908e-01 -7.33078480e-01 -7.03605831e-01 3.09803694e-01
-1.91822374e+00 -1.06229258e+00 -2.31635477e-02 1.87134349e+00
6.59097910e-01 1.75339997e-01 2.49077007e-01 -1.95938900e-01
5.48953891e-01 1.67085513e-01 -6.25525832e-01 -2.30745509e-01
-4.78648752e-01 -1.02251425e-01 3.65833133e-01 6.33484662e-01
-1.23152137e+00 7.97695398e-01 7.65276861e+00 1.09754133e+00
-1.05403471e+00 -7.90772513e-02 1.06594634e+00 -3.59794408e-01
-7.19722211e-01 -8.90522674e-02 -7.62984276e-01 3.34166050e-01
7.52199411e-01 -3.26082319e-01 4.81245100e-01 1.02005148e+00
4.87925150e-02 1.09484009e-01 -1.20211458e+00 1.15198588e+00
1.79401323e-01 -1.78817368e+00 3.52547228e-01 9.18836072e-02
7.52221584e-01 -2.75624190e-02 3.78715813e-01 -3.67816426e-02
8.70939791e-01 -1.30595899e+00 9.66536403e-01 7.55206883e-01
1.00533056e+00 -6.81155562e-01 2.00362325e-01 4.32970226e-01
-6.67932749e-01 1.79782823e-01 -2.66740620e-01 2.24698320e-01
5.25567472e-01 5.94559610e-01 -1.02202249e+00 2.60396898e-01
4.53441858e-01 1.01901722e+00 -8.98654521e-01 9.39315200e-01
-3.22627574e-01 8.41415763e-01 -3.87564212e-01 2.05255866e-01
1.42449021e-01 -3.17871153e-01 4.43195105e-01 1.54810500e+00
1.36418283e-01 -5.91081679e-01 1.19173028e-01 1.41536176e+00
-4.27726917e-02 -6.17226772e-02 -5.15890956e-01 -2.59379268e-01
2.34505851e-02 1.37231159e+00 -1.10676301e+00 -4.99936104e-01
1.70657501e-01 8.07819426e-01 1.08203717e-01 5.69374263e-01
-6.68579400e-01 1.79495215e-02 2.52644897e-01 6.69946745e-02
7.52578005e-02 -8.38362202e-02 -4.72273678e-01 -1.23341191e+00
-3.26881677e-01 -6.14823282e-01 5.99600196e-01 -1.09099150e+00
-1.55245388e+00 7.24320114e-01 4.12801176e-01 -1.11202586e+00
-9.91571188e-01 -6.49736464e-01 -5.26082397e-01 9.71535027e-01
-1.05841804e+00 -1.34568977e+00 -3.90908897e-01 3.61964613e-01
3.92141700e-01 -4.28263843e-01 8.46452534e-01 2.70019658e-02
-4.40809518e-01 4.21497792e-01 4.08767521e-01 1.08352296e-01
7.32363880e-01 -1.62448740e+00 6.48364663e-01 7.75601566e-01
6.03997946e-01 6.58127844e-01 5.82045257e-01 -6.22624278e-01
-8.78629267e-01 -1.25601757e+00 4.97307599e-01 -5.27995646e-01
4.50732082e-01 -5.63440979e-01 -8.56160998e-01 1.08879840e+00
4.08740669e-01 -1.99977443e-01 8.18345487e-01 -2.04204023e-02
-4.94762361e-01 1.39057636e-01 -9.00894523e-01 3.74476224e-01
8.75671029e-01 -4.67906654e-01 -2.93418109e-01 5.06247103e-01
5.36885381e-01 -4.73532766e-01 -6.25681460e-01 -7.63794556e-02
5.32309771e-01 -9.63835895e-01 9.34121072e-01 -8.22158813e-01
6.04941428e-01 -1.21993199e-01 -4.20864299e-02 -1.44578063e+00
-6.17550254e-01 -1.10237885e+00 -3.10350865e-01 1.42960298e+00
4.62908149e-01 -6.13426507e-01 8.86658013e-01 6.76307797e-01
6.61812648e-02 -5.65851450e-01 -5.43590069e-01 -7.03255177e-01
5.25858663e-02 -4.21999425e-01 6.73555434e-01 8.65835965e-01
-3.89271021e-01 4.74256009e-01 -6.34833694e-01 -2.97598541e-01
7.65668631e-01 3.99416029e-01 9.10245359e-01 -1.35487890e+00
-5.75511813e-01 -6.78257048e-01 -3.46521705e-01 -1.12215531e+00
9.93276238e-02 -1.28265786e+00 -2.16925055e-01 -1.63303649e+00
2.97409534e-01 -5.93929291e-02 2.73139894e-01 7.45157838e-01
1.59970269e-01 3.06335896e-01 3.21394764e-02 4.07696217e-01
-5.08448005e-01 5.86610138e-01 1.04607844e+00 -2.19760433e-01
-1.33527666e-01 3.63431685e-02 -9.29213524e-01 7.44054019e-01
6.32066011e-01 -4.96816963e-01 -7.20005453e-01 -3.15378666e-01
1.78969041e-01 -1.50367871e-01 6.76683187e-01 -3.80080104e-01
2.41468474e-02 -2.76888013e-01 6.69372678e-01 -7.77164221e-01
1.54838398e-01 -3.77165258e-01 6.13609493e-01 9.65387821e-02
-6.05968416e-01 -2.05028895e-02 5.61285727e-02 3.67648304e-01
-1.15359634e-01 -1.46550313e-01 8.24005723e-01 -8.21261853e-02
-5.69554865e-01 3.61486226e-01 -2.77375102e-01 2.20471784e-01
6.00042641e-01 -2.62097001e-01 -5.97595334e-01 -8.60653758e-01
-1.00682437e+00 1.52194470e-01 3.88687432e-01 4.73346859e-01
4.66563851e-01 -1.35264933e+00 -6.94917858e-01 5.43634176e-01
-2.12610816e-03 1.23682372e-01 4.09204923e-02 3.74173462e-01
-3.13793272e-01 2.76605338e-01 -3.12414914e-01 -9.24285889e-01
-9.82133389e-01 3.76956046e-01 3.65704596e-01 -2.64210463e-01
-3.66720378e-01 7.25597620e-01 3.82670939e-01 -6.87665820e-01
1.99700549e-01 -2.84619063e-01 1.74468771e-01 2.12506548e-01
3.79499853e-01 5.20233810e-01 -1.57435745e-01 -6.08940780e-01
5.23562618e-02 1.84570730e-01 1.45528316e-01 -2.60802209e-01
1.48260188e+00 -1.28311157e-01 -5.32382093e-02 5.18087149e-01
1.29904699e+00 -2.54801631e-01 -1.68381977e+00 -2.42808431e-01
-3.17476183e-01 -3.08401972e-01 -1.22186504e-01 -9.74906266e-01
-1.12952077e+00 1.03838599e+00 2.97335923e-01 1.74189284e-01
8.97272050e-01 2.93065757e-01 3.40602174e-02 3.52589816e-01
-2.83747941e-01 -5.66385567e-01 2.73373574e-01 2.86732376e-01
1.06025004e+00 -1.12677538e+00 1.70404658e-01 -3.70364606e-01
-7.73411632e-01 1.33121908e+00 3.51466686e-01 2.76408702e-01
6.09897912e-01 5.57791114e-01 1.93797797e-01 -2.01720640e-01
-8.34584892e-01 1.16054580e-01 6.14383757e-01 8.25014532e-01
2.86040306e-01 -1.42386109e-02 6.46046996e-01 3.44463289e-01
-6.06857359e-01 -1.43251702e-01 3.54482114e-01 6.33954704e-01
-1.60976380e-01 -8.63834620e-01 -3.52848440e-01 6.50305033e-01
-6.93039745e-02 -1.75227493e-01 -3.26542348e-01 7.35652745e-01
-2.95673370e-01 4.25999939e-01 3.00790787e-01 2.43467297e-02
-2.10245222e-01 4.37045991e-01 2.24899322e-01 -4.43276912e-01
-1.57577366e-01 6.90461099e-01 -2.02785403e-01 -3.18367511e-01
-4.11921203e-01 -6.93765044e-01 -9.92105603e-01 -3.07985812e-01
-1.53288633e-01 -3.94500345e-02 5.41374028e-01 8.04383337e-01
5.16460776e-01 4.86598819e-01 3.36410135e-01 -6.55756831e-01
-6.28809512e-01 -1.09580243e+00 -4.80314076e-01 4.65723723e-01
2.53442168e-01 -4.15928334e-01 -3.76528680e-01 5.83447695e-01] | [11.369890213012695, -0.0861077532172203] |
b4a0df00-264a-434c-9d68-d4f8755bd3d8 | visual-depth-mapping-from-monocular-images | 1812.04082 | null | http://arxiv.org/abs/1812.04082v1 | http://arxiv.org/pdf/1812.04082v1.pdf | Visual Depth Mapping from Monocular Images using Recurrent Convolutional Neural Networks | A reliable sense-and-avoid system is critical to enabling safe autonomous
operation of unmanned aircraft. Existing sense-and-avoid methods often require
specialized sensors that are too large or power intensive for use on small
unmanned vehicles. This paper presents a method to estimate object distances
based on visual image sequences, allowing for the use of low-cost, on-board
monocular cameras as simple collision avoidance sensors. We present a deep
recurrent convolutional neural network and training method to generate depth
maps from video sequences. Our network is trained using simulated camera and
depth data generated with Microsoft's AirSim simulator. Empirically, we show
that our model achieves superior performance compared to models generated using
prior methods.We further demonstrate that the method can be used for
sense-and-avoid of obstacles in simulation. | ['Rachael E. Tompa', 'John Mern', 'Mykel J. Kochenderfer', 'Kyle Julian'] | 2018-12-10 | null | null | null | null | ['depth-and-camera-motion'] | ['computer-vision'] | [ 5.88234551e-02 -5.53602651e-02 2.15267837e-01 -3.67073536e-01
-5.09537637e-01 -7.39539623e-01 5.19348145e-01 -3.65193337e-01
-7.27060020e-01 6.24316931e-01 -3.76468480e-01 -6.37518525e-01
1.90139577e-01 -7.61094630e-01 -8.34878922e-01 -3.16350937e-01
-3.38242650e-01 3.32250893e-01 5.13388515e-01 -4.75654334e-01
4.47998121e-02 9.40847516e-01 -1.58363855e+00 -1.24171972e-01
8.45548809e-02 8.83086026e-01 5.13349771e-01 1.26206458e+00
6.40084088e-01 7.80248940e-01 -7.81094372e-01 3.20544422e-01
7.31595635e-01 -2.65541613e-01 -2.20773295e-01 6.23900928e-02
3.83171678e-01 -7.81112373e-01 -7.67584503e-01 8.38414490e-01
3.93085301e-01 3.90156567e-01 3.92612636e-01 -1.28100610e+00
1.31540716e-01 -2.03739479e-01 -1.84672445e-01 2.88385957e-01
3.68676126e-01 4.02161270e-01 4.09823656e-01 -5.14026523e-01
6.91349089e-01 9.81745422e-01 6.90176368e-01 7.69915164e-01
-7.90275097e-01 -4.70162630e-01 1.03483990e-01 6.03174642e-02
-1.54372251e+00 -3.65922540e-01 5.13822377e-01 -2.67485797e-01
1.38302815e+00 -3.60483788e-02 7.55398870e-01 9.98791933e-01
7.02203035e-01 4.02293086e-01 4.70285058e-01 -3.58414948e-02
3.90299231e-01 -3.84233028e-01 -5.36756158e-01 1.07079685e+00
5.22996306e-01 7.29660690e-01 -6.13074228e-02 1.65055871e-01
1.11565280e+00 -5.36096729e-02 -2.79264987e-01 -6.93413794e-01
-1.23130226e+00 6.86217248e-01 7.73962557e-01 -2.96928138e-01
-2.37974569e-01 6.41918361e-01 1.16785593e-01 2.10770056e-01
1.00369193e-01 5.53768456e-01 -1.51593477e-01 -2.26011470e-01
-7.13796258e-01 4.79179859e-01 5.27584493e-01 1.33373535e+00
6.04859352e-01 5.97404778e-01 4.41929370e-01 1.49850264e-01
2.29956269e-01 6.69532478e-01 2.44556069e-01 -1.30720294e+00
4.20466751e-01 2.59955049e-01 5.70936799e-01 -8.25382590e-01
-6.19111538e-01 -3.10216129e-01 -3.86576504e-01 1.17692125e+00
-1.59841344e-01 -6.91759348e-01 -1.05324304e+00 1.29284346e+00
1.60878330e-01 2.16213271e-01 4.30330396e-01 1.29563367e+00
4.57656026e-01 6.79149985e-01 -4.00750905e-01 1.55403823e-01
7.75545299e-01 -9.85521972e-01 -4.17628348e-01 -8.08245838e-01
7.62068629e-01 -3.96170616e-01 3.56074721e-01 4.58185256e-01
-9.74692523e-01 -6.09723806e-01 -1.58285522e+00 4.42444794e-02
-2.94243187e-01 1.85370758e-01 5.15089869e-01 2.64388412e-01
-1.16695404e+00 6.02152586e-01 -1.18790412e+00 -2.31085137e-01
1.57384336e-01 4.43754137e-01 -5.26256859e-01 1.30270958e-01
-8.96487296e-01 1.23515570e+00 2.67032057e-01 2.82103509e-01
-1.70206380e+00 -6.10847995e-02 -1.32421899e+00 -3.46566051e-01
4.17287111e-01 -7.30419815e-01 1.58234715e+00 -5.89087784e-01
-1.52414727e+00 5.91556311e-01 -4.92293425e-02 -9.65297818e-01
3.40862989e-01 -5.46281815e-01 -1.53909519e-01 3.21803898e-01
-8.95380080e-02 9.74027395e-01 6.22126698e-01 -1.23543143e+00
-8.05233777e-01 -6.55528009e-02 2.64468640e-01 5.89422643e-01
3.97429466e-01 -3.00619066e-01 -2.32650712e-01 -3.20029169e-01
2.01643538e-02 -1.28345239e+00 -8.12470913e-01 3.44318658e-01
-1.88700616e-01 5.20930886e-01 1.03350151e+00 -2.78039962e-01
5.58965564e-01 -1.71352470e+00 1.91435844e-01 3.02537549e-02
5.99046536e-02 3.92565370e-01 -8.46205205e-02 2.80338913e-01
2.53340185e-01 -3.31888497e-01 -1.28906488e-01 -2.10491136e-01
-3.16108197e-01 2.87211508e-01 -3.74343038e-01 4.47883993e-01
-3.00733373e-02 5.66994607e-01 -9.65688825e-01 -2.39172019e-02
6.28829658e-01 5.17001569e-01 -5.22184193e-01 5.34412444e-01
-1.93175778e-01 4.47406352e-01 -1.61931887e-01 5.92424572e-01
4.00298357e-01 3.09189111e-01 4.96480316e-02 -2.18869317e-02
-3.14562589e-01 2.51425892e-01 -8.72047782e-01 1.70052493e+00
-5.98508835e-01 1.13366687e+00 3.76810789e-01 -4.95637715e-01
9.53827083e-01 1.33210078e-01 9.26269144e-02 -4.55229491e-01
5.56589782e-01 1.44862235e-01 -1.56189904e-01 -2.02986360e-01
8.02153111e-01 -2.00456619e-01 -1.97078213e-01 3.94018777e-02
-1.64502218e-01 -8.25757623e-01 7.17592016e-02 7.55767003e-02
1.32522559e+00 2.44767338e-01 1.62928313e-01 4.99012694e-02
8.19244832e-02 3.72885585e-01 5.20501673e-01 5.09364486e-01
-1.61428511e-01 6.18959665e-01 -6.29215455e-03 -7.27920055e-01
-1.02560520e+00 -1.18674946e+00 2.71755457e-01 3.55836064e-01
7.49780834e-01 -1.93676040e-01 -6.94192946e-01 -5.36235094e-01
-9.87941474e-02 7.37236381e-01 -2.72007883e-01 -2.86661237e-01
-5.95227718e-01 -2.01829553e-01 5.40775418e-01 9.29639816e-01
5.20657599e-01 -6.04865193e-01 -1.60411096e+00 3.59216154e-01
2.16606170e-01 -1.44833112e+00 -1.04660198e-01 2.41676301e-01
-7.44893014e-01 -1.14122498e+00 -3.52078348e-01 -5.96514225e-01
8.14014971e-01 7.58813202e-01 9.11177814e-01 8.35528225e-03
-4.96304870e-01 5.13176799e-01 1.93239376e-02 -6.24302030e-01
-2.48774067e-01 -2.17406288e-01 5.01511574e-01 -6.14581823e-01
2.09492952e-01 -2.89144069e-01 -7.20086575e-01 5.39360106e-01
-5.54631710e-01 9.60688740e-02 5.36323428e-01 5.23495913e-01
5.13702512e-01 3.80300842e-02 -5.31927273e-02 -8.18741396e-02
4.27275091e-01 -1.98799744e-01 -1.31139886e+00 -3.56896579e-01
-2.59299725e-01 -1.06205508e-01 6.96546078e-01 -1.66615292e-01
-7.18504608e-01 5.28916180e-01 -1.68798491e-01 -9.19806957e-01
-1.89090371e-01 6.03341050e-02 -3.47484909e-02 -5.40042341e-01
7.00448573e-01 -1.03294633e-01 1.68572456e-01 5.21907322e-02
1.28221869e-01 5.00010371e-01 8.02927375e-01 7.68362591e-03
9.91542697e-01 8.54448020e-01 2.95276791e-01 -9.17266011e-01
-6.00887179e-01 1.27698360e-02 -6.90903604e-01 -4.36028838e-01
8.36345553e-01 -1.25189602e+00 -8.19736362e-01 2.13001654e-01
-1.11577737e+00 -6.73630655e-01 -2.14469880e-02 8.27387512e-01
-6.88438535e-01 1.97323099e-01 -5.77015698e-01 -7.58091331e-01
1.81839205e-02 -1.28521848e+00 1.25745523e+00 2.85065114e-01
-2.06336036e-01 -1.02706492e+00 1.27725035e-01 2.43172562e-03
3.84890825e-01 3.79492193e-01 -5.47812879e-02 -3.82900536e-02
-1.00821972e+00 -4.75128651e-01 1.45251453e-01 2.34188080e-01
1.30179310e-02 -1.56648517e-01 -7.17317104e-01 -6.10283196e-01
-1.81447491e-01 -3.63793135e-01 7.56228626e-01 4.42117989e-01
9.86720920e-01 -2.31159300e-01 -6.81692898e-01 7.76610255e-01
1.37442863e+00 5.74593961e-01 4.35850263e-01 3.38930309e-01
7.85375357e-01 2.83543944e-01 8.97396684e-01 3.67217183e-01
2.62856930e-01 7.33708858e-01 9.12051380e-01 -2.24425092e-01
2.78356522e-01 -3.22375268e-01 4.01896864e-01 3.88743460e-01
-4.73469980e-02 -4.00627136e-01 -9.90377665e-01 6.26181901e-01
-1.64280641e+00 -7.50929117e-01 2.68293262e-01 2.26225090e+00
1.99959159e-01 4.68205959e-01 -2.28012398e-01 -1.41701922e-01
3.80599260e-01 1.56326979e-01 -4.73177791e-01 -6.33440793e-01
2.42174178e-01 -1.52050108e-01 1.08158910e+00 1.00102854e+00
-1.14837098e+00 1.16583276e+00 7.18435860e+00 9.42736492e-02
-1.10722017e+00 -3.14439178e-01 -5.43677947e-03 -5.80460131e-01
-5.78726791e-02 -1.63272135e-02 -9.72313404e-01 4.97558666e-03
1.13554132e+00 -6.43541887e-02 3.65145683e-01 1.09884655e+00
1.56154990e-01 -3.34857345e-01 -1.14810920e+00 9.74445224e-01
1.64029211e-01 -1.32704198e+00 -8.57133642e-02 -5.89275965e-03
5.65234601e-01 3.32069069e-01 -3.83059122e-02 4.29558270e-02
8.52380633e-01 -1.04707432e+00 6.27979636e-01 2.03860879e-01
7.06638277e-01 -9.91132021e-01 8.43149722e-01 3.97538215e-01
-1.30982244e+00 -9.67485458e-02 -6.89874589e-01 -4.88812715e-01
5.49492896e-01 2.13851407e-01 -1.19124222e+00 2.74872363e-01
4.91884947e-01 6.44148827e-01 -1.44690320e-01 9.42653060e-01
-2.72669613e-01 2.07048599e-02 -3.79053175e-01 -1.07981473e-01
6.56171560e-01 7.05497786e-02 7.77315319e-01 8.82810414e-01
5.45189440e-01 1.17496490e-01 3.28874499e-01 5.48542798e-01
1.71970531e-01 -8.59183967e-01 -1.58775687e+00 2.10412934e-01
3.87601554e-01 1.09576023e+00 -5.86326897e-01 -2.94696540e-01
-2.22827300e-01 9.92328584e-01 1.28478929e-01 3.62675577e-01
-9.73606646e-01 -7.91403294e-01 1.07775772e+00 1.57079756e-01
3.85253608e-01 -9.92657125e-01 8.08683708e-02 -8.99829447e-01
-1.24549881e-01 -5.37492812e-01 -1.32065237e-01 -1.20014524e+00
-5.88585019e-01 1.02388918e+00 2.59773824e-02 -1.65856671e+00
-7.71853507e-01 -9.68355060e-01 -4.56298977e-01 4.85103875e-01
-1.40516436e+00 -8.26515317e-01 -7.44021833e-01 3.91882569e-01
6.14372551e-01 -3.65370363e-01 6.86802149e-01 -1.49123505e-01
-2.39777416e-01 -7.06805512e-02 -3.37400138e-01 8.25743154e-02
2.60039330e-01 -9.15231049e-01 8.98906589e-01 1.06377840e+00
-4.07704934e-02 3.01535577e-01 9.10269260e-01 -7.39584446e-01
-1.53515112e+00 -1.23035276e+00 2.40579516e-01 -6.88439250e-01
3.27130377e-01 -3.46243590e-01 -3.54965270e-01 1.12978125e+00
2.96437532e-01 -2.10758448e-02 1.42883375e-01 -5.01890421e-01
2.06719339e-01 -1.59258202e-01 -9.61466074e-01 9.42143679e-01
1.08092225e+00 -4.04706776e-01 -5.69377303e-01 1.24083839e-01
5.76003253e-01 -9.29049075e-01 -2.45175675e-01 4.80263501e-01
4.69018221e-01 -9.60976303e-01 9.98380005e-01 -3.33101541e-01
1.11143865e-01 -6.99179471e-01 -5.50345182e-02 -1.55555034e+00
-1.55357003e-01 -7.15151966e-01 1.11370325e-01 1.30749688e-01
3.37551892e-01 -2.94149846e-01 8.69193375e-01 4.55824107e-01
-4.71254885e-01 -5.10975957e-01 -1.06406045e+00 -8.73845398e-01
-3.49621892e-01 -4.88734692e-01 2.88211972e-01 2.71768779e-01
-1.06697224e-01 2.18472898e-01 -3.98137271e-01 6.35096729e-01
6.21858299e-01 -2.14699730e-01 9.38575625e-01 -8.71510804e-01
6.67936280e-02 -6.35345757e-04 -8.80526125e-01 -1.36274397e+00
3.44811618e-01 -3.35879773e-01 5.39457321e-01 -1.74836445e+00
-6.36162102e-01 -8.56047049e-02 2.07620740e-01 2.54897267e-01
4.14031804e-01 2.72497475e-01 7.79127404e-02 -5.39560094e-02
-6.91732585e-01 5.86689830e-01 1.05058634e+00 -4.86563295e-02
-1.70607604e-02 1.82973163e-03 -1.87738821e-01 1.00113344e+00
9.15869176e-01 -2.32416227e-01 -6.80887759e-01 -7.63932765e-01
1.72767907e-01 2.81546921e-01 6.95314407e-01 -1.79202724e+00
5.68675101e-01 -1.22312084e-02 5.45027196e-01 -7.78876007e-01
9.47221756e-01 -1.08549321e+00 -9.90791991e-02 8.13992739e-01
-9.12556574e-02 6.31753325e-01 6.17023826e-01 6.49984956e-01
-2.33559549e-01 -1.11102775e-01 7.40435004e-01 -3.83582264e-01
-1.08813858e+00 1.47660434e-01 -1.09501481e+00 -1.99525103e-01
1.47940874e+00 -3.85031253e-01 -1.35059565e-01 -7.57592320e-01
-4.81800348e-01 2.78793484e-01 6.96843624e-01 5.50546527e-01
1.28117740e+00 -1.27302456e+00 -3.43616396e-01 5.37882507e-01
-9.65942368e-02 2.78924644e-01 1.03581361e-01 4.17387765e-03
-1.27703917e+00 7.54166663e-01 -4.87238944e-01 -7.10641325e-01
-1.17359269e+00 5.87269247e-01 7.16439545e-01 1.60090998e-01
-6.60617113e-01 7.69306540e-01 2.21667543e-01 -4.23580229e-01
1.89211786e-01 -4.74099278e-01 1.86573565e-01 -6.90335333e-01
6.39598727e-01 2.29923368e-01 -7.08642527e-02 -4.91671622e-01
-4.76930887e-01 5.99974632e-01 1.32196456e-01 -5.75065076e-01
8.58483195e-01 -1.79197311e-01 5.46567023e-01 3.08804929e-01
9.17580426e-01 -1.94790110e-01 -1.92911375e+00 4.27459717e-01
-3.88033509e-01 -4.70746458e-01 2.51493067e-01 -3.11403096e-01
-9.03708875e-01 1.05292797e+00 6.16926968e-01 -3.97881955e-01
7.75101066e-01 -5.29024482e-01 8.85947168e-01 9.99873757e-01
8.86785924e-01 -1.03643882e+00 2.36107800e-02 7.04675317e-01
8.05210054e-01 -1.15254354e+00 -1.33594096e-01 -1.89365923e-01
-8.00085723e-01 1.06686080e+00 9.86842334e-01 -4.22137409e-01
3.94584447e-01 8.87116432e-01 3.97088230e-01 -2.24646300e-01
-1.08745623e+00 -1.65159971e-01 2.14829203e-02 8.56552482e-01
-2.36840118e-02 -9.10136849e-02 5.37725091e-01 -1.51791140e-01
-2.64061809e-01 -2.91274209e-02 9.47277844e-01 1.37781775e+00
-7.78623879e-01 -5.38327456e-01 -2.82321632e-01 -3.26179266e-02
-6.90814033e-02 6.03742301e-02 -2.82938778e-01 8.94288123e-01
-1.78761452e-01 8.85125220e-01 4.71995682e-01 -7.52928436e-01
4.33595717e-01 -5.21765590e-01 5.24561226e-01 -5.38596749e-01
-2.91863263e-01 -2.79728115e-01 4.07116830e-01 -9.53023434e-01
-1.01413853e-01 -1.47986993e-01 -1.45093513e+00 -1.35787413e-01
8.89808312e-02 1.05466004e-02 8.22080255e-01 6.27393782e-01
6.00874305e-01 7.24603415e-01 5.41706383e-01 -1.43200910e+00
-2.72972286e-01 -4.58881766e-01 -3.44722569e-01 -1.83196694e-01
6.87137008e-01 -8.22980702e-01 -2.80860305e-01 -1.23802423e-01] | [4.893213272094727, 0.7395444512367249] |
60a8c495-b466-484f-8e68-b7dd22110462 | receptive-field-regularized-cnns-for-music | 2007.13503 | null | https://arxiv.org/abs/2007.13503v1 | https://arxiv.org/pdf/2007.13503v1.pdf | Receptive-Field Regularized CNNs for Music Classification and Tagging | Convolutional Neural Networks (CNNs) have been successfully used in various Music Information Retrieval (MIR) tasks, both as end-to-end models and as feature extractors for more complex systems. However, the MIR field is still dominated by the classical VGG-based CNN architecture variants, often in combination with more complex modules such as attention, and/or techniques such as pre-training on large datasets. Deeper models such as ResNet -- which surpassed VGG by a large margin in other domains -- are rarely used in MIR. One of the main reasons for this, as we will show, is the lack of generalization of deeper CNNs in the music domain. In this paper, we present a principled way to make deep architectures like ResNet competitive for music-related tasks, based on well-designed regularization strategies. In particular, we analyze the recently introduced Receptive-Field Regularization and Shake-Shake, and show that they significantly improve the generalization of deep CNNs on music-related tasks, and that the resulting deep CNNs can outperform current more complex models such as CNNs augmented with pre-training and attention. We demonstrate this on two different MIR tasks and two corresponding datasets, thus offering our deep regularized CNNs as a new baseline for these datasets, which can also be used as a feature-extracting module in future, more complex approaches. | ['Gerhard Widmer', 'Hamid Eghbal-zadeh', 'Paul Primus', 'Khaled Koutini', 'Shreyan Chowdhury', 'Verena Haunschmid'] | 2020-07-27 | null | null | null | null | ['music-classification'] | ['music'] | [ 1.16954610e-01 -3.09971366e-02 4.88202460e-02 -2.84692086e-02
-5.71447432e-01 -3.98738474e-01 6.63093746e-01 -5.54105081e-02
-6.61979675e-01 2.99074113e-01 3.96234363e-01 6.79169893e-02
-4.25035566e-01 -6.21098518e-01 -7.47698545e-01 -4.84906077e-01
-3.82028073e-02 3.60176474e-01 1.25262722e-01 -5.90080380e-01
1.78737685e-01 4.73428428e-01 -1.81866372e+00 3.33509862e-01
3.53510678e-01 1.02426577e+00 1.86720744e-01 3.16219151e-01
2.05964800e-02 7.66229928e-01 -4.69218582e-01 -3.60048115e-01
3.74699652e-01 -2.74974018e-01 -9.85043883e-01 -3.45224917e-01
5.33113599e-01 1.96737483e-01 -5.90020120e-01 7.11177528e-01
8.69250357e-01 4.43309486e-01 5.89512110e-01 -7.95610726e-01
-6.06413722e-01 1.02753556e+00 -2.84562230e-01 -3.39019345e-04
-3.28793153e-02 1.25056967e-01 1.37240136e+00 -8.33557725e-01
6.87639236e-01 1.27161324e+00 9.61585641e-01 7.91100562e-01
-1.16355026e+00 -6.05435491e-01 5.05999252e-02 3.80899519e-01
-1.41489720e+00 -4.29294318e-01 9.29879308e-01 -2.04020306e-01
1.03184998e+00 3.03470880e-01 6.32762194e-01 1.34001493e+00
-6.47950917e-02 1.22948265e+00 6.82527781e-01 -3.32463652e-01
-1.06116369e-01 -2.30531707e-01 -2.52475232e-01 2.56286830e-01
-1.22026943e-01 -2.19627377e-03 -5.24471164e-01 1.78398594e-01
7.37025142e-01 -1.39909804e-01 -4.49894905e-01 -1.58311814e-01
-1.42080808e+00 7.99399137e-01 1.02059901e+00 7.75490880e-01
-3.24388564e-01 5.90114415e-01 6.33233845e-01 5.38163900e-01
5.69259822e-01 1.00073850e+00 -5.82594275e-01 1.35063892e-02
-1.36706209e+00 4.44800228e-01 5.67969441e-01 5.98518550e-01
5.53863585e-01 2.57460088e-01 -4.61301714e-01 1.11957705e+00
5.96421957e-02 -6.89581037e-02 6.63200378e-01 -5.89390337e-01
3.11435312e-01 5.52303553e-01 -4.02148515e-01 -8.69126201e-01
-7.27411151e-01 -1.31326640e+00 -1.10365903e+00 1.04172595e-01
3.71238679e-01 2.26797774e-01 -6.56508088e-01 2.01273847e+00
-1.95572674e-01 3.14512253e-01 -1.36094764e-01 1.04533410e+00
8.89455557e-01 2.20864519e-01 -1.34781718e-01 2.58652180e-01
1.22319341e+00 -1.15767395e+00 -4.41636980e-01 -1.33188859e-01
6.06892467e-01 -9.08195853e-01 1.27396202e+00 6.16160929e-01
-1.09293842e+00 -9.11884129e-01 -1.11121047e+00 -2.97241181e-01
-5.20714045e-01 2.66160250e-01 7.66757309e-01 1.97473899e-01
-1.31604636e+00 1.44166076e+00 -5.65557003e-01 -4.20887798e-01
6.80832207e-01 5.33272505e-01 -1.50935978e-01 2.34922826e-01
-1.18928647e+00 7.16641307e-01 2.94607043e-01 3.36858809e-01
-8.44102204e-01 -6.33801043e-01 -5.57441771e-01 3.56534302e-01
1.92000911e-01 -9.99291658e-01 1.11400557e+00 -1.08493268e+00
-1.58936334e+00 1.09634888e+00 4.30083603e-01 -7.25210249e-01
4.57540154e-01 -5.13105929e-01 -1.51486680e-01 -1.63878709e-01
-2.41841733e-01 7.89377451e-01 1.00669098e+00 -8.41385782e-01
1.01261092e-02 -3.35462630e-01 1.58853829e-01 -2.83033997e-02
-4.36460108e-01 -3.51729356e-02 -3.94688785e-01 -1.00938332e+00
5.95615283e-02 -1.17971599e+00 -4.22083110e-01 -4.73259658e-01
-6.81605935e-01 -3.48987877e-01 4.65387434e-01 -2.75025457e-01
1.18471777e+00 -2.22775984e+00 5.66472054e-01 9.51302983e-03
1.13937728e-01 5.70012510e-01 -6.60867691e-01 5.20640016e-01
-3.17399919e-01 9.61259454e-02 -3.29764187e-02 -4.53633666e-01
1.40700415e-01 -1.79699630e-01 -2.28878066e-01 4.27385539e-01
3.99777025e-01 1.30144322e+00 -6.57356977e-01 1.76802680e-01
2.16701493e-01 6.92454815e-01 -6.48693442e-01 3.97407673e-02
-4.50018734e-01 7.32791245e-01 -1.35371521e-01 2.24690855e-01
4.14944947e-01 -2.02386826e-01 -1.23831593e-01 -2.87333101e-01
6.61567273e-03 6.65869951e-01 -1.08862913e+00 2.44643855e+00
-6.60216331e-01 9.11479235e-01 -1.76035780e-02 -1.27212405e+00
9.65813458e-01 2.95582414e-01 5.64503312e-01 -8.07724535e-01
3.97413582e-01 3.94547462e-01 1.51326701e-01 -2.25964800e-01
4.88559425e-01 -5.47345057e-02 4.45588119e-02 3.62408608e-01
4.30895329e-01 -8.03235471e-02 1.79121479e-01 -8.13831296e-03
1.09263003e+00 2.14597315e-01 -7.79626817e-02 -4.21730280e-01
6.83370650e-01 -3.33492279e-01 2.59142458e-01 9.39847052e-01
3.09235007e-01 1.00323129e+00 2.51785934e-01 -4.91374671e-01
-9.06184614e-01 -5.02606690e-01 -3.33482593e-01 1.30787575e+00
-2.60462761e-01 -7.89339900e-01 -6.73717558e-01 -4.77878839e-01
-1.07995771e-01 2.11659104e-01 -5.06332040e-01 -3.48602623e-01
-6.53148949e-01 -6.75586283e-01 8.03730965e-01 4.97215629e-01
5.15558779e-01 -1.59865344e+00 -3.12896699e-01 4.96310294e-01
7.37402439e-02 -9.79734600e-01 -2.72912439e-02 4.53933626e-01
-9.24205005e-01 -1.07509935e+00 -1.03329456e+00 -7.46743977e-01
-8.72761607e-02 8.30258429e-02 1.43416917e+00 3.60483021e-01
-3.05358678e-01 2.33803853e-01 -4.87933010e-01 -4.71392870e-01
-8.85316357e-02 7.96465576e-01 -7.92081058e-02 3.90049294e-02
1.87290549e-01 -9.61840451e-01 -8.73045981e-01 1.34765297e-01
-1.11298275e+00 5.19684479e-02 5.61617613e-01 9.14836824e-01
3.11226040e-01 -3.05804878e-01 7.80185997e-01 -9.11220908e-01
6.60276473e-01 -1.35832191e-01 -2.45586619e-01 -1.86284408e-01
-3.46479207e-01 2.03723535e-01 6.37460113e-01 -4.45180625e-01
-3.11774462e-01 -1.61992431e-01 -6.76627100e-01 -5.07492006e-01
-2.08704203e-01 7.17808604e-01 -1.12751434e-02 -1.67221904e-01
9.50984776e-01 2.21518930e-02 -1.78285465e-01 -1.04816711e+00
2.92641550e-01 5.99210501e-01 4.74937886e-01 -4.18775290e-01
8.67830157e-01 2.54276365e-01 2.75582343e-01 -6.79482162e-01
-1.13740385e+00 -5.36620438e-01 -5.01013517e-01 5.11869155e-02
7.86691248e-01 -1.03940415e+00 -7.47165561e-01 4.34589088e-01
-9.79022563e-01 -5.07122517e-01 -5.80471337e-01 5.47765791e-01
-7.20726252e-01 1.48041770e-01 -8.17791104e-01 -4.82531279e-01
-4.92854267e-01 -1.14550996e+00 1.20230114e+00 6.13469966e-02
-1.83257699e-01 -9.15490508e-01 1.43609464e-01 2.13288054e-01
9.29923177e-01 4.38080691e-02 9.35773730e-01 -8.76897812e-01
-4.69027817e-01 -8.83589610e-02 -1.74899310e-01 5.68050683e-01
-3.95199805e-01 -3.19806099e-01 -1.51252532e+00 -3.88213575e-01
-3.48002255e-01 -4.75195348e-01 1.61936951e+00 3.80094647e-01
1.58315313e+00 1.07090265e-01 3.69430706e-02 1.02460122e+00
1.33263159e+00 -5.01292706e-01 8.49780321e-01 6.41772151e-01
7.24982798e-01 3.83411139e-01 1.23634867e-01 2.19982207e-01
1.81993283e-02 1.08533835e+00 7.60643601e-01 -3.56642008e-01
-5.13095915e-01 -1.37920231e-01 1.08720735e-01 1.00345314e+00
-4.97674584e-01 -1.61141559e-01 -5.40030777e-01 4.17180896e-01
-2.11893296e+00 -7.96183288e-01 -1.56119213e-01 2.22174883e+00
5.99163055e-01 -7.68103004e-02 2.55800724e-01 5.11582971e-01
3.31990570e-01 3.88877124e-01 -3.78269732e-01 -2.26001218e-01
-3.68594170e-01 9.88616526e-01 1.15224697e-01 -2.08107755e-02
-1.43462980e+00 1.14828026e+00 5.62827873e+00 1.09877121e+00
-1.39332056e+00 1.13413505e-01 1.22620307e-01 -1.40617967e-01
-1.54173508e-01 -1.38913453e-01 -4.71809149e-01 1.57809928e-02
8.39754283e-01 4.78016645e-01 5.45524538e-01 7.53347456e-01
1.40390778e-02 5.39714038e-01 -1.24793053e+00 1.22053719e+00
-1.24822162e-01 -1.52269471e+00 1.42295912e-01 -5.00184763e-03
6.27566755e-01 4.91521478e-01 9.59490091e-02 8.06331754e-01
-2.87364602e-01 -1.26890612e+00 6.97644651e-01 3.40370119e-01
5.78205287e-01 -6.23845994e-01 8.37541819e-01 1.89046711e-01
-1.14951265e+00 -8.55757296e-02 -6.91212296e-01 -1.87087685e-01
-1.37475714e-01 5.55901349e-01 -3.03143471e-01 7.88214445e-01
6.02985203e-01 1.24651039e+00 -8.26387048e-01 1.29909372e+00
-1.29928514e-01 5.33933401e-01 -9.92677361e-02 1.16746485e-01
4.34263498e-01 6.68943394e-03 6.55100822e-01 1.37076557e+00
2.10093647e-01 -7.28149891e-01 -1.25204578e-01 9.90300179e-01
-3.57702672e-01 3.82777572e-01 -4.86421198e-01 -1.26466468e-01
-2.50821799e-01 1.53464365e+00 -5.24860084e-01 -1.36891929e-02
-3.01656634e-01 8.40500832e-01 4.82344329e-01 5.20904243e-01
-5.88914096e-01 -4.55420285e-01 6.47864580e-01 3.19386065e-01
4.37212288e-01 -1.24218844e-01 -8.58525708e-02 -1.43531394e+00
-1.67336658e-01 -8.91529560e-01 3.00610691e-01 -7.56117463e-01
-1.29484248e+00 8.83946180e-01 -5.00687182e-01 -1.42000544e+00
-2.49305919e-01 -7.90616930e-01 -5.75572371e-01 6.96843565e-01
-1.88628995e+00 -1.23486722e+00 -2.17386141e-01 9.59372222e-01
4.82487798e-01 -4.18075025e-01 9.96443689e-01 6.61878943e-01
-4.12613988e-01 6.99394464e-01 -4.71924394e-02 2.14722291e-01
7.39610612e-01 -1.17787457e+00 3.93799305e-01 3.73384774e-01
8.46816897e-01 5.64425409e-01 3.32738578e-01 9.85103473e-02
-1.27873588e+00 -1.08225930e+00 7.03527927e-01 -1.70008764e-01
5.36824942e-01 -6.21787429e-01 -9.11321580e-01 4.83941823e-01
2.47618049e-01 -5.54734766e-02 4.79881316e-01 7.25887835e-01
-4.89850461e-01 -1.13706812e-01 -4.94732082e-01 4.95978743e-01
1.39208877e+00 -6.72621310e-01 -4.03034568e-01 3.68955404e-01
5.18273354e-01 -1.93305179e-01 -7.05808043e-01 8.56563687e-01
5.73666394e-01 -1.13103294e+00 1.21721005e+00 -8.74050140e-01
5.17251790e-01 -3.64893638e-02 -3.40446644e-02 -1.36180532e+00
-5.00143468e-01 -6.74715281e-01 1.52942449e-01 1.09785068e+00
4.27288115e-01 -2.94339746e-01 7.02559233e-01 -2.46543288e-01
-4.15918320e-01 -8.14604044e-01 -9.33669150e-01 -8.09246898e-01
2.49323070e-01 -7.98079550e-01 3.89333010e-01 9.56424832e-01
-2.72987783e-01 6.29721224e-01 -4.64537501e-01 -4.76146549e-01
1.78802088e-01 1.05373248e-01 9.34446096e-01 -1.57370257e+00
-4.76287186e-01 -9.17868376e-01 -7.60242760e-01 -9.07206237e-01
3.54931265e-01 -1.45685923e+00 -1.97541595e-01 -1.40699267e+00
1.37408271e-01 -3.36647540e-01 -7.66243577e-01 5.20942807e-01
4.58229221e-02 7.02658951e-01 4.51887369e-01 2.82689124e-01
-7.28623688e-01 6.71634436e-01 1.33826768e+00 -2.61212647e-01
-2.45942518e-01 1.68714270e-01 -6.30648017e-01 7.50979364e-01
8.36340547e-01 -3.74362051e-01 -1.60605356e-01 -3.64181757e-01
7.49327123e-01 -3.11241299e-01 6.43389821e-01 -1.39633572e+00
-1.71109233e-02 5.36733747e-01 3.43755960e-01 -3.88428926e-01
3.73683721e-01 -6.56033933e-01 -4.76182718e-03 1.94603160e-01
-5.93077064e-01 -3.50571394e-01 3.66068423e-01 2.71655113e-01
-5.40049791e-01 -2.02807948e-01 5.46343386e-01 -2.31240138e-01
-5.07348061e-01 4.42419201e-01 -1.69797286e-01 9.09011960e-02
1.41109392e-01 1.03200048e-01 -1.04081385e-01 -4.67390716e-01
-9.94463801e-01 -2.05217376e-01 1.49665430e-01 7.47697651e-01
3.23533624e-01 -1.44860148e+00 -9.40370917e-01 1.32189602e-01
1.30390391e-01 -7.51697943e-02 2.98084348e-01 1.09162879e+00
-2.96132892e-01 5.09975672e-01 -2.50547260e-01 -7.15067029e-01
-9.52178657e-01 5.05972385e-01 3.84273440e-01 -5.59530318e-01
-8.53318930e-01 9.23631132e-01 2.56187946e-01 -5.48386455e-01
5.18440783e-01 -3.70821804e-01 -3.64096701e-01 1.36798933e-01
4.22914565e-01 -2.51231380e-02 4.67729896e-01 -4.74054724e-01
-2.98262686e-01 7.93004155e-01 1.31881654e-01 1.32310405e-01
1.80810320e+00 2.26962820e-01 -2.37541813e-02 3.06196928e-01
1.14255643e+00 -3.68674286e-02 -8.83561254e-01 -3.64514738e-01
1.68671191e-01 -1.75901711e-01 1.44417718e-01 -6.56923831e-01
-1.53512442e+00 1.22739768e+00 5.09900093e-01 2.19086707e-01
1.20109046e+00 1.79853588e-01 6.98585451e-01 4.06147301e-01
2.70668715e-01 -9.78716969e-01 1.47055954e-01 6.73427045e-01
1.26455843e+00 -9.90299106e-01 -2.45046213e-01 3.84790935e-02
-1.62189856e-01 1.26900172e+00 2.17455819e-01 -6.37937486e-01
6.44899428e-01 4.32175249e-02 -4.20358963e-02 -3.47778231e-01
-6.09109938e-01 -7.67385602e-01 8.02388787e-01 2.81782776e-01
9.15770590e-01 -1.95937291e-01 -2.52764195e-01 8.64038467e-01
-4.65844214e-01 1.35027498e-01 1.19119041e-01 4.66537207e-01
-1.39065146e-01 -1.25772774e+00 4.18223515e-02 2.87101656e-01
-7.79073417e-01 -3.05575341e-01 -4.99063730e-01 9.18230891e-01
2.29025245e-01 7.94964612e-01 -1.28149360e-01 -6.47382975e-01
5.21605849e-01 1.36385843e-01 6.88873589e-01 -6.63558364e-01
-1.34005141e+00 3.21864307e-01 -2.31524743e-02 -7.44939446e-01
-6.34153664e-01 -2.85056174e-01 -7.92957723e-01 -1.65516809e-01
-3.94198447e-01 -1.43627256e-01 7.10006714e-01 8.97971809e-01
4.53416288e-01 9.77685869e-01 2.87818760e-01 -1.34324825e+00
-5.22351921e-01 -1.35516512e+00 -7.17908323e-01 7.89439857e-01
1.65174529e-01 -6.11236453e-01 -3.66199076e-01 -4.81056184e-01] | [15.683359146118164, 5.2280049324035645] |
620c2020-f8dd-4b96-8b81-ee05ba679662 | turning-to-a-teacher-for-timestamp-supervised | 2207.00712 | null | https://arxiv.org/abs/2207.00712v1 | https://arxiv.org/pdf/2207.00712v1.pdf | Turning to a Teacher for Timestamp Supervised Temporal Action Segmentation | Temporal action segmentation in videos has drawn much attention recently. Timestamp supervision is a cost-effective way for this task. To obtain more information to optimize the model, the existing method generated pseudo frame-wise labels iteratively based on the output of a segmentation model and the timestamp annotations. However, this practice may introduce noise and oscillation during the training, and lead to performance degeneration. To address this problem, we propose a new framework for timestamp supervised temporal action segmentation by introducing a teacher model parallel to the segmentation model to help stabilize the process of model optimization. The teacher model can be seen as an ensemble of the segmentation model, which helps to suppress the noise and to improve the stability of pseudo labels. We further introduce a segmentally smoothing loss, which is more focused and cohesive, to enforce the smooth transition of the predicted probabilities within action instances. The experiments on three datasets show that our method outperforms the state-of-the-art method and performs comparably against the fully-supervised methods at a much lower annotation cost. | ['Yan Song', 'Yang Zhao'] | 2022-07-02 | null | null | null | null | ['action-segmentation'] | ['computer-vision'] | [ 3.85687768e-01 8.57105702e-02 -4.64992255e-01 -6.20158494e-01
-6.53540552e-01 -2.17604294e-01 4.57950562e-01 5.02187200e-03
-4.45945084e-01 5.15536547e-01 1.78103477e-01 1.75340936e-01
2.38647938e-01 -3.48168343e-01 -6.37240827e-01 -9.13976550e-01
2.00289309e-01 1.97729632e-01 8.52551818e-01 3.27895522e-01
2.85303384e-01 -1.03310019e-01 -1.44566035e+00 3.50486249e-01
1.21462238e+00 9.96114552e-01 1.58562854e-01 1.39152631e-01
-1.47705778e-01 9.74015772e-01 -4.80859101e-01 -2.49359921e-01
2.28811234e-01 -7.30214953e-01 -9.04194832e-01 3.61880094e-01
1.02944344e-01 -1.30207196e-01 -7.58770481e-02 9.93537486e-01
1.66549966e-01 3.14710975e-01 5.16626835e-01 -1.23445356e+00
-1.43309534e-01 7.47812867e-01 -7.38998055e-01 -7.41062090e-02
1.55372515e-01 7.57906064e-02 8.51981282e-01 -3.35800201e-01
5.69149375e-01 1.13163579e+00 5.58216214e-01 5.62701821e-01
-1.11465931e+00 -5.94326556e-01 5.72663784e-01 3.77515674e-01
-1.17296171e+00 -2.00850114e-01 7.65759528e-01 -3.51217449e-01
4.62435961e-01 8.96860063e-02 7.95593858e-01 1.03002870e+00
4.25292253e-02 1.16847920e+00 9.39937711e-01 -4.56888527e-01
3.01654994e-01 -3.32307704e-02 9.61932763e-02 6.65190220e-01
-3.38195056e-01 -2.86989272e-01 -5.54883480e-01 -6.44860789e-03
7.08973587e-01 -1.16942927e-01 -1.99042231e-01 -3.57111722e-01
-1.13643658e+00 5.88523030e-01 2.09030539e-01 4.05892074e-01
-2.67481238e-01 7.04498589e-02 4.80399668e-01 -1.66125864e-01
6.55692697e-01 1.33476079e-01 -4.73391324e-01 -6.34468198e-01
-1.20072079e+00 3.36450920e-03 5.70173323e-01 7.33654559e-01
5.79953611e-01 -1.09093696e-01 -5.50556421e-01 7.71920204e-01
4.72373039e-01 -7.13479966e-02 5.44959009e-01 -1.36724746e+00
4.46632385e-01 8.17621768e-01 1.09709695e-01 -5.82022429e-01
-1.77417591e-01 -6.19965196e-02 -5.23588181e-01 2.29900517e-02
7.08060086e-01 1.23655736e-01 -1.10760903e+00 1.71581721e+00
6.28213227e-01 6.70578122e-01 -3.14505786e-01 9.27796125e-01
2.79684126e-01 6.38493001e-01 3.78520191e-01 -4.97859687e-01
1.07881141e+00 -1.36491764e+00 -1.02569711e+00 -1.33092538e-01
8.20320129e-01 -6.05868876e-01 1.10694253e+00 2.95606136e-01
-8.53241980e-01 -7.18975604e-01 -8.68780613e-01 6.40158355e-02
3.79482168e-03 3.40789288e-01 4.12860870e-01 4.13655579e-01
-6.32387817e-01 8.33383858e-01 -1.38429630e+00 -2.81598687e-01
5.91076314e-01 2.51446068e-01 -5.85812517e-02 1.75929710e-01
-1.11867821e+00 6.87236309e-01 4.57847416e-01 1.33564979e-01
-6.60500824e-01 -3.92731220e-01 -8.77268970e-01 -3.78956273e-02
7.43544638e-01 -2.80045718e-01 1.49457800e+00 -1.33758783e+00
-1.88608825e+00 6.66224897e-01 -2.74606854e-01 -5.66118538e-01
7.34325349e-01 -3.87223512e-01 1.04795618e-03 2.32204542e-01
2.60355055e-01 8.99580419e-01 9.94434237e-01 -1.01470435e+00
-8.53611648e-01 -1.16256453e-01 2.92698778e-02 2.80485094e-01
-3.84618223e-01 5.37040196e-02 -9.52514529e-01 -7.49603033e-01
1.59759358e-01 -1.14008927e+00 -4.45608646e-01 -2.98349798e-01
-3.12463343e-01 -5.16298354e-01 8.56194854e-01 -7.16824412e-01
1.53244579e+00 -2.35120368e+00 1.73012480e-01 -1.17350996e-01
-1.73895270e-01 3.31229568e-01 1.62911534e-01 1.80009007e-01
2.94352788e-02 -1.07101006e-02 -5.95175862e-01 -7.65266538e-01
-2.02061921e-01 4.27607447e-01 -4.62302640e-02 4.46913332e-01
7.73326606e-02 5.79598129e-01 -9.83990729e-01 -9.50509846e-01
2.84033477e-01 3.42897505e-01 -4.28739965e-01 4.05045301e-01
-5.55990994e-01 9.42372859e-01 -6.85519457e-01 3.99551243e-01
3.13161910e-01 -3.38438839e-01 1.92096576e-01 2.09288560e-02
-1.35624751e-01 3.36617559e-01 -1.09217894e+00 1.94357300e+00
9.58665162e-02 2.55011320e-01 -2.09472477e-01 -1.23073471e+00
6.69828713e-01 3.58077198e-01 8.84871006e-01 -4.83922571e-01
2.25629747e-01 -1.08045109e-01 -1.75957635e-01 -6.87180161e-01
3.36742193e-01 6.57375604e-02 1.19651191e-01 3.87226850e-01
-1.81736395e-01 1.04586527e-01 4.12809193e-01 7.33170733e-02
6.86841488e-01 8.85136783e-01 5.54063171e-02 5.42780124e-02
5.74502289e-01 2.60486007e-02 1.09500027e+00 4.20579970e-01
-3.73693883e-01 6.34504974e-01 6.39712274e-01 -2.45089889e-01
-7.13524103e-01 -5.34533918e-01 3.87696028e-02 9.72036421e-01
3.19173068e-01 -6.24331951e-01 -1.26825356e+00 -1.08082438e+00
-3.03030640e-01 5.89690149e-01 -4.45761740e-01 -2.08683416e-01
-7.94077873e-01 -6.82959199e-01 2.95585573e-01 7.79526353e-01
7.30618358e-01 -1.01528931e+00 -5.72773695e-01 3.14878851e-01
-5.53514004e-01 -1.33085382e+00 -6.34750068e-01 3.45087685e-02
-1.14179111e+00 -1.04736900e+00 -6.86430752e-01 -6.77040398e-01
7.46892810e-01 -1.70962065e-02 6.93211675e-01 -3.83005515e-02
1.43007740e-01 1.92912430e-01 -5.95941067e-01 -1.58179864e-01
-4.49839294e-01 2.16218337e-01 -9.52827930e-02 4.11319256e-01
2.73293346e-01 -3.70107472e-01 -6.02529109e-01 5.43092132e-01
-9.47503567e-01 2.88572520e-01 2.03191370e-01 6.52426720e-01
7.28533685e-01 8.08508694e-02 3.33712965e-01 -8.86190295e-01
2.14202181e-01 -1.03838764e-01 -6.80645823e-01 2.35148057e-01
-6.73394442e-01 9.94678810e-02 6.61277354e-01 -6.26113296e-01
-1.30747557e+00 5.21103084e-01 8.19117650e-02 -5.17327487e-01
-1.80617139e-01 3.59327585e-01 -1.82908565e-01 1.35431454e-01
2.79134840e-01 9.41094235e-02 2.32656579e-02 -5.84697783e-01
3.24679822e-01 5.21071553e-01 3.36588800e-01 -4.13918734e-01
4.06383783e-01 5.54859817e-01 -1.90892249e-01 -5.07736802e-01
-1.08275223e+00 -5.53207636e-01 -9.55463290e-01 -4.70209360e-01
1.03056490e+00 -7.68879116e-01 -3.35650951e-01 7.31463075e-01
-1.01618516e+00 -6.55200243e-01 -3.45113426e-01 5.51571548e-01
-6.27766609e-01 6.51252329e-01 -7.48767674e-01 -8.06811333e-01
9.01268721e-02 -1.19701529e+00 1.11288881e+00 4.26450938e-01
-2.50028819e-01 -8.52920651e-01 4.62709926e-02 5.00274956e-01
-3.11650839e-02 1.06006481e-01 5.14162242e-01 -4.84234184e-01
-6.17517948e-01 -2.10157543e-01 2.94116028e-02 6.56903028e-01
2.07665488e-01 1.73526481e-01 -8.45840991e-01 2.37077363e-02
2.20098495e-01 -2.49901518e-01 1.01219273e+00 5.37330389e-01
1.32881594e+00 -9.19033289e-02 -4.94252950e-01 3.30976993e-01
8.97363484e-01 3.09898257e-01 7.11461365e-01 4.53623563e-01
8.82684827e-01 7.25348175e-01 1.28065300e+00 4.39094245e-01
4.31818545e-01 8.33493531e-01 2.29008332e-01 -4.94618751e-02
1.05381787e-01 -3.13128859e-01 4.75578487e-01 7.88254797e-01
-2.51489401e-01 -1.24707781e-01 -6.44589186e-01 3.28688771e-01
-2.39142060e+00 -8.48497272e-01 -1.57895029e-01 2.15482259e+00
1.03792894e+00 3.28467250e-01 3.40880185e-01 3.25762480e-01
7.69267261e-01 4.68572378e-01 -4.07442182e-01 4.51123379e-02
2.98635930e-01 -2.40129083e-01 3.08144897e-01 3.15065056e-01
-1.34706581e+00 1.23106647e+00 6.21801043e+00 9.43141401e-01
-1.13417602e+00 1.28433943e-01 7.33322263e-01 1.31208792e-01
2.17369527e-01 2.83203989e-01 -8.05126309e-01 7.72992790e-01
8.16492379e-01 7.54082054e-02 8.57570693e-02 8.84317696e-01
7.00095534e-01 -5.16630054e-01 -1.13367367e+00 7.93866634e-01
-1.35737052e-02 -8.52879405e-01 -2.49902338e-01 -1.23491451e-01
8.35571706e-01 -2.64916897e-01 -2.48411566e-01 1.33241102e-01
2.97739580e-02 -5.86035728e-01 8.60823393e-01 6.21797502e-01
2.98948497e-01 -5.17317295e-01 6.42894089e-01 6.04276001e-01
-1.26121891e+00 -4.81224693e-02 -1.21657252e-01 -1.18420921e-01
4.79685038e-01 5.68175137e-01 -4.73370671e-01 5.61186552e-01
6.46154881e-01 1.09841228e+00 -4.74843889e-01 1.10814917e+00
-5.95841527e-01 8.90777171e-01 -2.87131488e-01 2.69351453e-01
3.86220425e-01 -4.70809162e-01 3.70552868e-01 1.04190564e+00
-3.17029618e-02 1.21305346e-01 5.91615260e-01 5.95751703e-01
2.46451557e-01 1.63357109e-01 -1.84018999e-01 -1.83299854e-01
2.04142198e-01 1.12970567e+00 -1.05274653e+00 -5.99880159e-01
-3.69439960e-01 1.06798828e+00 1.56965002e-01 3.50564331e-01
-1.30433023e+00 6.98316246e-02 2.18881547e-01 1.46210164e-01
2.97210485e-01 -2.71271497e-01 -2.79875487e-01 -1.16744304e+00
2.47448072e-01 -7.16064870e-01 5.50936222e-01 -4.45070297e-01
-8.58604670e-01 3.74466896e-01 1.75074786e-01 -1.50683391e+00
-2.02935860e-01 -1.01179034e-01 -5.25330245e-01 3.49353969e-01
-1.40497601e+00 -9.23311770e-01 -2.10540950e-01 4.24802035e-01
7.75541127e-01 3.09795082e-01 3.98725420e-01 3.35339189e-01
-8.52698445e-01 3.92508417e-01 -2.35294178e-01 2.99481004e-02
9.09808099e-01 -1.09898961e+00 3.48775685e-02 1.00521314e+00
1.39692903e-01 2.90466905e-01 5.35196185e-01 -8.27128708e-01
-6.64669156e-01 -1.13944232e+00 8.71852636e-01 -3.03848863e-01
4.89398748e-01 -1.07603796e-01 -1.09992671e+00 6.59351528e-01
1.42425060e-01 -1.48834765e-01 5.76282263e-01 -1.64803818e-01
2.93672215e-02 -2.06037313e-01 -8.23537529e-01 6.16539657e-01
1.02002621e+00 -2.08581135e-01 -6.14521980e-01 3.22441906e-01
8.07204068e-01 -5.49163222e-01 -7.25645959e-01 5.86618066e-01
4.78768498e-01 -1.04912853e+00 5.33395350e-01 -1.99568048e-01
3.25972795e-01 -4.53763276e-01 3.87900412e-01 -9.99718666e-01
-2.10244283e-01 -7.42169440e-01 -1.98099196e-01 1.55624306e+00
2.22886875e-01 -3.62617642e-01 9.53446984e-01 7.07520068e-01
-1.56533495e-01 -8.29308748e-01 -1.00763440e+00 -8.66652846e-01
-3.96109253e-01 -4.35479164e-01 2.50070721e-01 7.74171233e-01
1.07072368e-01 1.80136159e-01 -4.44825023e-01 2.53549386e-02
5.08395314e-01 2.78544612e-02 6.15517795e-01 -1.02707863e+00
-6.81305304e-02 -3.86642516e-01 -2.00595111e-01 -1.41053939e+00
3.13604027e-01 -4.74255830e-01 4.13021147e-01 -1.43171191e+00
1.51372701e-01 -3.82573187e-01 -3.41691643e-01 6.57227159e-01
-4.01493341e-01 5.03071360e-02 1.17701188e-01 3.50859940e-01
-1.02184749e+00 8.29861999e-01 1.38792288e+00 8.78867283e-02
-5.50435126e-01 2.29501471e-01 -2.48452932e-01 9.54830289e-01
7.30764687e-01 -7.41943598e-01 -4.69961077e-01 -2.37494528e-01
-3.48757505e-01 -4.31692153e-02 8.49866122e-02 -1.09898627e+00
3.41555119e-01 -3.34754765e-01 -1.63265057e-02 -5.82313418e-01
2.71121234e-01 -7.89661050e-01 2.54537482e-02 3.66362184e-01
-3.94038707e-01 -3.34291518e-01 -1.41957924e-01 6.72123730e-01
-4.80271310e-01 -2.38061234e-01 9.66551185e-01 -1.14693537e-01
-6.59659505e-01 3.80085051e-01 -2.92438477e-01 -6.55407310e-02
1.18115520e+00 -4.01166379e-01 1.30770102e-01 -2.18011960e-01
-6.45209134e-01 5.71333945e-01 4.66253072e-01 4.79243577e-01
2.56540656e-01 -1.20993936e+00 -2.53373206e-01 1.58640593e-02
-1.12393849e-01 2.21635684e-01 1.23297811e-01 1.21048486e+00
-1.99912280e-01 2.09586054e-01 5.36814630e-02 -8.41317356e-01
-1.30234146e+00 4.49076027e-01 2.31272295e-01 -5.02062440e-01
-7.43587315e-01 7.21110821e-01 1.79743558e-01 -1.50747597e-02
6.55102491e-01 -5.48580050e-01 -4.52452272e-01 1.95474342e-01
3.04004163e-01 4.18465108e-01 -3.35992008e-01 -5.67110598e-01
-3.00307602e-01 7.11370826e-01 -5.02018221e-02 -2.34464318e-01
1.19696021e+00 -2.68990546e-01 -9.70595106e-02 7.91814864e-01
8.40230703e-01 -3.30310792e-01 -1.80183697e+00 -1.54068112e-01
3.05234075e-01 -4.75937843e-01 -2.51646578e-01 -4.30294216e-01
-1.01624715e+00 6.41043961e-01 3.65736425e-01 3.36796075e-01
1.25068855e+00 -1.43194735e-01 1.00108457e+00 -1.51368380e-01
2.92209297e-01 -1.53469670e+00 3.07506144e-01 4.45683897e-01
3.66376609e-01 -1.25550473e+00 -6.22484349e-02 -7.07981765e-01
-9.25651431e-01 9.68093276e-01 7.47794151e-01 3.08325309e-02
4.40174729e-01 2.76645888e-02 1.64106354e-01 1.12160392e-01
-4.98097479e-01 -1.98312968e-01 3.06403220e-01 2.39746496e-01
3.08907598e-01 -2.46136263e-01 -7.01163948e-01 5.62853277e-01
2.79029906e-01 3.17565471e-01 5.59157208e-02 9.73763943e-01
-4.12218571e-01 -1.45811236e+00 -1.44061059e-01 1.83991328e-01
-6.19464457e-01 1.72117591e-01 -2.67132550e-01 5.09079337e-01
3.04967552e-01 9.65797186e-01 -2.22998381e-01 -2.61344165e-01
2.21068412e-01 3.66152704e-01 3.00358683e-01 -6.35311663e-01
-4.78969604e-01 5.25489092e-01 4.04611044e-02 -8.52127671e-01
-1.09537613e+00 -8.07380736e-01 -1.53659725e+00 3.18096280e-01
-5.73371768e-01 2.76837826e-01 3.29403698e-01 1.23702598e+00
2.33702525e-01 6.05749130e-01 7.34462261e-01 -7.78105140e-01
-4.25741464e-01 -1.02654958e+00 -4.72353816e-01 5.49558997e-01
-7.19551649e-03 -6.67178154e-01 -3.70830715e-01 5.70960462e-01] | [8.480764389038086, 0.652700662612915] |
53d339f4-1f8f-400a-aa8f-c374ae5ff2a4 | the-theory-of-artificial-immutability | 2205.01166 | null | https://arxiv.org/abs/2205.01166v1 | https://arxiv.org/pdf/2205.01166v1.pdf | The Theory of Artificial Immutability: Protecting Algorithmic Groups Under Anti-Discrimination Law | Artificial Intelligence (AI) is increasingly used to make important decisions about people. While issues of AI bias and proxy discrimination are well explored, less focus has been paid to the harms created by profiling based on groups that do not map to or correlate with legally protected groups such as sex or ethnicity. This raises a question: are existing equality laws able to protect against emergent AI-driven inequality? This article examines the legal status of algorithmic groups in North American and European non-discrimination doctrine, law, and jurisprudence and will show that algorithmic groups are not comparable to traditional protected groups. Nonetheless, these new groups are worthy of protection. I propose a new theory of harm - "the theory of artificial immutability" - that aims to bring AI groups within the scope of the law. My theory describes how algorithmic groups act as de facto immutable characteristics in practice that limit people's autonomy and prevent them from achieving important goals. | ['Sandra Wachter'] | 2022-05-02 | null | null | null | null | ['jurisprudence'] | ['miscellaneous'] | [ 5.96429765e-01 8.63997638e-01 -6.76320314e-01 -5.18876731e-01
-4.69802320e-02 -4.84798461e-01 7.15243220e-01 2.27696270e-01
-7.50129163e-01 8.55925620e-01 9.98547912e-01 -7.66072631e-01
-4.99843150e-01 -7.72127151e-01 -1.34739146e-01 -4.72784013e-01
4.29027826e-01 5.33143103e-01 -6.06796980e-01 -4.32626903e-01
6.37946546e-01 4.04974282e-01 -1.40726924e+00 -1.18612193e-01
1.78126550e+00 1.81957811e-01 -1.21145976e+00 1.45105511e-01
1.82142667e-02 1.15310073e+00 -7.89085567e-01 -8.51423800e-01
6.99180484e-01 -8.43277872e-01 -5.02573669e-01 -4.55327511e-01
8.51135790e-01 -5.11112809e-01 -2.04468727e-01 1.34626102e+00
5.46344757e-01 -2.70869285e-01 9.40828323e-01 -1.43845963e+00
-1.33442485e+00 1.05861068e+00 -3.96970034e-01 1.55927557e-02
2.35419422e-01 3.84178251e-01 7.79341996e-01 1.14149123e-01
6.30649805e-01 1.36766756e+00 8.20250034e-01 1.14621520e+00
-1.30029976e+00 -9.76426125e-01 -8.64262786e-03 -2.02770293e-01
-1.32791686e+00 -6.93483710e-01 5.14786780e-01 -9.79328632e-01
2.46963024e-01 9.15070832e-01 1.05579019e+00 8.70015979e-01
5.16181588e-01 1.57043800e-01 9.80271101e-01 -2.69791842e-01
3.83339494e-01 9.23050568e-02 2.98229069e-01 4.69054937e-01
1.53737128e+00 1.90921545e-01 -3.67117912e-01 -7.38672733e-01
3.24467152e-01 -2.87822962e-01 -5.90276979e-02 -1.93732113e-01
-1.03665292e+00 9.81280386e-01 2.23772690e-01 5.22652447e-01
-3.49240363e-01 7.96181858e-02 2.78611481e-01 6.15959764e-02
4.22047526e-01 1.12127161e+00 -5.30440956e-02 -1.98594466e-01
-4.95589852e-01 6.74949110e-01 6.53251946e-01 2.26616323e-01
1.95445642e-01 1.68309852e-01 -1.50591776e-01 2.26867661e-01
3.77012789e-01 6.51943922e-01 2.20792189e-01 -1.38560510e+00
2.16190383e-01 9.37432408e-01 1.73861429e-01 -1.31284535e+00
-3.42322677e-01 -2.90283591e-01 -6.84303403e-01 8.45253050e-01
9.20498252e-01 -5.74433446e-01 -7.11835623e-01 1.90867352e+00
1.83764696e-01 -8.12560081e-01 7.58977979e-02 9.26463246e-01
3.53260964e-01 4.98141833e-02 6.68946087e-01 2.39526723e-02
1.04102075e+00 -9.35579836e-02 -7.95673370e-01 -3.28461707e-01
8.62318575e-01 -5.03686070e-02 7.99536824e-01 5.17066009e-02
-1.12348342e+00 4.17125784e-02 -9.84990120e-01 -3.39558184e-01
-5.17268777e-01 -7.67445147e-01 1.18970001e+00 1.88468528e+00
-5.87082922e-01 4.48963344e-01 -1.19322680e-01 -1.66788146e-01
1.05719197e+00 4.52347755e-01 7.67213032e-02 5.41228235e-01
-1.11780131e+00 1.07169724e+00 1.56769589e-01 8.36783126e-02
-6.79294318e-02 -9.71745312e-01 -7.44273841e-01 -1.57385945e-01
1.72014192e-01 -7.74634659e-01 4.64874774e-01 -1.81729424e+00
-1.03706932e+00 1.30973876e+00 3.89427453e-01 -7.20419049e-01
8.40567648e-01 -4.04060811e-01 -7.94129610e-01 -1.67766005e-01
4.20485497e-01 7.31898308e-01 1.85497090e-01 -1.22463274e+00
-5.14754951e-01 -8.15589130e-01 2.50070155e-01 3.23686510e-01
-3.72634739e-01 3.94883335e-01 1.24715006e+00 -5.39996684e-01
-2.45393291e-01 -8.16462934e-01 -3.02575618e-01 1.34530485e-01
-4.07602668e-01 -8.63039643e-02 3.49841624e-01 -4.48828399e-01
1.21908092e+00 -1.97778857e+00 -3.77609402e-01 3.24075460e-01
6.69768393e-01 4.36178088e-01 3.57253432e-01 6.29048198e-02
2.83105075e-01 1.01481211e+00 -2.17225194e-01 7.78947413e-01
5.68590105e-01 5.67412712e-02 -6.55027181e-02 7.47361958e-01
-3.73698980e-01 8.61130297e-01 -7.44218528e-01 -4.40603316e-01
-1.05448686e-01 2.07506821e-01 -8.27242017e-01 -5.43330669e-01
1.64569467e-01 4.45526034e-01 -4.09728795e-01 6.11786842e-01
5.93213439e-01 3.32219660e-01 2.96661526e-01 5.47790110e-01
-4.51986283e-01 2.47723192e-01 -5.02029479e-01 8.45506132e-01
6.82644248e-01 6.39615297e-01 7.88395032e-02 -5.23312271e-01
7.50949502e-01 3.28470208e-02 3.46813619e-01 -6.24672830e-01
5.37441254e-01 3.79232466e-01 1.25455117e+00 -4.89483148e-01
5.80866337e-01 -3.81065607e-01 -3.39182734e-01 5.50367534e-01
-8.29903424e-01 -2.18674690e-01 -1.85191020e-01 -1.11847691e-01
7.30946422e-01 3.03894542e-02 4.43033636e-01 -1.06581914e+00
3.09048444e-01 3.17725748e-01 1.18756056e+00 8.84255230e-01
-9.18843806e-01 1.68609425e-01 4.36862081e-01 -6.76230788e-01
-1.24479759e+00 -9.55768645e-01 -2.45402366e-01 1.04909694e+00
2.84581661e-01 1.72619760e-01 -1.09204590e+00 -7.95746386e-01
5.63732088e-01 1.37631214e+00 -9.30914760e-01 -5.45734882e-01
-2.87936449e-01 -7.11409509e-01 9.63174284e-01 -2.79318020e-02
5.78200877e-01 -7.65434325e-01 -1.21594667e+00 -3.27005893e-01
3.66739452e-01 -3.73457998e-01 -2.22882956e-01 -5.48762202e-01
-3.45883310e-01 -8.07415247e-01 -3.45868766e-01 -8.58501494e-02
6.41820490e-01 -3.36416841e-01 7.85735130e-01 3.77282977e-01
-1.63021490e-01 2.21645758e-01 3.65336537e-02 -1.28697073e+00
-8.44655097e-01 7.62616172e-02 8.62380713e-02 4.06151861e-02
1.08529687e+00 -6.01556897e-01 -6.28383338e-01 -3.12789865e-02
-6.74540699e-01 6.59323558e-02 2.83505231e-01 2.56649754e-03
-3.79400373e-01 -2.81379431e-01 1.04078901e+00 -1.37269163e+00
8.02809656e-01 -5.18425882e-01 -1.64152414e-01 3.41458358e-02
-8.54133248e-01 -2.76719093e-01 3.39244872e-01 -4.03595835e-01
-1.13094544e+00 -7.03909278e-01 1.05888493e-01 6.13698125e-01
-3.90988797e-01 7.55816549e-02 -5.35566270e-01 -1.80031851e-01
1.11088991e+00 -5.27209282e-01 2.52980411e-01 -9.30386186e-02
3.30668390e-01 9.13384259e-01 4.05078322e-01 -7.29629219e-01
7.25417674e-01 6.58236742e-01 -1.42683968e-01 -7.74103880e-01
-8.84675026e-01 4.82375741e-01 -2.98785776e-01 -3.75968575e-01
1.09435022e+00 -5.22249341e-01 -9.42465901e-01 -7.02013075e-02
-5.03489375e-01 -3.09857816e-01 -8.74463260e-01 6.46590710e-01
-3.07536513e-01 1.67973727e-01 -2.57649899e-01 -1.27224123e+00
-4.65685844e-01 -5.41337550e-01 2.86969304e-01 4.51301217e-01
-9.43790972e-01 -7.11261511e-01 -2.10956708e-01 9.25663829e-01
5.16084194e-01 8.73503029e-01 9.43919301e-01 -1.09934771e+00
-1.08326729e-02 -1.90526918e-01 1.31873965e-01 -2.70526279e-02
1.56441957e-01 -5.58935851e-02 -7.26536036e-01 2.90225178e-01
1.93470076e-01 -4.64692637e-02 2.54250199e-01 1.95850834e-01
4.77042824e-01 -8.88161480e-01 -2.11283177e-01 3.13690871e-01
1.21671510e+00 8.66752505e-01 9.34463799e-01 3.85067016e-01
7.38301992e-01 1.10951340e+00 1.63229555e-01 2.89980710e-01
2.93051809e-01 1.61356434e-01 3.60679291e-02 2.86564813e-03
1.74166903e-01 -2.08830252e-01 2.23480120e-01 1.13581643e-01
-5.46058536e-01 -1.05074070e-01 -1.33271086e+00 4.14702982e-01
-1.72850871e+00 -1.29823709e+00 -4.55976337e-01 2.16282129e+00
6.65837765e-01 3.95453662e-01 4.99260545e-01 8.39145854e-02
8.42150509e-01 -1.83257051e-02 -7.81376183e-01 -1.06721139e+00
-2.36469567e-01 -2.04306126e-01 7.66374528e-01 6.01464331e-01
-7.41734982e-01 8.04793775e-01 7.02085209e+00 5.36767542e-01
-5.69948375e-01 5.77639788e-02 9.81947899e-01 -2.10536104e-02
-9.90743458e-01 8.12376067e-02 -3.57290000e-01 5.68971932e-01
7.05699563e-01 -1.03391051e+00 3.48499939e-02 3.95849556e-01
2.14510188e-01 -4.41370457e-02 -8.59670520e-01 2.83183783e-01
1.86036915e-01 -8.83431077e-01 2.13498682e-01 8.54246616e-01
8.77746284e-01 -6.13749683e-01 3.60041648e-01 -5.89957461e-02
7.94446409e-01 -1.48166132e+00 1.02199721e+00 4.06316280e-01
5.41848123e-01 -8.63233805e-01 5.36555052e-01 2.51071185e-01
7.15966299e-02 -3.42622578e-01 -4.89915848e-01 -9.23818648e-01
-5.12980334e-02 4.57247257e-01 -1.18069842e-01 3.14643583e-03
9.68377963e-02 -3.03785969e-02 -2.89505750e-01 6.09100580e-01
-5.57712540e-02 3.57926905e-01 -1.44402869e-02 -1.65057003e-01
2.48769611e-01 -4.65562165e-01 7.49233127e-01 6.66278839e-01
1.48995826e-02 4.19891328e-01 -2.62109220e-01 1.10356843e+00
2.13609710e-01 6.00310639e-02 -9.23144698e-01 -4.21677887e-01
5.61121523e-01 6.99352920e-01 -5.54799557e-01 -2.73581445e-01
-3.19319576e-01 2.57999569e-01 -4.31104958e-01 1.48656130e-01
-8.54048789e-01 -3.05439293e-01 1.24550128e+00 5.38251817e-01
-7.79522777e-01 3.29806693e-02 -9.84385014e-01 -9.94869709e-01
-7.93074846e-01 -1.33600354e+00 3.78711760e-01 -1.26378298e-01
-1.17191470e+00 -2.46805444e-01 -1.91168115e-01 -4.36045200e-01
-6.09266646e-02 -4.23008353e-01 -3.90589759e-02 6.72272742e-01
-4.70286459e-01 -1.13365686e+00 4.51548919e-02 -4.98972945e-02
-2.52104223e-01 -2.44833991e-01 7.61742055e-01 -1.86422169e-02
-1.44163430e-01 8.00348878e-01 -5.19034825e-02 2.82520592e-01
3.54240924e-01 -9.69798446e-01 4.14040536e-01 7.95834303e-01
-4.28732395e-01 7.42312253e-01 8.59799564e-01 -1.02937603e+00
-1.13417554e+00 -4.18239921e-01 1.05098689e+00 -8.03246379e-01
4.19014990e-01 -3.37510735e-01 -5.58742940e-01 9.46480334e-01
3.42950404e-01 -7.38804221e-01 1.20339417e+00 3.22738171e-01
-4.66025710e-01 7.37708062e-02 -1.83090734e+00 1.16074491e+00
1.76665401e+00 -3.04356486e-01 -8.00674975e-01 8.79694670e-02
6.20560706e-01 5.13688922e-02 -7.91610658e-01 3.48950446e-01
1.03905058e+00 -1.08579278e+00 7.90414035e-01 -8.36405158e-01
3.56790304e-01 -8.90797004e-02 7.05409199e-02 -7.23434389e-01
-6.50765121e-01 -7.62352884e-01 6.51048899e-01 1.38394177e+00
5.28960526e-01 -1.51644945e+00 8.81625473e-01 1.75087249e+00
4.23312411e-02 -2.92429447e-01 -8.67190421e-01 -6.25346065e-01
8.00779223e-01 8.93500149e-02 1.01355135e+00 1.85659313e+00
4.37131643e-01 2.72933781e-01 -2.27749377e-01 -4.02311720e-02
9.11762476e-01 -2.28012592e-01 7.60075927e-01 -1.69172096e+00
3.28719258e-01 -9.09742117e-01 -8.83229315e-01 1.24372229e-01
4.66501899e-02 -7.53931403e-01 -3.56268108e-01 -1.28296924e+00
1.81110725e-01 -3.87505949e-01 5.03607653e-02 1.93374917e-01
-6.53248504e-02 1.27669601e-02 5.35556376e-01 8.38548243e-02
-1.00885190e-01 1.30990937e-01 1.03035784e+00 -4.57982868e-02
-1.68432325e-01 -5.35665035e-01 -2.01504993e+00 1.12278152e+00
1.16172171e+00 -3.38444263e-01 -3.42075795e-01 -2.43868649e-01
6.29230142e-01 -5.70883930e-01 2.73066074e-01 -1.25418580e+00
8.19749907e-02 -9.41904724e-01 4.47055310e-01 3.48122388e-01
-5.29912747e-02 -9.82260108e-01 5.68655431e-01 8.75874639e-01
-7.72361636e-01 -3.97378564e-01 -6.31681532e-02 -1.98018596e-01
6.18866682e-01 -2.06451699e-01 6.69832170e-01 6.18742704e-02
4.25360650e-02 -1.18065976e-01 -6.55620694e-01 4.59668756e-01
1.22980070e+00 -6.43433332e-01 -1.09167206e+00 -3.52724701e-01
-3.29022378e-01 1.20572373e-01 1.10305643e+00 1.54241174e-01
-5.08312657e-02 -1.06688356e+00 -1.06131530e+00 -2.58605331e-01
-1.04081936e-01 -5.96798241e-01 -1.48206977e-02 4.12221551e-01
-6.56963587e-01 2.36583635e-01 -5.47797382e-01 2.93867409e-01
-1.09787679e+00 7.15429306e-01 5.63842535e-01 5.90091407e-01
-6.99443936e-01 4.74119008e-01 4.36313331e-01 -2.17588767e-01
-7.94793814e-02 3.43946576e-01 -2.10483074e-01 -1.16474731e-02
6.08425736e-01 6.83365583e-01 -1.02454042e+00 -1.01972008e+00
-4.02849495e-01 3.51424932e-01 1.33332163e-01 -3.53664219e-01
9.36469495e-01 -5.62335551e-02 -3.03115100e-01 4.03055191e-01
4.42149192e-01 6.63463533e-01 -7.09111214e-01 7.74344146e-01
9.59471092e-02 -1.06700075e+00 -6.08275592e-01 -1.22983372e+00
-4.50900972e-01 5.05590975e-01 4.69585270e-01 7.13083088e-01
6.38280094e-01 -3.57671946e-01 3.44743013e-01 -4.35532182e-02
1.92937925e-01 -1.47398996e+00 -7.90700018e-01 -1.56812772e-01
8.50721538e-01 -4.88269061e-01 2.38231584e-01 -4.82325882e-01
-6.88895583e-01 3.16246897e-01 8.20624948e-01 -1.10445090e-01
1.45216689e-01 1.86836123e-01 3.79553080e-01 -1.00817546e-01
-2.42168471e-01 -2.72419959e-01 6.56638667e-02 1.05571985e+00
5.36405206e-01 7.10189760e-01 -1.55206835e+00 3.68410140e-01
-7.68345416e-01 1.96374089e-01 6.03251100e-01 7.68317342e-01
-8.63368690e-01 -8.02905321e-01 -7.14543462e-01 6.02938473e-01
-9.97753978e-01 5.55056110e-02 -1.33951545e+00 1.05310547e+00
1.04627693e+00 1.01508021e+00 3.93312037e-01 -2.64764488e-01
4.56566364e-03 9.75975841e-02 2.18412414e-01 -2.95922279e-01
-9.90217149e-01 -4.64507341e-01 7.33887672e-01 -1.77346781e-01
-4.80985016e-01 -7.75734007e-01 -1.15862429e+00 -9.40719187e-01
6.19588420e-02 4.00346756e-01 2.50364035e-01 7.11694598e-01
5.99463761e-01 6.08323365e-02 -1.09166287e-01 -6.79228231e-02
-1.94868132e-01 -3.19543302e-01 -6.06110454e-01 5.44374406e-01
1.84242316e-02 -1.86233521e-01 -4.20123249e-01 -3.81134897e-01] | [8.968252182006836, 5.7589569091796875] |
ab1e4101-f99a-4993-a465-9791fc3d9fc4 | tackling-provably-hard-representative | 2205.10403 | null | https://arxiv.org/abs/2205.10403v1 | https://arxiv.org/pdf/2205.10403v1.pdf | Tackling Provably Hard Representative Selection via Graph Neural Networks | Representative selection (RS) is the problem of finding a small subset of exemplars from an unlabeled dataset, and has numerous applications in summarization, active learning, data compression and many other domains. In this paper, we focus on finding representatives that optimize the accuracy of a model trained on the selected representatives. We study RS for data represented as attributed graphs. We develop RS-GNN, a representation learning-based RS model based on Graph Neural Networks. Empirically, we demonstrate the effectiveness of RS-GNN on problems with predefined graph structures as well as problems with graphs induced from node feature similarities, by showing that RS-GNN achieves significant improvements over established baselines that optimize surrogate functions. Theoretically, we establish a new hardness result for RS by proving that RS is hard to approximate in polynomial time within any reasonable factor, which implies a significant gap between the optimum solution of widely-used surrogate functions and the actual accuracy of the model, and provides justification for the superiority of representation learning-based approaches such as RS-GNN over surrogate functions. | ['Vahab Mirrokni', 'Bryan Perozzi', 'Deepak Ramachandran', 'Mohammadhossein Bateni', 'Hossein Esfandiari', 'Anton Tsitsulin', 'Seyed Mehran Kazemi'] | 2022-05-20 | null | null | null | null | ['data-compression'] | ['time-series'] | [ 7.50046372e-01 8.09648216e-01 -7.74145782e-01 -2.95739233e-01
-1.10033178e+00 -4.26910698e-01 2.42014125e-01 8.58636260e-01
2.42277049e-02 7.22966909e-01 2.98527092e-01 -1.60403088e-01
-7.56885886e-01 -9.89823520e-01 -9.87970114e-01 -5.37796199e-01
-7.10654736e-01 9.73467708e-01 -1.45678684e-01 -1.65929615e-01
4.07403916e-01 6.11801565e-01 -1.25567889e+00 -6.51220232e-02
9.87683117e-01 7.66470134e-01 -2.08252594e-01 7.04650760e-01
-3.95679846e-02 9.97434676e-01 -6.75735354e-01 -3.16589713e-01
2.72770166e-01 -5.35516262e-01 -1.03125644e+00 1.88794836e-01
5.58821857e-01 2.17270136e-01 -7.61383057e-01 9.82337594e-01
4.10036564e-01 5.74355304e-01 8.27384174e-01 -1.49041724e+00
-7.41624296e-01 1.17122018e+00 -5.80630720e-01 -3.66704762e-02
3.82064611e-01 -3.88887972e-01 1.39465427e+00 -4.75432277e-01
7.29297221e-01 1.16345787e+00 1.00307596e+00 5.77998161e-01
-1.45315707e+00 -1.59871444e-01 1.08197615e-01 2.28916138e-01
-1.49066329e+00 -4.63608503e-01 5.39359570e-01 1.21654868e-01
9.27413344e-01 6.56259656e-01 5.50854385e-01 4.28101063e-01
-4.67348844e-01 9.74564254e-01 4.32417065e-01 -6.99224293e-01
3.09146643e-01 -1.09096110e-01 5.21340609e-01 9.88765061e-01
1.03434956e+00 -3.99548799e-01 -5.08028984e-01 -5.89280963e-01
4.56840545e-01 -1.12195790e-01 -7.40394592e-01 -7.26607800e-01
-7.73909271e-01 1.16276395e+00 6.71633065e-01 4.29370813e-02
-2.22595185e-01 4.88697410e-01 4.43967164e-01 3.26254815e-01
5.01288235e-01 8.57234299e-01 -2.52937406e-01 4.17610466e-01
-8.46540511e-01 -8.12969543e-03 1.18827176e+00 1.22494352e+00
7.84516335e-01 1.28503874e-01 -1.89733565e-01 8.16062629e-01
-5.85730281e-03 1.55289933e-01 3.30151528e-01 -9.00912881e-01
4.87979949e-01 8.86590838e-01 -4.07932580e-01 -1.15105033e+00
-3.64970326e-01 -5.96650302e-01 -8.95313919e-01 -6.38731778e-01
1.03773750e-01 1.68700457e-01 -7.63813496e-01 1.89332724e+00
3.22382450e-01 1.82265118e-01 4.36232006e-03 3.70906442e-01
9.02337134e-01 6.43339932e-01 -2.83520848e-01 -7.68354356e-01
5.19283712e-01 -1.04062438e+00 -4.25915837e-01 -1.54102132e-01
1.15951741e+00 7.67090544e-03 8.14717710e-01 1.95867792e-01
-1.09635031e+00 -7.75774270e-02 -1.18301797e+00 6.23462349e-02
-4.09516133e-02 -2.04048619e-01 8.90463948e-01 5.63543499e-01
-1.37301481e+00 1.13406110e+00 -4.37436312e-01 -5.58033168e-01
6.02346778e-01 6.64475918e-01 -4.69895840e-01 -2.50454485e-01
-8.75846744e-01 8.41296196e-01 6.09824479e-01 -8.93954486e-02
-6.35231614e-01 -5.33081770e-01 -1.10003531e+00 2.26211131e-01
5.98871708e-01 -7.84806013e-01 1.08700168e+00 -9.46098924e-01
-8.50820839e-01 6.24347389e-01 -2.41209537e-01 -9.07671928e-01
1.50287598e-01 1.04126483e-01 -2.48103172e-01 3.23281676e-01
-6.65594488e-02 9.38079972e-03 5.38861752e-01 -1.22696066e+00
-2.18733013e-01 -5.48051596e-01 1.20921642e-01 3.32985997e-01
-5.95726132e-01 -4.16833550e-01 -3.25906783e-01 -2.40505770e-01
1.47659749e-01 -8.30507517e-01 -7.86701977e-01 -2.65388995e-01
-7.01295257e-01 -6.97920620e-01 4.07497108e-01 -2.58675933e-01
1.47119391e+00 -1.70898640e+00 1.38357833e-01 8.75258267e-01
7.38885760e-01 2.96898603e-01 -3.86783242e-01 6.50167525e-01
-1.26146898e-01 4.38794255e-01 -4.65339810e-01 -7.85686150e-02
-1.61545295e-02 3.73063892e-01 -1.67632222e-01 9.07857060e-01
8.36112723e-02 1.00198305e+00 -9.97389138e-01 -5.23627281e-01
-3.01875681e-01 -3.13520022e-02 -1.88175410e-01 1.61542714e-01
-2.40929842e-01 -3.71688485e-01 -3.83717239e-01 4.49509472e-01
4.86755252e-01 -7.29837120e-01 5.87007523e-01 -4.36445400e-02
6.78940833e-01 2.83851743e-01 -1.04576552e+00 1.41246510e+00
-3.04748684e-01 5.29476821e-01 -1.51448071e-01 -1.63910508e+00
1.02092111e+00 -6.20590858e-02 5.35646558e-01 -2.66447097e-01
-1.58006474e-02 3.53849649e-01 -2.22002000e-01 -3.14141214e-01
6.48783684e-01 3.24043036e-01 -6.88969195e-02 7.49478102e-01
6.06115088e-02 -3.29337418e-02 6.72427356e-01 8.77005100e-01
1.62195027e+00 -2.80642241e-01 7.56027818e-01 -8.30687284e-02
3.41542184e-01 2.14840189e-01 3.42740893e-01 1.23753929e+00
1.50269672e-01 6.06119812e-01 5.71736157e-01 -3.31871390e-01
-8.97082806e-01 -7.07372963e-01 2.37585142e-01 9.23968613e-01
1.33564651e-01 -9.44532573e-01 -6.14191473e-01 -9.67232764e-01
1.83446016e-02 7.87694395e-01 -8.16201210e-01 -5.53799629e-01
-6.89993203e-01 -8.23152065e-01 3.62887681e-01 3.68374795e-01
-3.75863016e-02 -7.58710623e-01 -7.75113404e-02 1.72193363e-01
-3.29626761e-02 -7.64753401e-01 -5.19758642e-01 4.03407812e-01
-1.30164254e+00 -1.40612304e+00 -4.44904387e-01 -8.17083776e-01
1.12334156e+00 5.96010327e-01 1.48718059e+00 5.16706765e-01
-4.43612076e-02 4.53034610e-01 -3.99914145e-01 -3.43864381e-01
-6.18548393e-01 5.26533246e-01 -1.21775351e-01 -3.72737408e-01
1.93797365e-01 -6.23014510e-01 -2.35764399e-01 -1.13353640e-01
-9.26869273e-01 -2.10633442e-01 4.62898076e-01 7.51308858e-01
8.76230776e-01 -3.18791829e-02 7.28076994e-01 -1.64317465e+00
8.00717473e-01 -7.11995244e-01 -3.79224151e-01 8.76337290e-01
-9.67718422e-01 4.71325129e-01 7.26753950e-01 -2.89333701e-01
-1.23064555e-01 1.53777406e-01 2.62041092e-01 -2.60253489e-01
5.12393355e-01 9.08618510e-01 -1.50199965e-01 -2.54216164e-01
9.94865119e-01 1.53205708e-01 4.69714217e-02 -7.26131573e-02
6.55440032e-01 4.97853607e-01 5.29848576e-01 -5.26414275e-01
7.18109548e-01 2.62850791e-01 4.04343754e-01 -8.36429596e-01
-1.13596535e+00 -5.93496859e-01 -3.12219054e-01 4.33491953e-02
-2.54632890e-01 -5.22856355e-01 -6.31175637e-01 -4.25424695e-01
-9.76227403e-01 -1.88101143e-01 -7.79813826e-01 1.63432568e-01
-7.97942996e-01 6.46470428e-01 -3.90312910e-01 -9.13320601e-01
-8.96022320e-01 -4.93023485e-01 6.40282452e-01 1.13404870e-01
-3.83576244e-01 -9.94569838e-01 2.08389446e-01 1.06824882e-01
1.80248842e-01 4.79505062e-01 1.23866403e+00 -1.41898477e+00
-4.46466982e-01 -5.79648137e-01 -7.15503693e-02 9.01470557e-02
-1.07268142e-02 1.46319140e-02 -5.62064052e-01 -5.40739000e-01
-2.71238565e-01 -4.10256356e-01 1.15258920e+00 4.71420854e-01
1.46689165e+00 -7.39828169e-01 -5.85235953e-01 7.40526676e-01
1.65867913e+00 -1.57739460e-01 5.01713276e-01 1.70452759e-01
8.71440649e-01 5.36964536e-01 3.68462175e-01 2.82501608e-01
2.08552778e-01 2.64703423e-01 4.45755303e-01 -1.87576320e-02
1.65482927e-02 -4.17663068e-01 1.13650486e-01 1.05109215e+00
-5.45345172e-02 -5.95872700e-01 -5.49859464e-01 6.16237998e-01
-2.13656235e+00 -7.77851760e-01 -1.90460667e-01 2.65243816e+00
6.54524326e-01 -1.32677509e-02 3.09562117e-01 3.54944557e-01
1.21676981e+00 7.13481084e-02 -7.60838985e-01 -6.10843599e-01
-3.40613246e-01 5.39613128e-01 8.36288571e-01 1.68277755e-01
-9.77513611e-01 5.83953857e-01 6.65818834e+00 1.05865026e+00
-5.81341624e-01 -2.51968056e-01 6.53291643e-01 1.02259889e-01
-6.58968508e-01 1.10047236e-01 -4.41535830e-01 -2.20705226e-01
1.35053921e+00 -9.41250801e-01 5.72894454e-01 1.08091116e+00
-1.98671862e-01 3.98086399e-01 -1.44653726e+00 8.00362945e-01
4.76592809e-01 -1.64637876e+00 2.67506123e-01 3.75388302e-02
1.10406566e+00 -2.15437561e-02 -2.09099069e-01 1.66507646e-01
6.15503967e-01 -1.19981551e+00 2.99740434e-01 1.13715053e-01
8.33079219e-01 -1.00270975e+00 4.86062139e-01 2.52586782e-01
-1.19837213e+00 -1.04890503e-01 -7.82018423e-01 3.60944569e-01
-6.84670582e-02 5.40453911e-01 -1.26705837e+00 9.80006516e-01
-3.29545699e-02 8.84529710e-01 -5.38595080e-01 1.35523140e+00
-1.08791359e-01 7.43999183e-01 -4.31456238e-01 -3.66288096e-01
-8.96623358e-02 -6.39479905e-02 5.37491918e-01 1.10650361e+00
2.84116477e-01 -5.07770590e-02 2.80495107e-01 4.47164774e-01
-7.05161333e-01 3.79253536e-01 -1.05782068e+00 -3.34515482e-01
8.04510713e-01 1.23424661e+00 -8.10259938e-01 -4.32266891e-01
1.48814684e-02 5.80729187e-01 9.32115078e-01 2.28967205e-01
-6.28095686e-01 -6.38701081e-01 -8.92194882e-02 1.91370770e-01
2.95827538e-01 3.94399352e-02 -1.50175020e-01 -9.00674880e-01
-9.89900827e-02 -9.07144785e-01 8.63036036e-01 -3.36968482e-01
-1.37647510e+00 7.06431210e-01 1.18585564e-02 -1.17218184e+00
-3.83022875e-01 -3.40386719e-01 -5.42852640e-01 3.92424464e-01
-1.07644534e+00 -7.77141333e-01 -1.74954683e-01 3.90234977e-01
2.26997659e-01 -1.45049077e-02 1.12804163e+00 -1.81523129e-01
-5.23348689e-01 7.82894075e-01 3.43881220e-01 -2.61941366e-02
2.57574052e-01 -1.48065019e+00 5.34433842e-01 9.47586477e-01
5.38240731e-01 7.42399514e-01 6.60382092e-01 -5.10344088e-01
-1.73928690e+00 -1.32613254e+00 8.50002348e-01 -2.96557192e-02
4.68196154e-01 1.57113403e-01 -8.38515222e-01 7.47209609e-01
-1.99061200e-01 3.37799370e-01 7.19950020e-01 1.86382219e-01
-4.29965764e-01 -1.50096819e-01 -1.13336825e+00 4.48150486e-01
1.51470399e+00 -3.39815795e-01 -2.65632749e-01 7.25041509e-01
8.75546336e-01 -2.26639539e-01 -8.45603943e-01 4.68789160e-01
1.76117271e-01 -4.76936698e-01 9.53009129e-01 -1.07911718e+00
3.38108420e-01 -1.89239755e-02 -2.21790776e-01 -1.49429893e+00
-2.94702679e-01 -8.83191824e-01 -9.19926643e-01 9.94229972e-01
6.42781913e-01 -6.23341978e-01 1.09949148e+00 4.44626421e-01
-9.60196257e-02 -1.05327106e+00 -7.41617858e-01 -8.88332844e-01
-2.45256171e-01 -1.87108312e-02 6.96700573e-01 9.28000987e-01
1.47004113e-01 7.01720178e-01 -1.96187422e-01 -1.31742686e-01
8.35864007e-01 3.52483511e-01 8.73296201e-01 -1.46565306e+00
-3.12132001e-01 -3.35940242e-01 -4.81022716e-01 -9.22506452e-01
3.81073028e-01 -1.41728306e+00 -3.66819724e-02 -2.23247695e+00
2.98198521e-01 -7.17934966e-01 -3.30020219e-01 3.51376861e-01
-2.82327443e-01 -7.04707354e-02 -5.57646900e-02 3.00714225e-01
-1.10015774e+00 4.62348878e-01 1.03742731e+00 -3.69409770e-01
-3.52627099e-01 1.89304635e-01 -1.20980465e+00 4.76000488e-01
8.19409132e-01 -6.19879246e-01 -6.79605365e-01 -1.19884543e-01
4.29041117e-01 1.30846277e-01 -2.06728846e-01 -6.54596150e-01
3.68155718e-01 1.60856396e-02 6.70883507e-02 -4.57577258e-01
5.78490570e-02 -5.98228872e-01 1.85405657e-01 5.81234574e-01
-9.58743393e-01 1.44530654e-01 -3.17041755e-01 1.00196266e+00
3.15256640e-02 -6.20965183e-01 4.58273143e-01 -1.29634067e-01
-5.03470540e-01 6.81077421e-01 2.40072012e-01 4.65711981e-01
7.97052681e-01 -4.43400979e-01 -7.40733147e-01 -6.07488215e-01
-3.40860724e-01 2.03562200e-01 3.87117058e-01 -2.59350598e-01
8.26212049e-01 -1.19044292e+00 -8.72967541e-01 -1.84883758e-01
3.62549514e-01 3.33158731e-01 -9.12952498e-02 7.54223883e-01
-6.50744319e-01 8.64554346e-02 4.50301409e-01 -3.10133278e-01
-1.31162524e+00 7.51160622e-01 1.44519165e-01 -5.71500838e-01
-6.33744538e-01 1.01475310e+00 -2.60040402e-01 -3.38235527e-01
3.63311380e-01 1.78363442e-01 -2.25363031e-01 -2.55902827e-01
4.04125899e-01 7.80101418e-01 2.26638094e-01 -4.81772363e-01
-3.34249616e-01 1.47659391e-01 -1.59024760e-01 3.32206666e-01
1.62748086e+00 9.60982889e-02 -4.20031637e-01 2.37586528e-01
1.39514565e+00 -1.30903507e-02 -5.38490415e-01 -5.70207894e-01
2.94697106e-01 -3.20644528e-01 -2.47911096e-01 -1.70620561e-01
-1.06855190e+00 2.90333122e-01 -3.34210806e-02 7.14628518e-01
1.14469516e+00 1.96491212e-01 6.56642199e-01 7.96742976e-01
4.04252023e-01 -8.62117827e-01 -9.24846008e-02 1.16003342e-01
8.07021797e-01 -7.93635190e-01 6.25515640e-01 -6.69323444e-01
-4.61296022e-01 1.25270486e+00 3.13666940e-01 -5.14508605e-01
3.09775144e-01 -1.37907386e-01 -6.14466488e-01 -3.25515330e-01
-1.06682622e+00 -2.68688530e-01 4.28541929e-01 8.09665382e-01
2.66272813e-01 2.63130635e-01 -3.35550934e-01 3.02967876e-01
-2.50882119e-01 -1.89368740e-01 6.97825670e-01 7.70654440e-01
-5.79670012e-01 -9.79055464e-01 1.38010699e-02 1.18855703e+00
-1.96817026e-01 -1.47953823e-01 -6.82327151e-01 7.27911294e-01
-3.97137493e-01 9.57619369e-01 -1.43605784e-01 -4.93672431e-01
2.07040429e-01 -4.03123170e-01 7.86815882e-01 -8.21949661e-01
-4.81807351e-01 -3.90391886e-01 5.60643911e-01 -3.18699211e-01
-5.40367007e-01 -2.95444161e-01 -1.27995384e+00 -6.15403831e-01
-8.51099133e-01 6.48996890e-01 4.14127827e-01 7.43870437e-01
3.64385724e-01 2.18631491e-01 9.52226579e-01 -4.27452415e-01
-1.08927464e+00 -9.20850337e-01 -7.33293474e-01 2.57516831e-01
1.67482123e-01 -1.96941555e-01 -6.23474956e-01 -4.43373829e-01] | [7.117372989654541, 6.101532459259033] |
06272b4a-426c-4207-bc8f-03ac65180eb6 | towards-addressing-training-data-scarcity | 2304.1248 | null | https://arxiv.org/abs/2304.12480v1 | https://arxiv.org/pdf/2304.12480v1.pdf | Towards Addressing Training Data Scarcity Challenge in Emerging Radio Access Networks: A Survey and Framework | The future of cellular networks is contingent on artificial intelligence (AI) based automation, particularly for radio access network (RAN) operation, optimization, and troubleshooting. To achieve such zero-touch automation, a myriad of AI-based solutions are being proposed in literature for modeling and optimizing network behavior to achieve the zero-touch automation goal. However, to work reliably, AI based automation, requires a deluge of training data. Consequently, the success of AI solutions is limited by a fundamental challenge faced by cellular network research community: scarcity of training data. We present an extensive review of classic and emerging techniques to address this challenge. We first identify the common data types in RAN and their known use-cases. We then present a taxonomized survey of techniques to address training data scarcity for various data types. This is followed by a framework to address the training data scarcity. The framework builds on available information and combination of techniques including interpolation, domain-knowledge based, generative adversarial neural networks, transfer learning, autoencoders, few-shot learning, simulators, and testbeds. Potential new techniques to enrich scarce data in cellular networks are also proposed, such as by matrix completion theory, and domain knowledge-based techniques leveraging different network parameters and geometries. An overview of state-of-the art simulators and testbeds is also presented to make readers aware of current and emerging platforms for real data access. The extensive survey of training data scarcity addressing techniques combined with proposed framework to select a suitable technique for given type of data, can assist researchers and network operators in choosing appropriate methods to overcome the data scarcity challenge in leveraging AI to radio access network automation. | ['Ali Imran', 'Ali Rizwan', 'Per Karlsson', 'Shruti Bothe', 'Maxime Bouton', 'Julien Forgeat', 'Hasan Farooq', 'Syed Muhammad Asad Zaidi', 'Marvin Manalastas', 'Usama Masood', 'Haneya Naeem Qureshi'] | 2023-04-24 | null | null | null | null | ['matrix-completion'] | ['methodology'] | [ 6.33227453e-02 -8.08718354e-02 -9.70933288e-02 7.60346800e-02
-1.05400562e-01 -4.57012296e-01 1.34488627e-01 -4.23812509e-01
-9.21389181e-03 1.42120719e+00 -3.03145677e-01 -6.62657678e-01
-6.64983213e-01 -1.06854761e+00 -2.70413697e-01 -7.93892860e-01
-7.35275924e-01 6.72527194e-01 -3.73340845e-01 -6.96146011e-01
-1.32705733e-01 9.97211516e-01 -8.53196084e-01 -2.85292149e-01
6.24641001e-01 1.28927064e+00 8.28258321e-02 9.31875288e-01
1.29093200e-01 8.16128671e-01 -9.52041209e-01 -1.64576977e-01
6.02030814e-01 -4.30406660e-01 -5.77827752e-01 7.97596294e-03
-5.38120449e-01 -2.72171110e-01 -9.57791388e-01 4.27774727e-01
1.19744492e+00 3.58081944e-02 6.44883811e-01 -1.58433461e+00
-5.88427007e-01 4.71895307e-01 7.04305843e-02 7.01477528e-01
1.10509664e-01 3.84430975e-01 5.00872195e-01 -5.51340759e-01
4.18616593e-01 6.45448864e-01 9.65135634e-01 4.24286485e-01
-1.13037932e+00 -7.90621340e-01 -2.98749655e-01 9.58471298e-02
-1.63348734e+00 -6.63692117e-01 7.75976479e-01 -1.93473026e-01
7.53210545e-01 1.91925272e-01 8.24803114e-01 9.56623971e-01
-1.27332196e-01 1.39405325e-01 8.30376089e-01 -5.34324765e-01
5.69009602e-01 4.14089829e-01 -3.83803993e-01 7.19426870e-01
6.54508248e-02 4.39453125e-01 -6.03535511e-02 -3.79167378e-01
1.26093125e+00 -1.81130037e-01 -1.92506135e-01 -2.37312362e-01
-1.01935959e+00 4.80662525e-01 2.85298079e-01 3.99425089e-01
-7.77712166e-01 2.41721258e-01 1.58058286e-01 8.37370276e-01
-1.81596324e-01 5.81565678e-01 -6.17534339e-01 -1.54642314e-01
-1.05795336e+00 1.31788656e-01 1.25286043e+00 1.42539048e+00
7.92134225e-01 9.66990292e-01 -2.72672862e-01 5.97079039e-01
2.72047758e-01 6.29228890e-01 7.90246725e-02 -1.18375719e+00
2.43584812e-01 1.46738198e-02 -4.56571989e-02 -8.19186926e-01
-7.12416530e-01 -1.14399219e+00 -1.41038144e+00 6.30239025e-02
2.02047735e-01 -1.10740590e+00 -7.46982157e-01 1.60987818e+00
-1.01796553e-01 8.33191633e-01 2.96880662e-01 5.77324450e-01
6.72295272e-01 6.26428425e-01 -2.36928254e-01 -4.18884546e-01
8.88886034e-01 -8.23769808e-01 -5.94784617e-01 1.92970142e-01
3.10631216e-01 -5.21228671e-01 2.92774945e-01 8.68604630e-02
-1.07999074e+00 -3.51715237e-01 -1.24978483e+00 7.67719150e-01
-5.14492512e-01 -3.16576660e-01 6.53107345e-01 1.55486643e+00
-1.30127859e+00 5.71853042e-01 -3.46129119e-01 -9.37770903e-01
7.93179572e-01 1.00911939e+00 8.55500624e-02 7.94876143e-02
-1.47682869e+00 7.05761254e-01 2.10619748e-01 2.91643739e-02
-1.21143699e+00 -1.13082170e+00 -4.82867926e-01 2.56701082e-01
1.96336985e-01 -1.07063460e+00 8.77033293e-01 -6.52889490e-01
-1.92237639e+00 2.39267081e-01 3.93103212e-01 -1.01862872e+00
8.21676180e-02 4.82259095e-01 -1.16420937e+00 1.63751841e-01
-3.37814987e-01 1.96043834e-01 6.70432270e-01 -1.24166405e+00
-5.15621424e-01 2.30012849e-01 1.30793557e-01 -1.83802620e-01
-2.32377186e-01 -1.02178827e-01 -5.30517064e-02 -7.86272168e-01
-3.09000760e-01 -8.29836011e-01 -7.92498887e-01 -1.32467508e-01
-2.75008619e-01 5.24362862e-01 1.14739382e+00 -2.76401162e-01
1.19952607e+00 -1.65708280e+00 -2.10558534e-01 8.64334702e-01
3.45542282e-01 4.02707726e-01 -8.80089253e-02 7.81204820e-01
9.01153833e-02 3.47684681e-01 1.40709043e-01 1.65357247e-01
-2.18428046e-01 4.04410243e-01 -2.22239837e-01 2.52140433e-01
5.72410077e-02 8.71782541e-01 -7.49835014e-01 -2.22394079e-01
3.83648396e-01 3.41047794e-01 -6.41201675e-01 1.21514469e-01
7.17115998e-02 8.63504410e-01 -6.31310642e-01 1.10013974e+00
5.16635001e-01 -2.46386588e-01 5.57392277e-02 -3.63970667e-01
9.65750366e-02 -4.69653815e-01 -1.15717876e+00 1.25050604e+00
-8.55180860e-01 6.24254465e-01 2.87452579e-01 -1.36505604e+00
8.04421663e-01 9.99491751e-01 1.01629543e+00 -2.48868987e-01
5.05200744e-01 3.30077320e-01 2.12092549e-01 -3.60298008e-01
-2.06949055e-01 -2.71433949e-01 1.37486473e-01 4.00466919e-01
5.16414106e-01 -1.65376998e-02 -4.02637869e-02 7.26514012e-02
1.68864441e+00 -5.30259132e-01 4.20527399e-01 -1.64366856e-01
6.90157413e-01 -2.42463157e-01 6.89038634e-01 1.12403893e+00
-9.03240502e-01 1.62111625e-01 2.65864551e-01 -5.67449033e-01
-1.34554493e+00 -1.11017895e+00 8.35570320e-03 6.73239529e-01
1.14657298e-01 1.64790094e-01 -5.00641942e-01 -1.80683687e-01
-2.69585997e-01 3.52387279e-01 -2.46940017e-01 -5.72512485e-02
-1.22604780e-01 -1.05754638e+00 1.16667521e+00 7.90718421e-02
8.75652730e-01 -7.75660992e-01 1.27661243e-01 5.68673849e-01
7.54237995e-02 -1.52277970e+00 1.65254831e-01 2.56043196e-01
-7.44093597e-01 -4.47837681e-01 -8.22539628e-01 -8.48357975e-01
3.87595475e-01 9.67569351e-02 1.16258454e+00 1.42832026e-01
-2.67375439e-01 6.25877440e-01 -2.44622707e-01 -2.83595085e-01
-4.83611912e-01 1.57232225e-01 5.84839344e-01 -1.48622282e-02
-3.82688679e-02 -1.56231546e+00 -6.26483798e-01 4.89549041e-01
-4.64325130e-01 -5.68083525e-01 9.44891155e-01 9.37407792e-01
2.15714395e-01 5.70386231e-01 1.16504121e+00 -8.32184911e-01
5.66273630e-01 -1.07180917e+00 -3.48688096e-01 1.64213225e-01
-5.65554857e-01 -1.74875408e-01 9.91541982e-01 -1.93688571e-01
-7.88569212e-01 -3.04744422e-01 -2.49980297e-02 -4.00349051e-01
-1.43739551e-01 4.39656913e-01 -1.78908214e-01 -8.03638518e-01
1.06461096e+00 6.55547157e-02 2.74522841e-01 1.45904332e-01
2.83765435e-01 8.49893034e-01 1.91971511e-01 -5.46657383e-01
1.37121761e+00 6.47845209e-01 5.04880726e-01 -1.08345854e+00
-3.86058211e-01 -1.84685498e-01 -2.91851431e-01 -4.67866004e-01
2.78456122e-01 -7.37603962e-01 -5.51884711e-01 1.80959582e-01
-7.03715146e-01 -3.20255190e-01 -5.00313401e-01 4.81239706e-01
-8.99428427e-01 -1.57959275e-02 -5.76813042e-01 -6.57690167e-01
-5.05825102e-01 -9.24108088e-01 6.02473579e-02 4.28650409e-01
1.55254692e-01 -1.10006762e+00 -8.69256184e-02 4.09294605e-01
1.24150336e+00 2.57687122e-01 1.08271694e+00 -6.93716109e-01
-8.72112215e-01 -4.49817657e-01 -1.27075821e-01 7.41829276e-02
-2.99752727e-02 -3.97221968e-02 -8.86616290e-01 -4.02836859e-01
-1.95587710e-01 -1.05359823e-01 8.55372660e-03 7.51783848e-01
1.04133058e+00 -2.95247644e-01 -5.25661111e-01 8.71874928e-01
1.63160825e+00 3.73989284e-01 9.86199021e-01 -3.39419618e-02
1.27196023e-02 1.17519051e-02 1.92116335e-01 1.00978076e+00
6.02536909e-02 4.55621898e-01 5.13226449e-01 -3.40561211e-01
-1.15653954e-01 2.25378171e-01 -1.72036260e-01 6.49333179e-01
-4.62873310e-01 -6.58147454e-01 -6.34633183e-01 1.07589200e-01
-1.53438890e+00 -1.39663410e+00 3.56527299e-01 1.94421840e+00
1.96078315e-01 2.21517473e-01 2.73759723e-01 4.68563259e-01
7.89609194e-01 -3.09681594e-01 -4.11116064e-01 -1.73650548e-01
-1.05581917e-01 4.52458292e-01 9.22217548e-01 2.20430419e-01
-9.42462623e-01 7.47531235e-01 6.78980875e+00 9.92071152e-01
-9.87529218e-01 1.36828065e-01 5.74249387e-01 3.17709029e-01
1.57789275e-01 1.49291679e-01 -3.13059568e-01 3.05197150e-01
1.33528912e+00 -2.67446727e-01 1.02428699e+00 6.14068687e-01
6.13746881e-01 2.46757925e-01 -7.76069641e-01 1.17937541e+00
-3.24818879e-01 -1.76453626e+00 -1.26271039e-01 2.57315248e-01
9.09267247e-01 1.10761248e-01 1.29893363e-01 8.50197196e-01
2.38134772e-01 -1.03523982e+00 -4.31661904e-02 6.06972635e-01
9.27374542e-01 -8.37568343e-01 9.15717185e-01 5.47875874e-02
-1.16833425e+00 -5.83354056e-01 -2.22201973e-01 -2.20965713e-01
3.59811217e-01 6.76949322e-01 -9.79499280e-01 6.77981555e-01
3.32820594e-01 4.02961284e-01 -8.82752240e-02 1.55903125e+00
5.46879172e-01 7.38523901e-01 -4.98433799e-01 -2.80858800e-02
5.15827574e-02 -1.09472990e-01 8.67077470e-01 8.03986073e-01
5.07534683e-01 2.88852394e-01 1.90663189e-01 7.68068790e-01
-1.88428327e-01 -9.10004377e-02 -7.33922780e-01 -3.93659584e-02
1.26638114e+00 1.36986160e+00 -4.23832864e-01 -1.49792805e-01
-5.32354891e-01 6.75814092e-01 -2.41215631e-01 8.33056748e-01
-9.16026831e-01 -6.90014064e-01 7.16563463e-01 1.80823028e-01
-1.95380636e-02 -5.03387928e-01 -4.43645060e-01 -5.36530137e-01
-6.31656468e-01 -8.61209631e-01 2.30668366e-01 -5.78640699e-01
-1.17946780e+00 6.83459222e-01 -2.57519692e-01 -1.60414624e+00
-2.44589552e-01 -4.25572455e-01 -6.54034078e-01 8.22436333e-01
-1.40728819e+00 -1.08345485e+00 -6.03686094e-01 6.44095063e-01
3.04807842e-01 -1.28698552e+00 1.26517737e+00 9.42492604e-01
-7.44156539e-01 6.94386661e-01 2.78399557e-01 1.26863763e-01
2.56983161e-01 -8.50607812e-01 -5.99071458e-02 6.12621248e-01
-5.21949045e-02 2.78992027e-01 7.70429730e-01 -1.77132741e-01
-1.44180071e+00 -1.01315165e+00 -1.17641725e-02 1.27622887e-01
6.32957876e-01 4.52810377e-02 -1.54472351e-01 4.34218764e-01
8.79850388e-02 4.26446795e-01 9.80809450e-01 -1.76083576e-02
4.42879289e-01 -5.98154068e-01 -1.62980449e+00 9.79693949e-01
9.20355320e-01 -3.37170064e-01 3.82886738e-01 4.46159601e-01
4.04594451e-01 -1.12920187e-01 -1.07816255e+00 3.61555099e-01
3.23359191e-01 -7.17142522e-01 1.15168357e+00 -6.71862602e-01
-3.99756163e-01 -3.63595158e-01 -3.09699208e-01 -1.32551670e+00
-4.18553948e-01 -1.47281218e+00 -5.53874731e-01 1.00513208e+00
5.64498007e-01 -5.84198415e-01 1.23011076e+00 3.29428613e-01
-5.11470921e-02 -7.86644936e-01 -8.98953915e-01 -9.24524724e-01
-1.22174621e-01 -3.19339961e-01 7.85955906e-01 8.97332191e-01
-2.43011359e-02 3.92458141e-01 -4.75267678e-01 5.50909758e-01
7.45434403e-01 -6.19198561e-01 1.01415384e+00 -1.17092407e+00
-3.83600205e-01 -3.05976808e-01 -1.06760442e+00 -8.90592217e-01
-2.12826580e-01 -6.97370648e-01 -5.05258977e-01 -1.26291990e+00
-4.30670679e-01 -1.19774890e+00 -3.76069933e-01 -9.67368707e-02
6.65041029e-01 2.03162894e-01 -9.56619829e-02 1.75526410e-01
-2.99010217e-01 3.27512383e-01 1.05621552e+00 -1.96824297e-02
-3.90561789e-01 6.46624267e-01 -6.82753921e-01 3.48374903e-01
1.41896152e+00 -1.07641377e-01 -6.74504101e-01 5.72339855e-02
7.39766210e-02 5.88746190e-01 3.81601572e-01 -1.91227210e+00
5.13170779e-01 -1.52444020e-01 3.55731994e-01 -2.53376573e-01
5.14609694e-01 -1.35889041e+00 3.15283298e-01 4.92584139e-01
2.02981085e-01 -2.05751196e-01 -7.64695415e-03 9.07288134e-01
1.53021172e-01 -1.02041833e-01 9.52386379e-01 7.35447705e-02
-7.47869253e-01 8.27637196e-01 -8.77507925e-01 2.16119751e-01
1.28789759e+00 -5.36098659e-01 4.08443399e-02 -1.11747527e+00
-1.18947864e+00 3.47820312e-01 -1.52004942e-01 -2.40355074e-01
4.59373802e-01 -1.31626546e+00 -6.62566423e-01 1.40571862e-01
-3.73567820e-01 -5.47728658e-01 3.52573872e-01 9.32759941e-01
-8.31632078e-01 5.35401404e-01 -5.24221599e-01 -2.50926286e-01
-5.98960757e-01 6.29805744e-01 9.57363784e-01 -2.98204005e-01
-1.14451628e-02 5.75415790e-01 -7.57386804e-01 -2.74187446e-01
2.87900925e-01 7.38761723e-02 -3.13198045e-02 -6.41145051e-01
4.16392982e-02 6.65857434e-01 1.49015784e-01 -1.40498519e-01
-1.23946965e-01 1.45014748e-01 2.28844598e-01 -7.14466944e-02
1.06944215e+00 -4.92737085e-01 2.01439425e-01 -6.17498159e-02
7.89570808e-01 -1.92627415e-01 -7.26296604e-01 -5.29966116e-01
-2.42035463e-01 -1.17149122e-01 2.81267941e-01 -8.48868310e-01
-1.34049559e+00 5.28360009e-01 8.02824855e-01 4.50852275e-01
1.37495768e+00 -4.10691887e-01 7.96065688e-01 7.22868323e-01
8.60958457e-01 -9.86349285e-01 3.78263816e-02 5.65382063e-01
3.72142494e-01 -1.09614384e+00 -1.25190333e-01 -5.25763392e-01
-2.10202590e-01 1.10496807e+00 4.41675633e-01 -5.02105094e-02
1.45213675e+00 5.42455494e-01 2.09945608e-02 -5.95345683e-02
-6.26794338e-01 -4.42359209e-01 -3.62597674e-01 1.42985129e+00
1.75041169e-01 -7.71032423e-02 2.59439915e-01 6.77291214e-01
-6.05030917e-03 8.02118629e-02 6.74722970e-01 9.02751803e-01
-4.97903019e-01 -1.20324528e+00 -3.50661516e-01 9.36023831e-01
-3.84439051e-01 -1.82359070e-01 1.15708277e-01 6.65815592e-01
1.23192497e-01 1.19587243e+00 -2.52416253e-01 -5.55846274e-01
1.38876244e-01 -4.07093018e-01 2.38319561e-01 -3.61770719e-01
-3.43266308e-01 -5.94931364e-01 1.57429650e-01 -1.37967123e-02
-2.99249142e-01 -6.12769835e-02 -1.04103732e+00 -9.86426890e-01
-4.16232526e-01 7.15080202e-02 4.18443829e-01 9.85457242e-01
5.83372355e-01 7.80530512e-01 1.08613753e+00 -8.23616624e-01
-3.62599075e-01 -7.12398350e-01 -7.83505917e-01 -3.10553104e-01
2.61481136e-01 -6.90002322e-01 -1.25808492e-01 -1.17005423e-01] | [6.031755447387695, 1.6166057586669922] |
3e48ad7e-5e02-4ff2-88b3-914e6abd128f | graphing-the-future-activity-and-next-active | 2209.05194 | null | https://arxiv.org/abs/2209.05194v1 | https://arxiv.org/pdf/2209.05194v1.pdf | Graphing the Future: Activity and Next Active Object Prediction using Graph-based Activity Representations | We present a novel approach for the visual prediction of human-object interactions in videos. Rather than forecasting the human and object motion or the future hand-object contact points, we aim at predicting (a)the class of the on-going human-object interaction and (b) the class(es) of the next active object(s) (NAOs), i.e., the object(s) that will be involved in the interaction in the near future as well as the time the interaction will occur. Graph matching relies on the efficient Graph Edit distance (GED) method. The experimental evaluation of the proposed approach was conducted using two well-established video datasets that contain human-object interactions, namely the MSR Daily Activities and the CAD120. High prediction accuracy was obtained for both action prediction and NAO forecasting. | ['Antonis Argyros', 'Konstantinos Papoutsakis', 'Victoria Manousaki'] | 2022-09-12 | null | null | null | null | ['human-object-interaction-detection', 'graph-matching'] | ['computer-vision', 'graphs'] | [ 3.98141116e-01 -1.72236003e-02 -1.08968116e-01 -1.87165588e-01
2.20512435e-01 -1.92504182e-01 7.19184101e-01 2.83078700e-01
-1.08766973e-01 4.18996453e-01 -4.40872572e-02 1.15375882e-02
-2.89367169e-01 -5.45103192e-01 -4.71377581e-01 -4.67265666e-01
-4.89165366e-01 7.14018404e-01 7.38698006e-01 -3.02536525e-02
3.79322737e-01 1.08610249e+00 -1.79703116e+00 2.84134716e-01
3.83517385e-01 1.25583017e+00 3.88292581e-01 8.56892228e-01
2.41585404e-01 1.14719164e+00 -4.12847042e-01 -2.29119807e-01
2.69396722e-01 -4.73273367e-01 -7.42793858e-01 4.30197179e-01
4.71113384e-01 -2.09138244e-01 -5.65397799e-01 6.99816287e-01
7.62657896e-02 5.80848634e-01 6.46899223e-01 -1.69873142e+00
1.40697092e-01 1.17433108e-01 -5.10305643e-01 4.39893544e-01
9.26228881e-01 1.14858642e-01 5.84700406e-01 -9.13969517e-01
1.42486811e+00 1.10163760e+00 3.02339077e-01 3.21327835e-01
-6.89058006e-01 -3.81978422e-01 -4.43286337e-02 9.29761529e-01
-1.47847724e+00 -3.94908071e-01 9.98600543e-01 -9.02459800e-01
8.14578354e-01 1.88290045e-01 1.00621986e+00 7.73746669e-01
3.65738004e-01 7.28008151e-01 4.09340620e-01 -6.27194583e-01
2.69479811e-01 -4.94973175e-02 4.97375540e-02 6.29405797e-01
-1.76344767e-01 2.01656036e-02 -6.64467990e-01 -1.20943896e-01
5.28100193e-01 1.48583323e-01 -1.07385859e-01 -7.13359833e-01
-1.64382339e+00 3.24468791e-01 1.84510037e-01 3.82653147e-01
-7.40107238e-01 -1.75582282e-02 3.08982342e-01 -3.12695727e-02
1.71141565e-01 -2.71760851e-01 -2.16379464e-01 -2.05109358e-01
-7.41991997e-01 4.12537158e-01 7.86647081e-01 1.03176355e+00
5.57911158e-01 -2.77506143e-01 -2.53948390e-01 1.27295673e-01
1.04375668e-01 5.44543304e-02 5.53901047e-02 -8.34084749e-01
7.28477478e-01 9.49278414e-01 5.53334892e-01 -1.44787955e+00
-7.12532774e-02 4.24557239e-01 -5.06635845e-01 4.41306293e-01
5.43933511e-01 9.95261744e-02 -7.45591104e-01 1.03801346e+00
6.66264296e-01 4.05945361e-01 -2.50101805e-01 6.22012973e-01
6.69487476e-01 9.13868725e-01 2.29714707e-01 -4.64935660e-01
1.14666724e+00 -9.74944234e-01 -8.76379609e-01 -4.04902510e-02
6.80938184e-01 -6.68195605e-01 2.47986376e-01 1.60180598e-01
-1.08310664e+00 -1.02350092e+00 -6.77212715e-01 1.82692736e-01
-2.92698801e-01 2.30552703e-01 3.94121796e-01 -3.02329715e-02
-5.76879859e-01 6.94326162e-01 -9.46755648e-01 -6.33973360e-01
9.89796370e-02 3.53105813e-01 -5.75991631e-01 8.84518847e-02
-7.56938159e-01 7.66758025e-01 6.75455034e-01 3.44640911e-01
-9.17509615e-01 -3.73878986e-01 -5.96451998e-01 4.77165990e-02
6.70336545e-01 -2.70668596e-01 6.71497405e-01 -1.35321999e+00
-8.70315075e-01 8.41342628e-01 -3.21469009e-01 -4.91020709e-01
6.88013494e-01 -1.42182395e-01 -5.59583426e-01 2.72768885e-01
-2.33619064e-01 7.59649873e-01 7.35656202e-01 -9.14557278e-01
-1.14798880e+00 -3.68068397e-01 -1.87883265e-02 5.03959775e-01
-9.18865949e-02 1.55004740e-01 -5.75696886e-01 -6.62599206e-01
1.30020395e-01 -1.12113154e+00 1.07818849e-01 6.35784149e-01
-1.68290645e-01 -7.43537068e-01 1.33173525e+00 -9.24944520e-01
1.27484167e+00 -2.25868678e+00 4.40510303e-01 2.50824153e-01
6.77409619e-02 4.45266992e-01 1.97964817e-01 5.79806447e-01
-2.81002432e-01 -4.99071211e-01 3.09863478e-01 -4.46705110e-02
-4.07631814e-01 9.33866426e-02 -9.67567042e-02 4.19559717e-01
-3.48185420e-01 7.14384794e-01 -9.10506904e-01 -7.79724598e-01
5.64574182e-01 2.94510901e-01 -4.54985648e-02 5.62745869e-01
-1.86236545e-01 6.70523942e-01 -3.63702506e-01 4.77270901e-01
2.53863603e-01 -7.67935216e-02 1.41730905e-01 -5.14056206e-01
-1.52614459e-01 -2.07817987e-01 -1.48172832e+00 1.21749389e+00
1.19837023e-01 7.42582619e-01 -2.35712603e-01 -7.09753156e-01
9.03755844e-01 4.35841709e-01 9.67446029e-01 -4.13443089e-01
-1.48389071e-01 -8.57034922e-02 -8.38546380e-02 -6.50815964e-01
4.01266426e-01 5.44429421e-01 4.76392567e-01 1.55553579e-01
-2.64258385e-01 4.77563888e-01 6.34432137e-01 2.29645863e-01
9.80867445e-01 4.63906467e-01 6.38780296e-01 -4.38267551e-02
7.83964276e-01 1.03961267e-01 5.21843910e-01 3.55129302e-01
-3.16511631e-01 6.32552207e-02 4.22035158e-01 -7.38872468e-01
-8.70359957e-01 -8.05913448e-01 2.72262722e-01 8.19442034e-01
4.35045600e-01 -2.09610477e-01 -4.57936704e-01 -7.62253702e-01
-1.89190388e-01 8.92030597e-01 -6.85844660e-01 1.10199034e-01
-7.67771065e-01 2.63008893e-01 -3.76134485e-01 6.04064822e-01
2.77440310e-01 -1.60390043e+00 -8.42077792e-01 2.12381527e-01
-2.83749044e-01 -1.06484115e+00 -8.47007155e-01 -2.95338243e-01
-9.30518627e-01 -1.28503954e+00 -5.89218020e-01 -8.34220767e-01
7.41407692e-01 6.24415139e-03 8.00592005e-01 1.70227304e-01
-5.58543921e-01 7.13940322e-01 -3.37116003e-01 -1.60745308e-01
-5.60343623e-01 -6.02367043e-01 2.03415770e-02 6.20495617e-01
2.19546929e-01 -1.58919781e-01 -7.59201586e-01 7.30638027e-01
-4.54341829e-01 2.96469301e-01 -3.48718534e-03 2.87674993e-01
6.98463321e-01 2.87842780e-01 -9.94212776e-02 -4.04233575e-01
-3.63845192e-02 -3.44358802e-01 -6.84048653e-01 7.59751737e-01
-4.79842603e-01 -4.47228163e-01 9.93704721e-02 -6.83365762e-01
-1.18899560e+00 6.96525514e-01 3.88708591e-01 -5.24256825e-01
-4.25832629e-01 2.15239689e-01 -8.87766331e-02 9.75182429e-02
2.66673476e-01 1.59377992e-01 -4.19423133e-01 -2.81905472e-01
9.16913711e-03 5.30766726e-01 5.39316058e-01 3.25280130e-02
4.71586138e-01 5.24065554e-01 2.64043510e-01 -8.70598435e-01
-2.92030096e-01 -7.32546091e-01 -1.20747828e+00 -9.74360883e-01
1.29466307e+00 -6.54083252e-01 -8.74089181e-01 6.14040017e-01
-1.39270008e+00 -8.80107880e-02 -5.06957471e-02 6.98668778e-01
-6.52336657e-01 4.39889669e-01 -1.57767862e-01 -9.68581319e-01
-1.50152788e-01 -8.90386283e-01 8.93633306e-01 2.48200428e-02
-5.41549683e-01 -8.88760269e-01 -1.15029700e-01 5.41506588e-01
-3.52189183e-01 5.32643080e-01 8.45475137e-01 -5.78172147e-01
-8.88212502e-01 -5.36260188e-01 1.96116008e-02 -1.01263128e-01
9.07182172e-02 3.46023738e-01 -1.41780376e-01 -2.40661219e-01
-3.83355856e-01 3.30223143e-01 6.04257919e-03 3.18627298e-01
9.48903978e-01 -1.04411311e-01 -8.77943218e-01 2.33212970e-02
1.01800776e+00 9.32208538e-01 1.07685578e+00 -2.34937333e-02
9.09067810e-01 6.99415326e-01 1.42117643e+00 6.18091464e-01
1.87589481e-01 1.48863709e+00 4.26185459e-01 2.78355688e-01
-2.35816792e-01 -2.86726475e-01 4.36196417e-01 4.45977688e-01
-5.10863543e-01 -5.32595515e-01 -1.05691516e+00 4.89021391e-01
-2.08771467e+00 -1.22304308e+00 -5.33988237e-01 2.31058002e+00
1.24308832e-01 9.79723483e-02 1.95791125e-01 1.76286548e-01
9.64791298e-01 -4.11553755e-02 -4.89578158e-01 -8.05461928e-02
4.40895587e-01 -3.38178277e-01 7.30812475e-02 3.35673124e-01
-1.00351763e+00 6.25510514e-01 5.61014652e+00 8.03195298e-01
-6.71335697e-01 -1.15851432e-01 4.30992723e-01 1.13358407e-03
6.28880560e-01 -5.88325188e-02 -8.76006007e-01 4.67967242e-01
5.43029428e-01 -1.81239873e-01 3.85833234e-01 8.71382475e-01
2.46411458e-01 -6.36786222e-01 -1.42845011e+00 1.13512421e+00
2.37437233e-01 -1.19227099e+00 4.87623215e-02 -1.27612904e-01
4.39837754e-01 -6.06778204e-01 -5.57347000e-01 -2.76529253e-01
-3.68690968e-01 -4.87836361e-01 9.37791288e-01 1.11619616e+00
5.38214862e-01 -5.58196187e-01 5.89101851e-01 5.17758191e-01
-1.72409689e+00 -2.79610246e-01 2.49140680e-01 -1.61215663e-02
5.02976894e-01 4.02325392e-02 -8.60591888e-01 3.38198543e-01
8.52443695e-01 9.78720963e-01 -6.16501153e-01 9.84652340e-01
-9.67121311e-03 2.41020128e-01 -7.75034949e-02 -8.44016150e-02
-2.27357849e-01 -3.75048518e-01 9.53845143e-01 6.92551434e-01
5.15693009e-01 3.65503132e-01 1.92944020e-01 4.09663677e-01
4.08670276e-01 -5.41940145e-02 -6.95782959e-01 -2.29329079e-01
2.15277091e-01 9.99468386e-01 -9.08546209e-01 -5.57420909e-01
-2.94735610e-01 1.17632389e+00 1.04645211e-02 2.76488632e-01
-9.19456005e-01 -3.19280744e-01 3.29753071e-01 6.83399975e-01
6.84765160e-01 -4.94264036e-01 3.54885548e-01 -6.09851480e-01
3.93542916e-01 -3.75680506e-01 4.92888331e-01 -1.41931152e+00
-7.82951415e-01 5.14005244e-01 2.69924611e-01 -1.63521349e+00
-5.41673124e-01 -4.10118341e-01 -5.77741921e-01 4.57663268e-01
-4.70939279e-01 -1.07825553e+00 -4.68532860e-01 7.45602012e-01
5.46978533e-01 -1.66225418e-01 4.81821984e-01 3.66924196e-01
-1.55665159e-01 2.07911506e-02 -2.44884193e-01 8.16153884e-02
6.69413358e-02 -6.65122151e-01 1.61274254e-01 5.90036869e-01
3.59950125e-01 -1.76938269e-02 7.81007111e-01 -1.16254747e+00
-1.26335585e+00 -9.35195208e-01 1.37204742e+00 -5.86106837e-01
6.40692055e-01 -2.76231796e-01 -6.49969220e-01 8.31381619e-01
-2.28175864e-01 1.08182319e-01 -1.41307972e-02 -6.98467255e-01
5.00503242e-01 -1.77430227e-01 -1.02085602e+00 6.99512541e-01
1.42988861e+00 -3.79463047e-01 -5.23927927e-01 5.57250082e-01
1.21441387e-01 -5.72368741e-01 -7.11068809e-01 4.83683646e-01
6.22008324e-01 -1.05328965e+00 1.04111123e+00 -6.74782932e-01
1.26091123e-01 -3.66302341e-01 3.99828292e-02 -6.28021479e-01
-2.85608917e-01 -4.81096447e-01 -6.92000866e-01 1.02284980e+00
-1.81288093e-01 1.60708860e-01 9.00157750e-01 7.81097412e-01
1.56066537e-01 -7.64676094e-01 -1.17629421e+00 -7.45156050e-01
-1.19270754e+00 -1.52188480e-01 2.49024317e-01 6.16897583e-01
-2.47390628e-01 -1.24240488e-01 -6.66213691e-01 1.73137784e-01
4.61787075e-01 1.30414858e-01 9.35704887e-01 -1.37818646e+00
3.32336165e-02 8.71732682e-02 -1.16687286e+00 -9.39325988e-01
9.59911197e-02 -5.40299773e-01 2.21057751e-04 -1.40901494e+00
1.66717052e-01 -2.53610834e-02 4.65864278e-02 2.48968109e-01
2.36519575e-01 -8.39541852e-02 2.88804322e-01 2.88879126e-01
-7.40432560e-01 2.28518024e-01 1.14078701e+00 -9.32465401e-03
-3.53635609e-01 3.58469278e-01 7.87748277e-01 8.10138226e-01
2.79317379e-01 -5.52104712e-01 -3.17013383e-01 1.93747640e-01
-3.81605164e-03 8.25555921e-01 6.67637467e-01 -1.26799476e+00
3.25375855e-01 -4.32209074e-01 3.72107059e-01 -9.18764174e-01
4.87738252e-01 -1.46575356e+00 9.78907287e-01 7.48249054e-01
-3.82209331e-01 1.42483532e-01 -4.28421833e-02 1.00335634e+00
-6.11405522e-02 -3.76704663e-01 3.44158411e-01 1.95117697e-01
-1.17493939e+00 5.91517687e-01 -5.09878993e-01 -5.03837824e-01
1.74386096e+00 -7.07964003e-01 2.15251148e-01 -4.84829962e-01
-1.35229766e+00 2.86212638e-02 1.98919311e-01 7.87676215e-01
7.29471147e-01 -1.38627672e+00 -3.27375889e-01 7.22656026e-02
2.55189538e-01 -6.19011581e-01 2.16443613e-01 8.10153961e-01
-3.85924846e-01 1.56947374e-01 -4.24403459e-01 -4.39688742e-01
-2.11496162e+00 6.66740358e-01 1.77918896e-01 -1.28640786e-01
-7.28860676e-01 2.65967518e-01 7.89441913e-02 3.71817440e-01
5.75581491e-01 1.16899908e-01 -5.75133801e-01 9.48226526e-02
4.95744288e-01 1.15616810e+00 -1.45392969e-01 -1.22031629e+00
-4.22509313e-01 5.27464032e-01 1.86151311e-01 2.59308666e-01
1.22844720e+00 -2.19273761e-01 -2.40808740e-01 6.64836645e-01
8.47093940e-01 -4.09214705e-01 -1.43377960e+00 -2.79063918e-02
1.81348890e-01 -6.82544231e-01 -1.42706633e-01 -6.22378111e-01
-1.06630111e+00 7.17742264e-01 1.23819208e+00 7.44940862e-02
8.34230304e-01 1.28190875e-01 7.45379746e-01 5.51596105e-01
7.08174050e-01 -1.11215866e+00 2.18563512e-01 -1.08169578e-02
1.17224145e+00 -8.54148746e-01 1.82356596e-01 -7.11679637e-01
-8.10228705e-01 1.30156779e+00 5.91255784e-01 3.04056287e-01
9.60364103e-01 -3.05899978e-01 -2.69868106e-01 -5.05649745e-01
-4.00053769e-01 1.11459628e-01 9.01206195e-01 4.75816071e-01
1.75851002e-01 -2.01836620e-02 -2.29504943e-01 -1.73287153e-01
4.84616876e-01 4.91950482e-01 7.76771456e-02 1.04754555e+00
-2.42842540e-01 -5.89048743e-01 -2.36043304e-01 5.22808552e-01
1.12976685e-01 4.53877747e-01 -3.25076371e-01 6.57376468e-01
4.06020254e-01 7.80068099e-01 4.13303435e-01 -2.26557314e-01
4.79754746e-01 9.52612702e-03 5.52946746e-01 -4.42780256e-01
-2.42738619e-01 -3.26289803e-01 4.60385568e-02 -8.64240289e-01
-6.76771641e-01 -9.20291185e-01 -1.36119235e+00 -1.87704831e-01
-2.70358086e-01 -1.57836825e-01 3.72944564e-01 9.13746834e-01
3.96637499e-01 1.75943658e-01 4.31413293e-01 -1.27016544e+00
7.42516518e-02 -6.37326479e-01 -7.90787995e-01 9.79023218e-01
-1.45014316e-01 -9.18077290e-01 -2.88234860e-01 6.70260906e-01] | [8.428596496582031, 0.40439894795417786] |
be5f6cc8-d7f2-47ba-b1f8-0424f3de3499 | generalization-bounds-with-data-dependent | 2302.02766 | null | https://arxiv.org/abs/2302.02766v2 | https://arxiv.org/pdf/2302.02766v2.pdf | Generalization Bounds with Data-dependent Fractal Dimensions | Providing generalization guarantees for modern neural networks has been a crucial task in statistical learning. Recently, several studies have attempted to analyze the generalization error in such settings by using tools from fractal geometry. While these works have successfully introduced new mathematical tools to apprehend generalization, they heavily rely on a Lipschitz continuity assumption, which in general does not hold for neural networks and might make the bounds vacuous. In this work, we address this issue and prove fractal geometry-based generalization bounds without requiring any Lipschitz assumption. To achieve this goal, we build up on a classical covering argument in learning theory and introduce a data-dependent fractal dimension. Despite introducing a significant amount of technical complications, this new notion lets us control the generalization error (over either fixed or random hypothesis spaces) along with certain mutual information (MI) terms. To provide a clearer interpretation to the newly introduced MI terms, as a next step, we introduce a notion of "geometric stability" and link our bounds to the prior art. Finally, we make a rigorous connection between the proposed data-dependent dimension and topological data analysis tools, which then enables us to compute the dimension in a numerically efficient way. We support our theory with experiments conducted on various settings. | ['Umut Şimşekli', 'George Deligiannidis', 'Benjamin Dupuis'] | 2023-02-06 | null | null | null | null | ['topological-data-analysis'] | ['graphs'] | [ 4.49976772e-02 1.00413516e-01 9.98220295e-02 -2.51884729e-01
-9.40774381e-02 -5.40633321e-01 3.85289222e-01 5.20587921e-01
-5.21700144e-01 7.88843751e-01 -3.03377777e-01 -3.85841250e-01
-6.93025649e-01 -9.38443482e-01 -7.06578612e-01 -1.05190170e+00
-3.17117542e-01 -8.84297416e-02 2.87188292e-01 -3.81754339e-01
3.90523076e-01 6.92483008e-01 -1.49150467e+00 -4.27320212e-01
9.47896242e-01 1.04387975e+00 -6.46604225e-03 4.29167509e-01
-1.15000978e-02 2.35383794e-01 -3.06719810e-01 -5.47623992e-01
4.04851228e-01 -4.15916741e-01 -9.29628193e-01 -4.26414311e-02
3.26946765e-01 2.39504099e-01 -3.03722303e-02 1.44713795e+00
3.54027808e-01 2.55777746e-01 8.36443901e-01 -1.01788425e+00
-6.05469942e-01 6.44091427e-01 -3.59641284e-01 3.82453710e-01
-1.29998714e-01 -3.81319076e-01 9.47542071e-01 -6.37522817e-01
3.60969007e-01 9.08725917e-01 1.00220656e+00 5.04574955e-01
-1.21093762e+00 -3.07554394e-01 -2.39452552e-02 1.09584652e-01
-1.35878229e+00 -9.07026976e-02 9.54782009e-01 -5.49249351e-01
6.38755038e-02 2.55992830e-01 5.41882575e-01 7.89259076e-01
2.84816802e-01 4.37082201e-01 1.08912766e+00 -6.62084639e-01
4.05541033e-01 2.72871286e-01 4.05876189e-01 8.19681942e-01
6.10565126e-01 -8.42128918e-02 1.64663061e-01 2.91294754e-01
9.76320326e-01 -1.04665220e-01 -7.37220466e-01 -7.20598042e-01
-1.04988992e+00 1.09917378e+00 6.23856902e-01 8.04791570e-01
-5.61256986e-03 -1.32123232e-01 3.56114537e-01 4.60583180e-01
5.75869679e-01 5.13783634e-01 -2.87968844e-01 1.04567625e-01
-4.97812539e-01 6.03187305e-04 7.93952763e-01 7.65861750e-01
6.11008763e-01 -2.31300741e-01 3.68447632e-01 7.31080353e-01
2.46016290e-02 6.43951073e-02 3.88323098e-01 -5.65206349e-01
2.71737307e-01 2.62676865e-01 -9.80689526e-02 -1.42283058e+00
-5.95388472e-01 -8.61313283e-01 -1.21556294e+00 1.86942771e-01
8.75344396e-01 1.30196452e-01 -1.73051730e-01 2.04710650e+00
2.19976932e-01 8.06602836e-02 1.20615922e-01 8.20485771e-01
-1.18217044e-01 4.89404127e-02 -2.88433582e-01 -3.54585975e-01
9.61329222e-01 -5.51718473e-01 -4.75250989e-01 6.34577811e-01
9.70576584e-01 -2.79148400e-01 1.39388061e+00 5.16186893e-01
-9.61009800e-01 -1.97084114e-01 -1.34776962e+00 1.88765228e-01
-5.50229549e-01 -1.20237194e-01 6.73229039e-01 8.83765042e-01
-1.01842248e+00 1.08614922e+00 -8.18358481e-01 -6.60644889e-01
3.73059392e-01 1.06408201e-01 -3.22321862e-01 3.33334416e-01
-1.09285092e+00 8.45430374e-01 4.42378074e-01 3.07448376e-02
2.70771515e-02 -5.04811704e-01 -6.39579654e-01 2.52997410e-02
2.83235669e-01 -7.08805501e-01 8.85041475e-01 -7.11551905e-01
-1.33248734e+00 5.71593344e-01 2.72119582e-01 -6.90077245e-01
8.40577722e-01 4.05284809e-03 -9.95131508e-02 2.31707141e-01
-2.66514122e-01 -3.27351093e-02 4.66439039e-01 -9.91985142e-01
-2.28660345e-01 -6.53709948e-01 4.60009366e-01 -2.38549471e-01
-6.66059077e-01 -5.69332182e-01 2.75696307e-01 -7.88926125e-01
3.18526596e-01 -6.89669967e-01 -1.19590610e-01 5.04864492e-02
-1.83002546e-01 -2.84789264e-01 3.40843529e-01 7.71630332e-02
9.51172113e-01 -2.07966089e+00 2.81991184e-01 2.41774485e-01
4.16459382e-01 1.41135335e-01 2.15337977e-01 3.41689080e-01
-1.77111417e-01 3.40220183e-01 -5.63143253e-01 -4.09357548e-01
6.48110136e-02 8.16624090e-02 -4.28835750e-01 9.37790334e-01
2.06680015e-01 5.10774672e-01 -8.66969407e-01 -4.00229692e-01
2.03457117e-01 6.47289157e-01 -8.08745205e-01 -5.61267018e-01
9.02165100e-03 5.36511719e-01 -4.33959842e-01 1.08356543e-01
8.34150553e-01 -1.70535907e-01 -1.38958097e-01 -1.09300673e-01
-1.84245691e-01 9.11472142e-02 -1.28858399e+00 1.54253817e+00
-6.02504194e-01 4.79498923e-01 5.13393022e-02 -1.84638488e+00
7.99756348e-01 -8.30309466e-02 3.94292891e-01 -2.82076925e-01
4.25807506e-01 3.12598646e-01 -1.44668028e-01 -4.18658257e-01
2.58213818e-01 -6.86259985e-01 6.48161322e-02 2.70047843e-01
-9.71859694e-02 2.80106336e-01 1.55412987e-01 -1.69064730e-01
9.43856120e-01 -1.61553890e-01 1.40935883e-01 -9.26082313e-01
8.03759456e-01 -2.44578615e-01 2.17375085e-01 5.68022549e-01
-1.22551709e-01 2.84268618e-01 6.56417310e-01 -4.12801743e-01
-1.01504588e+00 -1.04395449e+00 -7.42899120e-01 6.97948277e-01
2.38501012e-01 -2.32374936e-01 -8.55864048e-01 -6.57489359e-01
-1.46931484e-01 4.20691997e-01 -1.00233090e+00 -2.19892204e-01
-2.12681815e-01 -8.03926051e-01 6.96275592e-01 4.69564646e-01
6.06591880e-01 -4.24121231e-01 -6.79956853e-01 -1.15565725e-01
1.20301053e-01 -8.97246957e-01 -1.26856148e-01 3.45665991e-01
-1.04408097e+00 -1.11285090e+00 -9.18000996e-01 -6.31289482e-01
5.09192467e-01 2.23306954e-01 7.35889792e-01 1.92335933e-01
-4.72717807e-02 2.88668215e-01 -4.22540784e-01 -3.39863777e-01
-3.43125582e-01 3.22625041e-01 4.57218647e-01 1.48919066e-02
2.30210155e-01 -9.38391805e-01 -4.59311545e-01 3.27986598e-01
-1.35302734e+00 7.96617642e-02 5.38006902e-01 7.13504791e-01
3.56437594e-01 5.03118992e-01 6.73356652e-01 -5.58270156e-01
5.51342130e-01 -2.93270826e-01 -8.64048362e-01 1.50528356e-01
-6.78959310e-01 5.86545944e-01 1.10166526e+00 -5.06699085e-01
-4.29066956e-01 -1.40713379e-01 -2.14577302e-01 -3.88591588e-01
3.91907282e-02 7.13468134e-01 -2.07794785e-01 -3.13475221e-01
6.88544214e-01 3.06246012e-01 7.91733861e-02 -5.99913359e-01
3.87101620e-01 4.31226850e-01 5.50625622e-01 -6.00304723e-01
8.01496029e-01 6.24154866e-01 4.22856629e-01 -9.98634100e-01
-9.14412260e-01 -2.05481142e-01 -9.35203314e-01 6.75113946e-02
5.71248591e-01 -1.80932850e-01 -9.34747934e-01 1.04256161e-01
-9.48906720e-01 -2.21999899e-01 -3.38937879e-01 5.20693064e-01
-7.97605038e-01 6.73647761e-01 -3.27815950e-01 -1.05870807e+00
2.43293524e-01 -9.01189387e-01 5.88646948e-01 -5.81308687e-03
2.09996641e-01 -1.53466046e+00 1.45287320e-01 -2.44027168e-01
4.83034402e-01 4.37919825e-01 9.36506510e-01 -5.98723352e-01
-1.25519007e-01 -1.19047709e-01 -3.40101272e-01 4.05525237e-01
1.95209861e-01 -2.33795106e-01 -6.27737641e-01 -1.47684023e-01
5.59670091e-01 2.25600809e-01 1.14512265e+00 2.28718847e-01
1.22112668e+00 -3.21167856e-01 -1.63914964e-01 7.06653059e-01
1.69840360e+00 -3.50106686e-01 3.81746143e-01 4.01833206e-01
5.81525683e-01 7.87371099e-01 2.27181017e-01 3.95692974e-01
1.52852371e-01 6.87183082e-01 3.57424736e-01 2.59880811e-01
1.90754294e-01 -4.42723837e-03 -2.35562958e-02 8.97171080e-01
-2.32668787e-01 8.69762972e-02 -7.49479055e-01 2.82629222e-01
-1.68218470e+00 -9.14444506e-01 -3.09634328e-01 2.61307096e+00
8.22409570e-01 1.90933332e-01 4.45794225e-01 7.72316217e-01
8.48379076e-01 -2.48257697e-01 -2.67225623e-01 -3.13499123e-01
-4.16417509e-01 1.10567436e-01 6.14435554e-01 7.51054823e-01
-1.09387600e+00 5.33244431e-01 5.42648458e+00 7.91393936e-01
-1.36828601e+00 3.86266634e-02 2.63543725e-01 1.72614500e-01
-2.77683586e-01 -1.42354250e-01 -5.81141770e-01 4.10927653e-01
6.85937107e-01 -2.52275348e-01 2.66967475e-01 8.87687564e-01
-3.81743954e-03 1.09757647e-01 -1.09255481e+00 9.37000930e-01
-4.23533544e-02 -1.11334276e+00 -4.71700095e-02 4.46014494e-01
4.26582992e-01 -3.48617703e-01 1.95216537e-01 -2.46886499e-02
-2.19333813e-01 -1.07419062e+00 5.22517920e-01 5.32363594e-01
5.42163610e-01 -9.76014435e-01 7.15316296e-01 4.43046302e-01
-1.11925125e+00 -1.40094176e-01 -6.65288925e-01 -3.43929946e-01
-1.70198426e-01 9.88954186e-01 -3.69552851e-01 8.44371438e-01
1.50152057e-01 6.06983364e-01 -5.49143314e-01 1.18602562e+00
2.03806669e-01 2.84772336e-01 -4.31777954e-01 -2.89041579e-01
1.56119511e-01 -3.92264217e-01 5.17058790e-01 1.08073080e+00
3.37686121e-01 -5.02064675e-02 -3.97322178e-01 9.04851317e-01
-3.31077464e-02 4.90856618e-01 -7.50550807e-01 9.94932577e-02
1.11513720e-04 1.11501479e+00 -1.21502936e+00 -5.80897406e-02
-2.58395851e-01 8.33755910e-01 3.68896961e-01 -1.91979129e-02
-7.82743633e-01 -6.79200351e-01 4.95716214e-01 2.59533584e-01
2.39760354e-01 -6.29304111e-01 -4.60171461e-01 -1.40945363e+00
4.96624261e-01 -2.63221741e-01 1.46775633e-01 6.93719387e-02
-1.37016332e+00 4.49586570e-01 8.27571973e-02 -1.23441589e+00
8.12638476e-02 -8.49336743e-01 -4.42631900e-01 6.16190374e-01
-1.41359329e+00 -5.96344590e-01 9.24087071e-04 5.00482857e-01
1.47396654e-01 1.61793768e-01 6.72872603e-01 4.23158318e-01
-6.33528233e-01 7.16453731e-01 3.75580490e-01 1.64727628e-01
4.09628659e-01 -1.48803592e+00 3.81533392e-02 6.96296573e-01
1.37081504e-01 8.21363151e-01 1.03828549e+00 -2.49578342e-01
-1.26543641e+00 -8.48161459e-01 7.97128081e-01 -5.28327167e-01
1.00470877e+00 -3.20925683e-01 -1.03354883e+00 2.83752620e-01
-5.05859613e-01 1.33271724e-01 5.60563505e-01 2.76724488e-01
-3.48911643e-01 -2.60059591e-02 -1.09035671e+00 5.83115458e-01
1.31208706e+00 -3.26659411e-01 -5.69091797e-01 1.76066965e-01
6.03644013e-01 1.62471145e-01 -1.05852723e+00 6.07432246e-01
6.23421967e-01 -1.21597159e+00 7.25074708e-01 -6.62932754e-01
2.30022594e-01 -1.52242035e-01 -3.97849560e-01 -1.06019390e+00
1.49732800e-02 -5.23932159e-01 3.99152078e-02 1.10309339e+00
2.01483041e-01 -9.71185088e-01 6.37029409e-01 2.75067359e-01
-1.15653500e-01 -1.20188332e+00 -1.10346210e+00 -1.34880424e+00
8.05311918e-01 -7.50966370e-01 3.68715137e-01 1.10409987e+00
4.90350008e-01 1.65862814e-01 -7.18047544e-02 1.15895763e-01
6.19449675e-01 -2.00094983e-01 4.09489959e-01 -1.69658303e+00
-3.86819690e-01 -1.14905357e+00 -9.41148281e-01 -1.12402415e+00
1.57631055e-01 -9.13969338e-01 -1.59491614e-01 -8.99748802e-01
-1.44534737e-01 -7.68366158e-01 -3.97585064e-01 -4.61670347e-02
1.32227495e-01 3.14864606e-01 -1.14620440e-01 3.24069262e-01
-4.24825370e-01 7.18835354e-01 1.12274504e+00 2.26667419e-01
-2.86893249e-01 3.06169957e-01 -7.94847190e-01 8.94786060e-01
9.71038222e-01 -1.38515353e-01 -5.29662192e-01 -1.79189205e-01
5.02629519e-01 -3.50713044e-01 5.71703970e-01 -1.29936993e+00
1.93389609e-01 1.61748707e-01 1.39750302e-01 -9.27960053e-02
1.17956914e-01 -7.32349694e-01 -5.04897416e-01 4.77838695e-01
-5.84273636e-01 -1.37430251e-01 -3.30428109e-02 6.51558280e-01
2.07667723e-01 -4.30412322e-01 1.04788566e+00 3.00541848e-01
5.64874485e-02 1.91008076e-01 -6.17657863e-02 -2.63627786e-02
8.52075100e-01 -2.12788448e-01 -3.00865751e-02 -2.51364261e-01
-9.10624802e-01 -2.44553179e-01 7.50786006e-01 1.87512323e-01
3.22365373e-01 -1.32261419e+00 -3.82772148e-01 1.49151266e-01
4.23876531e-02 -2.55650014e-01 1.61690086e-01 1.49516702e+00
-4.25964743e-01 6.48410738e-01 -5.60481176e-02 -6.07682824e-01
-7.70951569e-01 1.03900290e+00 3.35612178e-01 4.04874273e-02
-8.71399164e-01 5.33196628e-01 1.93793893e-01 3.05996137e-03
4.05683577e-01 -7.32461572e-01 -8.64722729e-02 -9.09653492e-04
5.43084085e-01 3.05549473e-01 2.11973250e-01 -5.98859370e-01
-2.74852782e-01 8.46409321e-01 1.77865475e-01 -2.71621764e-01
1.17229497e+00 -4.42839831e-01 2.90220380e-01 9.24789548e-01
1.49817789e+00 2.60146141e-01 -1.13023412e+00 -2.49790281e-01
3.25679481e-01 -1.64809957e-01 -1.57814413e-01 -1.14562102e-01
-9.15930450e-01 1.14954317e+00 4.96238261e-01 9.91288722e-01
1.20232284e+00 1.45412952e-01 6.16663337e-01 5.31367898e-01
4.93415385e-01 -8.18087459e-01 -1.91160053e-01 4.42692041e-01
7.74753273e-01 -1.16051972e+00 -3.86192858e-01 -4.93917286e-01
2.51929294e-02 1.44383395e+00 2.88427342e-02 -3.29340726e-01
8.90175521e-01 -1.91549938e-02 -2.62533098e-01 7.11900815e-02
-2.40750343e-01 -4.15798694e-01 1.58041224e-01 4.55725193e-01
6.15373492e-01 -1.61025226e-01 -6.83309495e-01 6.19840384e-01
-6.63258433e-01 -4.09590490e-02 5.06995678e-01 5.47784865e-01
-6.28188014e-01 -1.06345665e+00 -8.65074322e-02 3.10326573e-02
-6.59605563e-01 2.86975168e-02 -1.89106673e-01 9.95419323e-01
4.59997952e-02 6.93341076e-01 -1.88167274e-01 -5.26964962e-01
1.00261204e-01 1.58386994e-02 8.33808720e-01 -2.59371251e-01
9.67514738e-02 -2.82966524e-01 -4.83205497e-01 -1.69793084e-01
-5.93126953e-01 -5.26962519e-01 -1.02807021e+00 -4.93203729e-01
-4.97314632e-01 5.45370340e-01 8.36962163e-01 1.23102725e+00
3.62695009e-03 3.00483674e-01 6.65579557e-01 -6.23476326e-01
-7.80297637e-01 -8.82407784e-01 -7.80710280e-01 1.42693341e-01
5.22513032e-01 -9.16585863e-01 -6.91312432e-01 -3.17594558e-01] | [7.605167388916016, 3.940443277359009] |
8762b5d9-1f00-4edd-afff-8c1be4d850d1 | for-the-underrepresented-in-gender-bias | 2302.00419 | null | https://arxiv.org/abs/2302.00419v1 | https://arxiv.org/pdf/2302.00419v1.pdf | For the Underrepresented in Gender Bias Research: Chinese Name Gender Prediction with Heterogeneous Graph Attention Network | Achieving gender equality is an important pillar for humankind's sustainable future. Pioneering data-driven gender bias research is based on large-scale public records such as scientific papers, patents, and company registrations, covering female researchers, inventors and entrepreneurs, and so on. Since gender information is often missing in relevant datasets, studies rely on tools to infer genders from names. However, available open-sourced Chinese gender-guessing tools are not yet suitable for scientific purposes, which may be partially responsible for female Chinese being underrepresented in mainstream gender bias research and affect their universality. Specifically, these tools focus on character-level information while overlooking the fact that the combinations of Chinese characters in multi-character names, as well as the components and pronunciations of characters, convey important messages. As a first effort, we design a Chinese Heterogeneous Graph Attention (CHGAT) model to capture the heterogeneity in component relationships and incorporate the pronunciations of characters. Our model largely surpasses current tools and also outperforms the state-of-the-art algorithm. Last but not least, the most popular Chinese name-gender dataset is single-character based with far less female coverage from an unreliable source, naturally hindering relevant studies. We open-source a more balanced multi-character dataset from an official source together with our code, hoping to help future research promoting gender equality. | ['Haipeng Zhang', 'Shuai Ling', 'Kai Peng', 'Zihao Pan'] | 2023-02-01 | null | null | null | null | ['gender-prediction'] | ['computer-vision'] | [-2.56283224e-01 4.22134064e-02 -8.20372224e-01 -3.92286956e-01
-1.70992717e-01 -5.89091063e-01 7.06899762e-01 3.74322474e-01
-4.75481689e-01 6.69458389e-01 6.25893533e-01 -6.40560448e-01
1.19905032e-01 -8.60678434e-01 -3.58644336e-01 -4.34439212e-01
6.15448534e-01 5.53152680e-01 -2.95229286e-01 -3.48574370e-01
6.91331625e-01 3.45727019e-02 -1.26010430e+00 -2.60454327e-01
1.18920267e+00 3.61473173e-01 -1.59340113e-01 2.00358257e-01
-5.02889335e-01 4.16758984e-01 -6.97957516e-01 -1.22274017e+00
-1.45905212e-01 -5.77887714e-01 -5.66450000e-01 -4.48335022e-01
6.09039187e-01 -1.70156822e-01 -3.43405634e-01 1.32470250e+00
6.92005754e-01 -4.60917920e-01 7.27402091e-01 -1.12758064e+00
-1.00905490e+00 9.88899052e-01 -1.11678243e+00 5.16685471e-02
3.05192061e-02 7.42862001e-02 1.39618540e+00 -6.02332294e-01
6.17806733e-01 1.49665225e+00 4.55421060e-01 6.10066891e-01
-9.55833912e-01 -1.08682418e+00 3.59454066e-01 2.20039576e-01
-1.38896620e+00 -2.49979973e-01 9.07566965e-01 -5.06899178e-01
3.35067123e-01 5.35343051e-01 7.28659451e-01 1.58240640e+00
2.16659680e-01 4.85439390e-01 1.13155615e+00 -2.71670967e-01
-1.30593345e-01 1.20515093e-01 1.16972953e-01 4.79580104e-01
8.88234019e-01 -2.61170059e-01 -5.75692236e-01 -4.15754803e-02
5.44735909e-01 9.88379866e-02 2.30668280e-02 8.95029381e-02
-1.35563409e+00 8.19167316e-01 1.99003100e-01 5.67955196e-01
3.92611511e-02 1.28757164e-01 4.21355844e-01 4.87221330e-02
6.93705976e-01 5.93023777e-01 -2.59181231e-01 -4.12062109e-01
-1.01522005e+00 4.43188220e-01 8.60037625e-01 9.71788645e-01
7.12920368e-01 1.28578842e-02 -3.65323484e-01 7.46814728e-01
2.52554297e-01 6.77159548e-01 3.41396987e-01 -6.95421875e-01
4.93830234e-01 8.36998224e-01 -2.29475841e-01 -1.63442349e+00
-2.75926232e-01 -7.95051396e-01 -9.59683716e-01 -5.54489911e-01
6.95795119e-01 -1.20920926e-01 -6.21607006e-01 1.80585909e+00
1.17891990e-01 -2.21763447e-01 -5.79826593e-01 9.58089352e-01
1.03984511e+00 1.04976490e-01 3.36217970e-01 4.07031849e-02
1.60372770e+00 -5.39833844e-01 -8.03722024e-01 -4.00897980e-01
5.26636481e-01 -6.78403318e-01 1.00014675e+00 6.12862594e-02
-4.42936480e-01 -3.13561082e-01 -7.55426586e-01 -1.16369449e-01
-5.70805788e-01 2.13081494e-01 1.06261182e+00 1.17316210e+00
-6.29536450e-01 5.08142054e-01 -4.41775858e-01 -3.03079426e-01
6.57021463e-01 1.27333105e-01 -9.45192799e-02 -1.31943151e-01
-1.11745536e+00 6.47328973e-01 -1.60665497e-01 1.09937012e-01
-4.97205019e-01 -1.07117379e+00 -8.33980083e-01 -1.70844391e-01
6.46444201e-01 -6.47066534e-01 7.15782940e-01 -6.87955976e-01
-9.43881154e-01 1.01398289e+00 -3.05134386e-01 2.31705114e-01
6.00732327e-01 -4.22277302e-02 -6.38401568e-01 -2.88170159e-01
4.87427175e-01 5.27508616e-01 5.97598314e-01 -1.12068486e+00
-5.21668613e-01 -8.50748658e-01 -1.48315623e-01 -3.67707349e-02
-7.16423631e-01 8.47671852e-02 -6.53672934e-01 -7.30108202e-01
-3.95477889e-03 -9.39671874e-01 -2.05368415e-01 -3.69779348e-01
-8.11391115e-01 -3.41351748e-01 4.76408303e-01 -8.92628193e-01
1.56997657e+00 -2.09346247e+00 -7.54176825e-02 7.16346353e-02
7.48962402e-01 -1.22514874e-01 9.11718700e-03 4.33196157e-01
1.98676199e-01 6.04848683e-01 5.66042513e-02 -2.23451898e-01
1.40784234e-01 -1.79189771e-01 -1.65456489e-01 6.55143499e-01
1.06060423e-01 1.00107670e+00 -1.07973814e+00 -5.46250641e-01
-1.79116651e-01 2.84794033e-01 -6.25178099e-01 -3.71166617e-01
-7.14576151e-03 5.90238273e-01 -4.22652930e-01 1.09024501e+00
8.96138430e-01 -1.39286304e-02 4.11648214e-01 -1.09885767e-01
-3.75674546e-01 3.35444957e-01 -8.49431813e-01 1.23798680e+00
-1.39574766e-01 8.14154565e-01 -1.48590833e-01 -7.90866852e-01
1.08873856e+00 -2.61428684e-01 2.89345056e-01 -7.61133373e-01
2.99528807e-01 5.89106143e-01 4.16436732e-01 -2.98287481e-01
8.79104078e-01 7.75151653e-03 -4.48773205e-01 1.33423224e-01
-2.65469998e-01 -1.17535354e-03 4.82849538e-01 3.87228519e-01
6.75941050e-01 4.03366499e-02 -1.36171430e-01 -5.04036009e-01
2.63551205e-01 -1.42624021e-01 9.28143799e-01 6.92450583e-01
-2.40953833e-01 7.88502812e-01 1.31453574e+00 -1.65806204e-01
-1.04803252e+00 -4.78479713e-01 -1.54715210e-01 1.14576674e+00
5.02875075e-02 -6.31511867e-01 -6.11867726e-01 -6.47226691e-01
2.42117748e-01 5.93206227e-01 -8.91786158e-01 -1.23358175e-01
-4.37942713e-01 -9.20704901e-01 6.96813703e-01 3.85701507e-01
4.33910459e-01 -6.20819747e-01 -8.17692578e-02 -1.59390405e-01
-2.67964929e-01 -1.00304103e+00 -6.29296660e-01 -2.33663753e-01
-4.24001068e-01 -1.14041185e+00 -1.13357151e+00 -4.78686243e-01
6.43232405e-01 -4.29378673e-02 1.27614498e+00 1.76944375e-01
-1.61788434e-01 -1.73498675e-01 -1.27818689e-01 -7.56359816e-01
-1.03856318e-01 5.60650170e-01 -1.49359182e-01 3.94134037e-02
6.96033180e-01 -4.42840189e-01 -6.37000799e-01 1.60558373e-01
-3.84628445e-01 -7.09811077e-02 6.24351501e-01 5.00747442e-01
1.30992323e-01 -1.59958094e-01 5.49137771e-01 -1.42599547e+00
4.53081906e-01 -6.93332136e-01 -3.14862996e-01 -6.08911328e-02
-8.95298481e-01 -1.49442345e-01 4.18630868e-01 -3.85776669e-01
-8.43111992e-01 -8.15870523e-01 -5.61553910e-02 -3.60053144e-02
7.14378357e-02 6.06397808e-01 -3.66823256e-01 3.07804286e-01
3.03589642e-01 -8.32861662e-02 -5.97102642e-02 -5.41315973e-01
8.52080211e-02 8.56032073e-01 3.92949671e-01 -7.51834750e-01
6.78323865e-01 2.19111145e-01 3.04961111e-02 -7.12705731e-01
-7.19167411e-01 -2.74381787e-01 -2.69229800e-01 -1.27956681e-02
6.39846206e-01 -1.05815351e+00 -8.57739747e-01 5.96108913e-01
-9.09434199e-01 1.11033171e-01 2.04212710e-01 4.84945655e-01
3.09168965e-01 1.99105546e-01 -5.84482849e-01 -7.11501658e-01
-2.58709639e-02 -1.00631261e+00 9.59561229e-01 4.38143164e-01
-4.16281283e-01 -8.43712330e-01 -1.34283110e-01 5.74611664e-01
4.82359439e-01 1.25361726e-01 1.26597393e+00 -7.41463482e-01
-2.57676780e-01 -1.51330903e-01 -6.31472886e-01 -2.32719630e-01
1.29884854e-02 4.80895609e-01 -7.36873925e-01 -6.08266424e-03
-5.93171000e-01 9.89564210e-02 1.02228975e+00 3.21275890e-01
1.27448678e+00 -2.30648234e-01 -5.06868064e-01 3.51604849e-01
1.21517003e+00 -1.54490724e-01 4.75418955e-01 1.11802742e-01
1.41010547e+00 9.38413203e-01 2.04913348e-01 5.37420213e-01
1.13624167e+00 3.42649847e-01 3.39148700e-01 -9.53437462e-02
-2.07837280e-02 -4.83410716e-01 -5.59544340e-02 8.36763978e-01
-3.41403067e-01 -9.80889648e-02 -1.15092731e+00 8.10129881e-01
-1.46403873e+00 -8.11919451e-01 -6.38310015e-01 2.06379485e+00
9.86561298e-01 1.73021466e-01 2.02078000e-01 -5.65260649e-02
8.91630530e-01 3.67849708e-01 -4.41568017e-01 -3.26933116e-01
-2.77418703e-01 3.39923091e-02 7.21444726e-01 4.65755612e-02
-8.52150798e-01 9.68241632e-01 5.76186466e+00 9.23038065e-01
-1.15121472e+00 -2.19964787e-01 1.00869167e+00 5.76955229e-02
-1.04994655e+00 2.51636267e-01 -8.63800347e-01 7.71187901e-01
6.61848843e-01 -2.75750101e-01 2.21855432e-01 6.81906581e-01
9.70336124e-02 -1.31455123e-01 -8.19143951e-01 1.06929493e+00
3.71622071e-02 -1.15422618e+00 -1.98388342e-02 5.26418626e-01
6.75504148e-01 -3.57378542e-01 2.68590957e-01 4.43637460e-01
1.38443053e-01 -1.07145774e+00 8.93072188e-01 1.65931597e-01
1.04408562e+00 -9.28030372e-01 8.74061942e-01 2.07472183e-02
-7.52192140e-01 -6.04812130e-02 -3.45371068e-01 -2.25422010e-01
-3.40010434e-01 1.02127099e+00 -3.47898364e-01 6.51825905e-01
6.91402197e-01 9.36638772e-01 -1.04537666e+00 6.71352148e-01
-1.96034521e-01 8.34377825e-01 1.77983075e-01 -3.53504717e-01
3.64894122e-02 -3.18999857e-01 3.03796619e-01 1.17147100e+00
3.45145494e-01 -2.27246478e-01 -1.85664281e-01 1.13215649e+00
-3.15724224e-01 3.69084805e-01 -5.35265267e-01 -8.45030069e-01
7.55291283e-01 1.45022476e+00 -1.07320869e+00 2.23267339e-02
-6.64565802e-01 4.74378854e-01 4.61941808e-02 4.50772166e-01
-5.79427958e-01 -3.90199840e-01 8.75437677e-01 2.73738444e-01
4.25294740e-03 -1.76969722e-01 -8.27736795e-01 -1.14220858e+00
-2.39999622e-01 -1.18199492e+00 3.81585449e-01 -4.26403396e-02
-1.17898357e+00 -1.62089791e-03 -2.39313543e-01 -7.70485699e-01
1.02523588e-01 -4.98357803e-01 -4.60115880e-01 9.10698175e-01
-1.22551203e+00 -1.37271369e+00 -2.04417706e-01 7.93596134e-02
6.24914318e-02 -3.74625951e-01 4.97437268e-01 6.01583481e-01
-1.07113123e+00 9.55746293e-01 -3.40818405e-01 4.72884655e-01
1.04347467e+00 -1.18671823e+00 5.06454468e-01 6.12379193e-01
1.89218763e-02 9.90153790e-01 7.73821115e-01 -1.00706697e+00
-1.54653418e+00 -6.30396426e-01 1.43132174e+00 -6.27382159e-01
6.12198710e-01 -5.95776856e-01 -5.70085764e-01 4.22493368e-01
4.50796224e-02 -2.32867315e-01 7.46555328e-01 6.77165747e-01
-5.10631204e-01 -6.03326708e-02 -7.20170081e-01 9.87284839e-01
1.26169503e+00 -4.77663636e-01 3.69716622e-02 -2.11571902e-01
6.38266087e-01 -2.87723720e-01 -5.39420545e-01 3.02378923e-01
5.88068187e-01 -9.08342481e-01 6.64529026e-01 -4.51823950e-01
1.07745266e+00 5.93413785e-02 -1.73515715e-02 -1.06719136e+00
-3.41200411e-01 -6.10757172e-01 9.74421501e-02 1.81362259e+00
5.52385032e-01 -5.91631830e-01 8.07053685e-01 7.25183785e-01
5.75455688e-02 -6.97972894e-01 -6.63362861e-01 -3.23727906e-01
4.28114623e-01 -2.82544762e-01 8.96844804e-01 1.27093482e+00
-2.62626350e-01 4.27407801e-01 -3.15850198e-01 -3.85849923e-01
5.51115990e-01 2.65688479e-01 7.64209449e-01 -1.37668502e+00
1.32501319e-01 -9.48331058e-01 -2.81180918e-01 -4.66050684e-01
5.26673555e-01 -8.78983498e-01 -4.66131479e-01 -1.26334560e+00
7.25895166e-01 -5.91915131e-01 -3.36789759e-03 3.63733679e-01
-6.02367580e-01 4.61889029e-01 -9.38734785e-02 -4.07973602e-02
-2.88101315e-01 4.29662108e-01 1.60313547e+00 -3.53391439e-01
7.41398428e-03 -1.59545690e-01 -1.66671193e+00 5.47254622e-01
5.11997163e-01 -5.43608963e-01 -6.82016686e-02 -3.49674851e-01
6.56062424e-01 -3.46308559e-01 2.97806650e-01 -4.35952514e-01
6.28428459e-02 -4.64655638e-01 4.44181532e-01 -4.58731323e-01
-2.18595341e-01 -3.60724002e-01 -4.20590751e-02 3.34907591e-01
-1.72382995e-01 1.14200942e-01 -3.20046693e-02 3.68450135e-01
-1.02563947e-01 -4.11556149e-03 2.13624209e-01 -2.35623345e-01
-3.98160219e-01 4.30336118e-01 -1.42781302e-01 4.70999062e-01
5.38081110e-01 -1.81456104e-01 -6.24107599e-01 -3.68497699e-01
5.16009480e-02 1.44177422e-01 6.70549512e-01 7.23347247e-01
4.14046161e-02 -1.20836473e+00 -1.03904951e+00 1.62427768e-01
2.28160933e-01 -3.07899565e-01 2.47492254e-01 8.78110588e-01
-2.91007370e-01 3.10013294e-01 -1.07907914e-01 -1.39105424e-01
-9.34103608e-01 3.12033474e-01 -1.90336615e-01 1.89581029e-02
-2.63202429e-01 6.95186257e-01 1.02666095e-01 -6.34500086e-01
5.08774929e-02 6.99874386e-03 -4.24548954e-01 5.76344073e-01
2.75658935e-01 6.17301464e-01 -1.37231320e-01 -6.71994567e-01
-6.88972235e-01 4.84064162e-01 -6.55081943e-02 -9.30144191e-02
1.22661996e+00 -1.20483264e-01 -5.28572083e-01 4.67706531e-01
1.03784025e+00 7.65632808e-01 -7.05493748e-01 5.08011989e-02
8.03377703e-02 -8.00540328e-01 -2.09994361e-01 -5.63872755e-01
-1.22566783e+00 7.34064162e-01 -8.44420046e-02 -1.04919665e-01
5.60432494e-01 -4.17417251e-02 5.62773347e-01 -2.12321028e-01
2.87453026e-01 -1.28988600e+00 -5.38950637e-02 4.03504729e-01
4.33436990e-01 -1.37081504e+00 2.23866329e-01 -5.96029758e-01
-6.18855536e-01 8.63581240e-01 7.82147706e-01 5.12793303e-01
4.47082490e-01 6.50868788e-02 1.60990685e-01 -4.70159985e-02
-4.43141520e-01 -1.43759832e-01 3.65483969e-01 5.37459970e-01
9.72783446e-01 2.20579669e-01 -9.15530741e-01 1.15213406e+00
-5.48147559e-01 -4.61098939e-01 4.68163282e-01 3.63229066e-01
8.58439580e-02 -1.34492612e+00 -2.12678209e-01 7.40347564e-01
-9.21511650e-01 -3.23748022e-01 -6.71682775e-01 6.25744402e-01
3.20371360e-01 9.30835664e-01 1.87039942e-01 -4.34704870e-01
8.13980401e-02 -2.51132369e-01 4.02201146e-01 -4.15595591e-01
-5.71347654e-01 -5.98846376e-02 2.76148528e-01 -1.49163887e-01
-6.74078241e-02 -7.59431958e-01 -8.92112076e-01 -9.66905296e-01
-1.10788494e-01 -8.85679200e-02 7.33615696e-01 7.81315863e-01
4.22898889e-01 4.91068393e-01 5.47388196e-01 -4.42218482e-01
-2.47925758e-01 -9.20614481e-01 -7.57422090e-01 3.33972961e-01
-2.26850845e-02 -5.54874480e-01 -2.53143430e-01 -3.98328185e-01] | [9.388835906982422, 10.261147499084473] |
5195a86e-6ee5-4c06-b907-bf5653317e79 | 2305-14984 | 2305.14984 | null | https://arxiv.org/abs/2305.14984v1 | https://arxiv.org/pdf/2305.14984v1.pdf | Adversarial robustness of amortized Bayesian inference | Bayesian inference usually requires running potentially costly inference procedures separately for every new observation. In contrast, the idea of amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data, which can subsequently be used to rapidly perform inference (i.e., to return estimates of posterior distributions) for new observations. This approach has been applied to many real-world models in the sciences and engineering, but it is unclear how robust the approach is to adversarial perturbations in the observed data. Here, we study the adversarial robustness of amortized Bayesian inference, focusing on simulation-based estimation of multi-dimensional posterior distributions. We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples, across several benchmark tasks and a real-world example from neuroscience. We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator, and show how it improves the adversarial robustness of amortized Bayesian inference. | ['Jakob H. Macke', 'Michael Deistler', 'Manuel Glöckler'] | 2023-05-24 | null | null | null | null | ['bayesian-inference'] | ['methodology'] | [ 4.72296327e-01 1.31991580e-01 4.94204760e-01 -4.06157643e-01
-9.42539096e-01 -6.12942517e-01 6.33759558e-01 -5.12730144e-02
-6.61313474e-01 1.11783290e+00 -2.15365335e-01 -3.13717753e-01
-1.49517432e-01 -6.94988072e-01 -1.31078875e+00 -9.00137246e-01
-1.52010083e-01 6.21205270e-01 9.01679881e-03 3.52921695e-01
3.07955116e-01 6.47464752e-01 -1.17511284e+00 -4.32016671e-01
6.89754844e-01 7.20987260e-01 -1.45198599e-01 8.00033927e-01
5.41815460e-01 1.67928472e-01 -6.15397692e-01 -7.36856699e-01
1.28155574e-01 -2.66115427e-01 -4.79389846e-01 -2.24305436e-01
4.24656868e-01 -4.08017665e-01 -2.42855385e-01 1.44426262e+00
5.17051280e-01 4.22407478e-01 1.08675480e+00 -9.66645181e-01
-1.52576268e-01 5.94213903e-01 -5.92103958e-01 2.73429126e-01
2.15692788e-01 3.81392479e-01 7.05026567e-01 -6.21620059e-01
5.31710029e-01 1.50144446e+00 7.56916046e-01 4.80014414e-01
-1.85118461e+00 -6.92222774e-01 1.45078480e-01 -2.55475223e-01
-1.33354533e+00 -5.24360597e-01 5.28299272e-01 -5.73135495e-01
3.61017674e-01 3.56500968e-02 4.11305696e-01 1.61503339e+00
5.45714378e-01 3.09522867e-01 1.05478370e+00 -4.97090295e-02
7.82118261e-01 7.63027444e-02 -2.40809117e-02 3.78983259e-01
6.01196170e-01 4.22284037e-01 -3.23375940e-01 -4.48020071e-01
4.38721061e-01 -8.44586343e-02 -2.67849594e-01 -1.11718491e-01
-9.34375644e-01 7.79228032e-01 9.07403678e-02 -2.65611082e-01
-3.81360561e-01 4.96926546e-01 3.47352445e-01 2.04050183e-01
6.08125389e-01 3.59367609e-01 -4.23907518e-01 -1.06386356e-01
-7.98127234e-01 7.23873556e-01 9.13927853e-01 5.32397747e-01
6.05074704e-01 1.46793500e-01 -7.91482329e-02 5.51461518e-01
3.95764112e-01 9.65742648e-01 -1.49631826e-02 -1.27999115e+00
2.95775056e-01 -3.04360181e-01 4.49264735e-01 -1.05557048e+00
-2.57269979e-01 -3.11101913e-01 -9.50887263e-01 3.12814713e-01
8.54665220e-01 -5.80410063e-01 -8.99371326e-01 2.15177083e+00
3.27790111e-01 4.20985609e-01 -7.40804747e-02 6.65200591e-01
1.69494718e-01 5.93480468e-01 5.39504960e-02 -2.18726233e-01
9.21496511e-01 4.84142639e-03 -5.80691636e-01 -3.24115127e-01
-8.69368538e-02 -5.46536326e-01 8.15045118e-01 5.00208080e-01
-1.27969956e+00 -1.21392019e-01 -9.40229833e-01 3.73964876e-01
-3.04580837e-01 -3.97203773e-01 3.36508721e-01 7.47588992e-01
-4.90183383e-01 9.53356862e-01 -1.13960826e+00 -1.43546471e-02
6.90573215e-01 2.65161127e-01 -3.01742464e-01 -1.76246196e-01
-1.14501858e+00 9.25855815e-01 4.02997524e-01 2.06966087e-01
-1.32639778e+00 -1.09206724e+00 -7.46873081e-01 1.89536631e-01
4.25083607e-01 -7.28278577e-01 9.81754422e-01 -6.07009768e-01
-1.69199955e+00 4.15924251e-01 -2.31354386e-02 -6.68343544e-01
7.40827203e-01 -2.22281292e-01 -9.29928478e-03 -1.59719978e-02
-2.29114473e-01 4.41740274e-01 1.19897485e+00 -1.07746661e+00
-4.53058928e-02 -3.82875681e-01 -1.11626290e-01 -2.22129673e-01
6.33136034e-02 -1.98769048e-01 -7.06605539e-02 -7.04956770e-01
1.22085012e-01 -1.10523045e+00 -3.73268425e-01 8.51735920e-02
-5.05998135e-01 2.50895828e-01 3.94541949e-01 -6.40966177e-01
6.35627866e-01 -2.08318138e+00 3.30283731e-01 5.21248460e-01
6.55899718e-02 -1.35299742e-01 2.17189103e-01 2.46640295e-02
-1.63782039e-03 6.82484061e-02 -7.09214628e-01 -3.46154213e-01
2.05447286e-01 2.13572130e-01 -6.31278515e-01 8.41929376e-01
1.67060018e-01 6.75602198e-01 -8.86711359e-01 -1.04500905e-01
-8.63023289e-03 4.35234308e-01 -8.24284613e-01 2.35368654e-01
-3.21730196e-01 5.81474841e-01 -2.56699204e-01 4.02359590e-02
1.00267351e+00 -2.11687386e-01 1.44921124e-01 -4.08251658e-02
4.05017257e-01 -6.33659661e-02 -1.21303046e+00 1.24191236e+00
-3.85624796e-01 5.88424802e-01 5.12215793e-02 -1.26417196e+00
4.05826122e-01 1.79037496e-01 -4.91004856e-03 1.92970708e-02
2.43893266e-01 5.94346933e-02 -7.96913058e-02 -1.00688033e-01
2.22939365e-02 -5.74582398e-01 -3.51064742e-01 5.79736114e-01
1.20208539e-01 -5.03786683e-01 -1.81326885e-02 3.35514873e-01
1.02072394e+00 9.58062336e-02 1.06251322e-01 -3.28797460e-01
1.22350007e-01 -4.17834073e-01 5.94120502e-01 1.19370091e+00
4.32934612e-02 4.92473841e-01 6.37563407e-01 -2.13867977e-01
-1.13339722e+00 -1.65898824e+00 -3.39073718e-01 6.64170384e-01
-1.91001520e-01 1.27934366e-01 -8.40938032e-01 -5.57936013e-01
3.49628001e-01 9.42771196e-01 -6.75417960e-01 -5.52879870e-01
-2.71789938e-01 -1.18241453e+00 6.25464261e-01 3.49585980e-01
1.54241428e-01 -6.77798748e-01 -5.38238525e-01 2.24871412e-01
4.90069427e-02 -1.01766860e+00 -2.82623589e-01 1.62639305e-01
-7.64484525e-01 -7.89126456e-01 -7.08250999e-01 2.50744581e-01
8.24419498e-01 -3.75022560e-01 1.05093932e+00 -5.31652510e-01
-3.28897774e-01 4.09373194e-01 1.93737298e-01 -6.79670513e-01
-6.35538697e-01 -3.51172924e-01 5.08529484e-01 6.22633994e-02
3.40790600e-02 -8.41407359e-01 -3.73959810e-01 8.61707404e-02
-8.87322307e-01 -4.56843853e-01 3.42337340e-01 8.91797781e-01
4.60084260e-01 -1.40203638e-02 7.27625310e-01 -1.08684230e+00
6.06780589e-01 -6.92592740e-01 -1.16955829e+00 2.97515150e-02
-3.89322042e-01 4.09646988e-01 8.68384242e-01 -6.11416519e-01
-1.26343703e+00 -1.25457153e-01 -5.72579205e-02 -5.75726926e-01
-6.78528249e-02 4.75393534e-01 8.05556104e-02 -6.15992062e-02
5.75875938e-01 3.99205051e-02 4.50299717e-02 -3.82077545e-01
3.02758306e-01 2.38284439e-01 6.22116029e-01 -8.97016466e-01
9.79564488e-01 6.48294449e-01 5.09166062e-01 -6.54784739e-01
-1.05861366e+00 3.03766608e-01 -2.81889021e-01 -1.38734788e-01
8.12935650e-01 -7.04938471e-01 -1.03987408e+00 5.61333179e-01
-1.09663785e+00 -2.85672158e-01 -3.15619022e-01 7.26912022e-01
-8.28884423e-01 3.61172646e-01 -2.82258898e-01 -9.76305127e-01
3.26016024e-02 -1.10600376e+00 7.54936755e-01 1.64826095e-01
-2.07621098e-01 -1.11586905e+00 1.35445133e-01 -3.20663378e-02
3.27880055e-01 2.77682155e-01 8.51845205e-01 -5.60719132e-01
-4.32311863e-01 -3.81929636e-01 -9.76217017e-02 5.87558448e-01
-2.52196699e-01 2.26098463e-01 -1.03751028e+00 -3.83388281e-01
5.18825576e-02 -4.11632240e-01 1.03073406e+00 6.77748680e-01
1.35200620e+00 -3.29518527e-01 -2.75776803e-01 6.25387490e-01
1.21363115e+00 -1.21228531e-01 5.30361891e-01 -2.79500306e-01
3.00165445e-01 4.08134282e-01 4.78391171e-01 6.35160685e-01
-2.08362162e-01 4.17715073e-01 2.83224851e-01 5.17123640e-01
4.63367254e-01 -1.90695107e-01 3.52723539e-01 3.32615197e-01
-7.20365122e-02 -2.52137929e-01 -6.93909287e-01 2.69572645e-01
-1.64592695e+00 -1.11179650e+00 4.13066953e-01 2.51090193e+00
1.06175435e+00 3.40113521e-01 -2.09951863e-01 -2.33212084e-01
7.57896662e-01 -1.75738007e-01 -9.38864768e-01 -2.80960947e-01
5.49075380e-02 3.52003187e-01 6.05653346e-01 6.60379112e-01
-1.04695046e+00 5.78441262e-01 7.69159126e+00 8.72869134e-01
-7.87226677e-01 6.44213334e-02 7.24673152e-01 -4.06815588e-01
-1.56913072e-01 -1.23525530e-01 -6.24979913e-01 8.02787721e-01
1.26048100e+00 -3.60019475e-01 5.64025283e-01 6.35178685e-01
2.10353360e-01 -3.23293567e-01 -1.31987512e+00 7.35446274e-01
-2.34288216e-01 -1.29022801e+00 -4.95495461e-02 3.04776542e-02
7.27087080e-01 -2.29694620e-02 2.37299874e-01 1.57679915e-01
9.22527432e-01 -1.08108699e+00 4.63202953e-01 1.03657210e+00
4.84006584e-01 -8.88369322e-01 6.86424971e-01 4.25683469e-01
-3.84313911e-01 1.14086673e-01 -6.06328309e-01 9.65557173e-02
2.06316069e-01 9.98179793e-01 -6.30663157e-01 1.75819904e-01
7.57190704e-01 4.57347989e-01 -1.46812260e-01 7.45600820e-01
-1.39101163e-01 9.23062444e-01 -7.91144073e-01 5.56627437e-02
-8.56988356e-02 -3.60040605e-01 8.68654966e-01 1.14457452e+00
3.75551641e-01 -1.55516475e-01 -2.55119920e-01 1.28871787e+00
-1.74834922e-01 -4.77959812e-01 -6.53196335e-01 3.23004201e-02
5.67555606e-01 7.79820025e-01 -5.84386945e-01 -3.48830640e-01
-1.17668882e-01 6.84132636e-01 3.00074965e-01 6.74320757e-01
-9.83481109e-01 -3.31538409e-01 7.19434679e-01 -2.21141547e-01
5.86977780e-01 -4.47995141e-02 -1.81329533e-01 -1.13736248e+00
-2.24210601e-02 -7.26100981e-01 3.65724742e-01 -6.90539181e-01
-1.66662467e+00 -1.08843163e-01 3.22984606e-01 -8.25956523e-01
-3.15813750e-01 -4.48679775e-01 -6.62905276e-01 1.06201816e+00
-1.08905292e+00 -4.03633177e-01 1.25092417e-01 3.70061100e-01
4.47727926e-02 -1.10895149e-01 6.72093987e-01 9.54003185e-02
-8.13503146e-01 7.01626718e-01 5.80291331e-01 -4.53258716e-02
7.49725342e-01 -1.20027030e+00 5.10003328e-01 9.34628367e-01
-2.27667660e-01 7.78589487e-01 1.31537390e+00 -5.79021454e-01
-1.34664106e+00 -1.20941305e+00 1.59812525e-01 -4.77772802e-01
8.80842686e-01 -3.85490924e-01 -9.25747275e-01 9.30462182e-01
-2.34861985e-01 2.55984306e-01 4.17003393e-01 -2.16715299e-02
-4.78917420e-01 -1.32705748e-01 -1.53315485e+00 6.84367299e-01
6.49330556e-01 -3.45163196e-01 -5.79916596e-01 3.72574925e-01
5.50220013e-01 -1.89963505e-01 -9.06606972e-01 1.79383740e-01
7.60475874e-01 -6.99967504e-01 1.20341766e+00 -8.18780243e-01
4.26028758e-01 -1.41612142e-01 -2.79257476e-01 -1.48147643e+00
1.42196506e-01 -8.39421690e-01 -2.66384989e-01 9.15464699e-01
4.44206893e-01 -9.39779580e-01 5.42802334e-01 7.13697851e-01
2.71911055e-01 -4.29546654e-01 -1.28716958e+00 -8.78908932e-01
4.34073538e-01 -6.52543128e-01 3.00354630e-01 5.19095659e-01
-2.45298564e-01 -8.34381673e-03 -3.49107832e-01 4.83473748e-01
1.30202508e+00 -2.09326506e-01 7.19311595e-01 -1.20651579e+00
-6.81038678e-01 -2.28999004e-01 -5.04486561e-01 -9.37938392e-01
4.65030313e-01 -6.21785462e-01 4.06634867e-01 -7.28350043e-01
3.52772236e-01 -8.45027938e-02 -1.27770916e-01 2.74599442e-05
-4.88768816e-01 2.59778917e-01 2.19667312e-02 -1.05621047e-01
-3.85150820e-01 5.59993148e-01 9.64418590e-01 -1.26118839e-01
2.76489466e-01 2.69700944e-01 -4.81814206e-01 9.96526659e-01
5.69812775e-01 -9.80655372e-01 -2.68268198e-01 -3.09144333e-02
6.14387631e-01 3.36027220e-02 7.92381704e-01 -8.56758654e-01
1.31835759e-01 -2.58791834e-01 4.62907135e-01 -4.39409196e-01
5.09961486e-01 -6.40047908e-01 1.30073369e-01 4.53212351e-01
-3.90010476e-01 -5.14682651e-01 2.85231650e-01 1.13734055e+00
1.98107064e-01 -5.15422940e-01 1.31181300e+00 -9.92157310e-02
1.27187297e-01 2.32713297e-01 -7.18241155e-01 3.98730606e-01
9.56800938e-01 2.52281070e-01 -1.86149657e-01 -4.91938144e-01
-1.08549154e+00 1.63917858e-02 2.67575711e-01 -3.93598050e-01
5.87247491e-01 -9.21326816e-01 -8.93548548e-01 9.78691503e-02
-2.60593057e-01 1.34884054e-02 3.01119119e-01 7.14739084e-01
-2.78120875e-01 -9.58004817e-02 -1.08038466e-02 -6.21772289e-01
-8.91687214e-01 4.62078065e-01 5.01093447e-01 -6.44415841e-02
-4.87007976e-01 9.04686093e-01 9.41556245e-02 -4.00340885e-01
2.16812640e-01 -2.95117289e-01 3.42387229e-01 -1.93315998e-01
4.96311575e-01 5.26411414e-01 -2.09584385e-01 -3.23618948e-02
-2.54032373e-01 4.26137239e-01 -2.41639376e-01 -4.21819240e-01
1.23557341e+00 -3.81800197e-02 -4.24780883e-02 7.46756792e-01
1.10802197e+00 -1.26450494e-01 -1.71953046e+00 -8.83312300e-02
-2.21445948e-01 -4.66994017e-01 8.65712315e-02 -6.97439909e-01
-9.37979102e-01 9.47947860e-01 3.84600163e-01 1.34121686e-01
7.45177329e-01 -3.18804160e-02 4.68796521e-01 8.65040720e-01
2.60170102e-01 -1.03982556e+00 -1.16255648e-01 3.65762204e-01
7.85938978e-01 -1.11744618e+00 3.34556609e-01 -1.23507038e-01
-3.16035122e-01 8.59127879e-01 5.07760420e-02 -3.99260521e-01
1.06099796e+00 3.83364230e-01 -4.53904897e-01 2.01624800e-02
-7.54390180e-01 3.98522913e-01 3.90166938e-02 6.29470587e-01
-7.12739676e-02 -5.75400516e-02 1.45773411e-01 5.48946738e-01
-9.34710503e-02 -1.02897055e-01 7.97726750e-01 6.51693106e-01
-2.50993282e-01 -5.40039062e-01 -4.08882767e-01 6.72947466e-01
-7.19757676e-01 -1.11032113e-01 2.94599850e-02 4.91493434e-01
-2.86566198e-01 6.94485009e-01 1.39664114e-01 6.97801337e-02
1.04776258e-02 2.49500796e-01 6.43847227e-01 -3.42454135e-01
3.76104526e-02 -1.82255715e-01 -1.05705947e-01 -5.41767657e-01
-2.68782198e-01 -1.04094100e+00 -8.07503998e-01 -5.38668811e-01
-1.92153022e-01 3.17924581e-02 6.82780504e-01 1.13790405e+00
2.13832438e-01 4.91676152e-01 4.79164630e-01 -1.11712193e+00
-1.10669243e+00 -1.00137448e+00 -6.68128550e-01 4.77932036e-01
3.88198704e-01 -7.91567445e-01 -1.11580658e+00 8.43794942e-02] | [6.963768005371094, 3.893561601638794] |
421fd8f4-8013-49d7-8656-9ba6d6f83291 | v2c-visual-voice-cloning | 2111.1289 | null | https://arxiv.org/abs/2111.12890v1 | https://arxiv.org/pdf/2111.12890v1.pdf | V2C: Visual Voice Cloning | Existing Voice Cloning (VC) tasks aim to convert a paragraph text to a speech with desired voice specified by a reference audio. This has significantly boosted the development of artificial speech applications. However, there also exist many scenarios that cannot be well reflected by these VC tasks, such as movie dubbing, which requires the speech to be with emotions consistent with the movie plots. To fill this gap, in this work we propose a new task named Visual Voice Cloning (V2C), which seeks to convert a paragraph of text to a speech with both desired voice specified by a reference audio and desired emotion specified by a reference video. To facilitate research in this field, we construct a dataset, V2C-Animation, and propose a strong baseline based on existing state-of-the-art (SoTA) VC techniques. Our dataset contains 10,217 animated movie clips covering a large variety of genres (e.g., Comedy, Fantasy) and emotions (e.g., happy, sad). We further design a set of evaluation metrics, named MCD-DTW-SL, which help evaluate the similarity between ground-truth speeches and the synthesised ones. Extensive experimental results show that even SoTA VC methods cannot generate satisfying speeches for our V2C task. We hope the proposed new task together with the constructed dataset and evaluation metric will facilitate the research in the field of voice cloning and the broader vision-and-language community. | ['Qi Wu', 'Mingkui Tan', 'Jiaqiu Zhou', 'Yuankai Qi', 'Yuanqing Li', 'Qi Chen'] | 2021-11-25 | null | http://openaccess.thecvf.com//content/CVPR2022/html/Chen_V2C_Visual_Voice_Cloning_CVPR_2022_paper.html | http://openaccess.thecvf.com//content/CVPR2022/papers/Chen_V2C_Visual_Voice_Cloning_CVPR_2022_paper.pdf | cvpr-2022-1 | ['voice-cloning'] | ['speech'] | [ 3.53262983e-02 -1.08285420e-01 1.03790581e-01 -4.45732832e-01
-6.65055037e-01 -6.40401304e-01 6.81969464e-01 -6.37981653e-01
8.72727185e-02 4.57811087e-01 6.15558565e-01 -1.60931647e-01
6.21521413e-01 -3.86417210e-01 -5.50918043e-01 -5.60819983e-01
3.67356002e-01 -3.22434977e-02 5.01880720e-02 -3.44567955e-01
6.03393055e-02 2.94512540e-01 -1.69359255e+00 6.24696434e-01
5.75270593e-01 1.11440456e+00 3.77486169e-01 7.37109959e-01
-3.55909079e-01 6.95130289e-01 -8.29711199e-01 -6.08546138e-01
-1.35483623e-01 -9.65419114e-01 -7.82602310e-01 3.65530252e-01
2.71092743e-01 -7.19605237e-02 -3.69056091e-02 1.09268844e+00
8.31147552e-01 4.15182739e-01 6.87453091e-01 -1.55490339e+00
-9.22749817e-01 5.91639876e-01 -1.93958461e-01 -2.27102965e-01
6.53521299e-01 2.73635209e-01 1.14768088e+00 -1.23401761e+00
9.99744058e-01 1.63356936e+00 3.73085380e-01 1.07113397e+00
-9.04103220e-01 -7.56543934e-01 2.10864127e-01 8.52577612e-02
-1.20808446e+00 -7.62932956e-01 1.19859469e+00 -2.33239442e-01
5.73963702e-01 7.37713397e-01 6.76045537e-01 1.86442387e+00
-2.93523699e-01 8.73648763e-01 9.24104214e-01 -1.34035990e-01
3.03232789e-01 3.53018552e-01 -4.99842793e-01 1.91621989e-01
-5.42404830e-01 1.67132095e-02 -5.39938033e-01 2.50831693e-01
4.54088390e-01 -5.23330569e-01 -6.82513833e-01 -5.80407195e-02
-1.45171809e+00 8.34020078e-01 1.25359461e-01 4.00662631e-01
-1.79391980e-01 -1.31269991e-01 6.03963733e-01 4.57419932e-01
4.06970888e-01 3.85892093e-01 -5.32184392e-02 -3.01665038e-01
-9.38443482e-01 2.89579928e-01 8.02319765e-01 1.21170878e+00
-5.63040972e-02 5.60425699e-01 -3.82876217e-01 1.12356615e+00
2.99779952e-01 5.47344983e-01 5.37438631e-01 -1.00767660e+00
4.91655886e-01 -4.64725234e-02 2.12337792e-01 -1.02389610e+00
-1.66501239e-01 -3.40675861e-01 -1.00367999e+00 1.41849473e-01
1.65577922e-02 -2.12609872e-01 -4.85850513e-01 1.76300514e+00
3.62347603e-01 2.09741578e-01 2.71139115e-01 1.21012795e+00
1.44236517e+00 1.20876813e+00 -3.54341596e-01 -6.78533554e-01
1.19402277e+00 -1.32338870e+00 -1.19096613e+00 6.40385002e-02
4.04538549e-02 -1.11024857e+00 1.77236247e+00 5.06465554e-01
-1.00934005e+00 -8.97719502e-01 -9.57894683e-01 1.52401784e-02
5.23388907e-02 2.14615330e-01 1.55907243e-01 5.07448852e-01
-9.58650589e-01 2.61791229e-01 -3.90794784e-01 -3.13134283e-01
6.38758093e-02 -4.21157569e-01 -3.53202522e-01 3.40192050e-01
-1.21100128e+00 5.39362967e-01 -8.57608542e-02 1.03368917e-02
-1.07510960e+00 -4.25435752e-01 -8.26194346e-01 -1.51172683e-01
3.18464160e-01 -4.51311558e-01 1.46096373e+00 -1.39773381e+00
-1.80499613e+00 8.59660625e-01 -8.14821273e-02 -1.54236272e-01
6.76156580e-01 -3.96928042e-02 -8.63230586e-01 9.81182382e-02
8.29693899e-02 9.60145175e-01 1.26329339e+00 -1.74929810e+00
-5.29976189e-01 1.38586506e-01 -1.06727801e-01 1.83009803e-01
-3.06509227e-01 4.23017979e-01 -6.13757432e-01 -1.11243510e+00
-2.21650779e-01 -8.73358548e-01 2.65717119e-01 9.51290167e-06
-7.46395171e-01 -2.60307759e-01 9.10802305e-01 -6.92097068e-01
1.27915096e+00 -2.31765914e+00 4.50852871e-01 -3.26662540e-01
1.00460425e-02 1.29718140e-01 -4.04953808e-01 4.93496895e-01
-1.75075278e-01 2.29695693e-01 -1.39132366e-01 -7.55212069e-01
7.97468275e-02 1.28707299e-02 -6.88834727e-01 2.18621522e-01
2.04410151e-01 5.78371346e-01 -8.92181218e-01 -5.77124536e-01
-8.48115534e-02 5.17618179e-01 -5.44887066e-01 5.77123046e-01
-2.83469737e-01 6.85494065e-01 -7.43127316e-02 5.90182781e-01
5.32043695e-01 2.03959510e-01 -1.52149469e-01 -2.60494530e-01
-2.55749255e-01 1.98052347e-01 -1.07691717e+00 1.63849437e+00
-4.84532773e-01 8.83004367e-01 2.55418509e-01 -6.24790907e-01
1.24894619e+00 7.52842486e-01 2.18665391e-01 -3.29805851e-01
2.44539693e-01 3.20486128e-02 -1.46099240e-01 -7.52714872e-01
5.40079355e-01 -3.94688785e-01 -3.42883021e-02 1.75850257e-01
-1.39242858e-02 -7.86674380e-01 -2.37350427e-02 3.09948549e-02
5.70366025e-01 6.02675900e-02 3.69185396e-02 9.94027182e-02
6.34252548e-01 -1.16040699e-01 6.10300064e-01 3.30478609e-01
-5.08373857e-01 9.67233658e-01 5.67700624e-01 6.74032122e-02
-1.09084451e+00 -9.40890312e-01 9.52034369e-02 9.26384568e-01
2.41935581e-01 -4.20657486e-01 -9.30340767e-01 -4.96640384e-01
-4.01880890e-01 9.18633640e-01 -4.50269371e-01 -1.16039254e-01
-3.16173524e-01 1.45218596e-02 7.89122105e-01 2.67397314e-01
4.18373376e-01 -1.57287800e+00 -2.44005486e-01 1.35967299e-01
-7.40102530e-01 -1.49789178e+00 -9.25746560e-01 -4.49928373e-01
-2.74932951e-01 -6.02795184e-01 -9.90759075e-01 -1.22264802e+00
2.92193145e-01 4.32663232e-01 1.08841062e+00 -2.04536214e-01
1.89770997e-01 3.46281707e-01 -7.67607868e-01 -2.91447848e-01
-9.43899870e-01 -3.88801754e-01 1.92199454e-01 4.16311353e-01
-2.36957550e-01 -4.99622434e-01 -2.06688643e-01 4.65169281e-01
-8.99347961e-01 5.52323818e-01 2.43586581e-02 8.44960809e-01
5.36440134e-01 -1.12655781e-01 7.18673348e-01 -3.67449135e-01
1.08543217e+00 -4.23273265e-01 -8.40886757e-02 1.39076963e-01
-1.18316472e-01 -2.81377226e-01 1.00049949e+00 -1.00835252e+00
-1.16370690e+00 -1.68587819e-01 -4.26702470e-01 -8.05797100e-01
-1.77674443e-01 3.47998321e-01 -5.40300786e-01 4.12600249e-01
4.84087735e-01 3.70074868e-01 -1.50280511e-02 -4.72238779e-01
5.86797714e-01 1.13238609e+00 1.11415482e+00 -4.90709215e-01
7.30877697e-01 2.09003076e-01 -3.65266830e-01 -1.00164974e+00
-5.51206946e-01 -2.10893020e-01 -1.29378140e-01 -6.48335040e-01
9.58661675e-01 -8.37782204e-01 -5.59697986e-01 5.42324603e-01
-1.65201974e+00 -1.32370502e-01 -5.59805185e-02 3.92715007e-01
-6.93920910e-01 3.66283506e-01 -4.58487242e-01 -8.82423103e-01
-4.04529989e-01 -1.34207475e+00 1.12844038e+00 7.15183690e-02
-3.86403441e-01 -5.76490581e-01 1.66220397e-01 4.16458130e-01
3.72414023e-01 3.09998691e-01 8.11414361e-01 -4.98991638e-01
9.20985863e-02 1.85721770e-01 6.64057210e-02 6.26591980e-01
3.02160472e-01 4.39468473e-01 -1.04201710e+00 -6.39212653e-02
6.24419004e-02 -4.91542250e-01 4.56926584e-01 3.42778265e-02
9.85047579e-01 -4.36917722e-01 2.32346699e-01 6.11625910e-01
7.13636935e-01 5.23630142e-01 6.90290213e-01 -1.67580366e-01
5.47947884e-01 8.00505280e-01 8.88361990e-01 5.73379695e-01
3.38373810e-01 9.54961419e-01 5.18005550e-01 -1.14782639e-01
-5.84630251e-01 -5.19497275e-01 6.88402057e-01 1.42288613e+00
-2.19397582e-02 -6.66232884e-01 -4.95016575e-01 5.78899145e-01
-1.50744605e+00 -1.10970283e+00 3.60956509e-03 1.82102501e+00
1.11216068e+00 7.69298598e-02 1.52467072e-01 3.19821835e-01
1.03898370e+00 4.63026315e-01 -4.96184707e-01 -6.29320383e-01
-2.09854901e-01 1.68140121e-02 -6.31800711e-01 5.20277798e-01
-1.03102100e+00 1.17314410e+00 5.12827969e+00 1.12794566e+00
-1.62856400e+00 -1.81281881e-03 4.24290508e-01 -1.22095436e-01
-5.88986933e-01 -3.14802408e-01 -4.39831227e-01 4.98402566e-01
7.12763011e-01 -3.44182760e-01 7.22779155e-01 8.92261147e-01
7.95442820e-01 6.15910888e-01 -1.07527471e+00 1.46800482e+00
3.29573423e-01 -1.19742429e+00 2.56902158e-01 -4.76025939e-01
6.83223784e-01 -4.51783389e-01 9.24656540e-02 4.68196064e-01
-1.03576876e-01 -9.15275037e-01 1.22654581e+00 2.06618682e-01
1.27245963e+00 -5.62183857e-01 3.32212716e-01 2.71339715e-01
-1.38445437e+00 3.15734655e-01 -2.31017768e-01 2.22691149e-01
3.14024895e-01 4.38348874e-02 -7.38932371e-01 4.30661052e-01
6.40589237e-01 7.28508055e-01 -9.73337367e-02 7.05934823e-01
-2.57987797e-01 7.85088658e-01 1.29713774e-01 -3.48006278e-01
2.39473820e-01 -1.08793400e-01 9.21027422e-01 1.26376331e+00
4.26838428e-01 -2.55589541e-02 -7.88164288e-02 9.74207044e-01
-3.24045718e-01 6.34281158e-01 -6.67890847e-01 -4.58041489e-01
6.96736276e-01 1.28374505e+00 -5.56470633e-01 -2.46298566e-01
-3.37474227e-01 1.24460840e+00 -9.12764966e-02 4.45106447e-01
-1.20308959e+00 -5.17476320e-01 8.32107961e-01 -2.13403314e-01
2.98863381e-01 -5.47441915e-02 3.80873494e-02 -1.21419060e+00
8.29028860e-02 -1.31020808e+00 -2.11788565e-01 -1.26998723e+00
-1.18363023e+00 1.14055002e+00 -2.97133982e-01 -1.68562901e+00
-3.32592398e-01 -1.64519072e-01 -1.05997169e+00 4.19660360e-01
-1.11069798e+00 -1.09436977e+00 -5.60556412e-01 7.26942420e-01
1.19747210e+00 -2.74346381e-01 6.51248515e-01 2.22389430e-01
-4.86176699e-01 5.79971015e-01 -2.39458770e-01 3.17793526e-02
9.37584758e-01 -8.42986941e-01 6.18696332e-01 7.46373415e-01
3.59425813e-01 7.30166882e-02 1.10937095e+00 -4.54595536e-01
-1.30238652e+00 -1.24148035e+00 9.05063570e-01 -8.96954536e-03
5.20526886e-01 -4.77213681e-01 -8.51156592e-01 2.95215100e-01
3.59032720e-01 -8.22215900e-02 4.37329292e-01 -4.91972655e-01
-2.71052897e-01 1.93103254e-02 -1.02403092e+00 7.84506500e-01
1.17871916e+00 -6.80542290e-01 -5.46764255e-01 8.21607560e-02
1.42686665e+00 -3.48860174e-01 -6.15714729e-01 2.72979558e-01
5.08234203e-01 -9.83328223e-01 7.74246395e-01 -1.00071430e+00
6.94138467e-01 -1.61235854e-01 -4.11819279e-01 -1.53656578e+00
-6.76241368e-02 -9.24275339e-01 1.65789664e-01 1.79650795e+00
3.16349357e-01 -1.44606173e-01 2.18713224e-01 2.10099339e-01
-4.68830556e-01 -6.39602959e-01 -8.95105004e-01 -8.28269303e-01
2.08889190e-02 -8.49191666e-01 7.78369963e-01 1.11495161e+00
-3.23874392e-02 5.33024907e-01 -8.30452859e-01 -4.45707934e-03
1.36031285e-01 2.25515336e-01 9.23613906e-01 -9.72278833e-01
-1.95910424e-01 -5.69297671e-01 -2.28956297e-01 -1.13303185e+00
3.67361963e-01 -7.78917968e-01 2.64454603e-01 -1.29370892e+00
-1.04504891e-01 4.82395813e-02 2.34445065e-01 1.52936518e-01
1.79334878e-04 6.20366111e-02 4.32250619e-01 8.19420740e-02
-3.47868413e-01 1.14460933e+00 1.78916156e+00 -2.35312149e-01
-2.82100409e-01 6.02170452e-02 -5.95502496e-01 6.24422073e-01
6.38962805e-01 -3.71014953e-01 -5.44447482e-01 -1.72284618e-01
2.46371683e-02 6.04944468e-01 2.00646356e-01 -7.61001766e-01
2.78727692e-02 -3.99733424e-01 -1.75857037e-01 -5.04336238e-01
6.51347399e-01 -5.41653454e-01 2.37206474e-01 7.12078512e-02
-5.75475335e-01 4.39748131e-02 -8.27295035e-02 3.26801300e-01
-6.08477771e-01 -4.74957600e-02 8.58331800e-01 1.11334637e-01
-5.98525047e-01 2.24040985e-01 -2.92559117e-01 3.57949167e-01
8.86534452e-01 -2.00005174e-02 -3.52539659e-01 -1.11541224e+00
-7.29500830e-01 6.96979314e-02 3.31330568e-01 8.97206545e-01
1.05541134e+00 -1.83213222e+00 -9.40863669e-01 2.60866322e-02
1.38864219e-01 -2.80444264e-01 5.20128496e-02 6.65393591e-01
-2.35748500e-01 1.49755731e-01 -2.63995171e-01 -3.79300892e-01
-1.52887940e+00 6.17091656e-01 2.43545681e-01 4.15004164e-01
-5.84426284e-01 8.40561807e-01 2.44771317e-01 -3.94998282e-01
6.15949810e-01 -4.45669770e-01 -4.31829840e-01 1.19846649e-01
4.90778923e-01 1.49582803e-01 -3.33313853e-01 -9.84176815e-01
-2.25407302e-01 3.73494864e-01 5.04941165e-01 -4.33219254e-01
1.11751854e+00 -2.20898718e-01 1.52530298e-01 6.92338228e-01
1.25547385e+00 3.96676958e-01 -1.08948898e+00 -4.48093675e-02
-3.96370232e-01 -3.67178649e-01 -1.19456023e-01 -6.17800474e-01
-1.25090146e+00 1.04785502e+00 3.00366789e-01 3.53512257e-01
1.10656750e+00 3.64016816e-02 1.15193260e+00 1.70239180e-01
1.41700014e-01 -9.64836836e-01 3.61928254e-01 3.24711651e-01
1.70523942e+00 -1.10693407e+00 -6.80650890e-01 -4.56939101e-01
-1.30941594e+00 1.10357010e+00 6.76014721e-01 2.92819709e-01
3.60777497e-01 7.59904906e-02 4.32609618e-01 1.65882945e-01
-1.06280887e+00 -2.97801197e-01 4.14733738e-01 7.30612457e-01
3.94512922e-01 1.48577467e-01 -1.88891217e-01 1.21075058e+00
-6.41972661e-01 -2.41898060e-01 6.65332973e-01 2.45253295e-01
-4.50937152e-01 -8.48523140e-01 -4.51791167e-01 -1.29045010e-01
-2.32462972e-01 -3.47272679e-02 -7.81076252e-01 5.82771719e-01
-3.01132482e-02 1.47943485e+00 -2.17475072e-02 -8.39131117e-01
3.88993025e-01 -2.87606120e-02 1.99667588e-01 -4.03886557e-01
-4.60088491e-01 3.88309538e-01 4.31919456e-01 -3.40402275e-01
-3.50420952e-01 -4.41544592e-01 -1.34442544e+00 -2.57020473e-01
-1.23649582e-01 1.58608675e-01 7.10763156e-01 7.25995362e-01
1.28924817e-01 5.54709136e-01 1.12469459e+00 -9.30409968e-01
-6.30581677e-01 -1.06385875e+00 -5.29507458e-01 7.01185703e-01
3.55759531e-01 -5.90042293e-01 -6.24319971e-01 2.50686288e-01] | [14.478862762451172, 5.943192005157471] |
fa27c2b7-bab0-49e6-80a1-19fb192af3c0 | image-harmonization-with-region-wise | 2205.14058 | null | https://arxiv.org/abs/2205.14058v2 | https://arxiv.org/pdf/2205.14058v2.pdf | Image Harmonization with Region-wise Contrastive Learning | Image harmonization task aims at harmonizing different composite foreground regions according to specific background image. Previous methods would rather focus on improving the reconstruction ability of the generator by some internal enhancements such as attention, adaptive normalization and light adjustment, $etc.$. However, they pay less attention to discriminating the foreground and background appearance features within a restricted generator, which becomes a new challenge in image harmonization task. In this paper, we propose a novel image harmonization framework with external style fusion and region-wise contrastive learning scheme. For the external style fusion, we leverage the external background appearance from the encoder as the style reference to generate harmonized foreground in the decoder. This approach enhances the harmonization ability of the decoder by external background guidance. Moreover, for the contrastive learning scheme, we design a region-wise contrastive loss function for image harmonization task. Specifically, we first introduce a straight-forward samples generation method that selects negative samples from the output harmonized foreground region and selects positive samples from the ground-truth background region. Our method attempts to bring together corresponding positive and negative samples by maximizing the mutual information between the foreground and background styles, which desirably makes our harmonization network more robust to discriminate the foreground and background style features when harmonizing composite images. Extensive experiments on the benchmark datasets show that our method can achieve a clear improvement in harmonization quality and demonstrate the good generalization capability in real-scenario applications. | ['Chi-Man Pun', 'Jingtang Liang'] | 2022-05-27 | null | null | null | null | ['image-harmonization'] | ['computer-vision'] | [ 4.77724969e-01 -3.00263315e-01 -1.57035850e-02 -2.24989235e-01
-7.26707935e-01 -2.89758056e-01 4.50323731e-01 -4.30591434e-01
-3.12955797e-01 6.17125750e-01 9.51592475e-02 2.42734909e-01
1.96545869e-01 -9.17364955e-01 -7.60988176e-01 -1.06933188e+00
8.36001992e-01 -1.85399526e-03 1.98963046e-01 -3.74660820e-01
1.24416895e-01 2.29390174e-01 -1.36090660e+00 2.24941373e-01
1.23331642e+00 1.08186162e+00 5.88336051e-01 4.22740310e-01
-1.42679393e-01 6.13727510e-01 -7.68248498e-01 -6.09358430e-01
4.27906722e-01 -9.88353372e-01 -2.78369099e-01 3.59999329e-01
5.00537395e-01 4.39729579e-02 -2.51537412e-01 1.34876740e+00
9.67234910e-01 4.42684442e-02 3.63608629e-01 -1.29718328e+00
-7.32737899e-01 4.75118458e-01 -9.42793608e-01 1.57409951e-01
4.19226997e-02 5.57851970e-01 8.58469605e-01 -7.08075285e-01
5.23387671e-01 1.23849010e+00 4.72762376e-01 5.07442713e-01
-1.27865314e+00 -1.03606582e+00 4.88194637e-02 3.28411996e-01
-1.48933828e+00 -4.38488275e-01 1.28623712e+00 -1.77825883e-01
1.99556634e-01 5.37238002e-01 7.25495875e-01 8.39189887e-01
2.43728295e-01 1.01585019e+00 1.15789485e+00 -3.25095803e-01
-5.31412847e-02 2.59310573e-01 -5.09224236e-01 5.92435181e-01
4.65106182e-02 -8.07236657e-02 -4.46217149e-01 2.25229859e-01
7.86826432e-01 -3.46322596e-01 -6.49834454e-01 -4.03820246e-01
-1.31872463e+00 6.00399673e-01 5.79553008e-01 2.44609743e-01
-2.02847794e-01 -8.53243172e-02 2.25525320e-01 1.20286524e-01
2.66422331e-01 4.60475713e-01 -5.75115383e-02 3.77609074e-01
-9.74505663e-01 6.59211800e-02 2.03129485e-01 9.25911784e-01
8.60691488e-01 3.54099751e-01 -6.21640086e-01 1.17199683e+00
8.95653293e-02 7.96687782e-01 5.16979396e-01 -9.20830667e-01
5.57160556e-01 5.22398353e-01 -1.60389580e-02 -1.33031332e+00
1.99690219e-02 -8.83044362e-01 -1.25716138e+00 2.54395723e-01
9.25005078e-02 -2.26203948e-01 -6.14499927e-01 2.04092574e+00
2.82785237e-01 2.99352467e-01 1.08423144e-01 9.44759786e-01
8.80756974e-01 7.84279168e-01 -1.14517421e-01 -5.57101250e-01
1.14830303e+00 -1.07914782e+00 -7.95966983e-01 -1.91979975e-01
-1.90968718e-02 -1.16381848e+00 1.11072040e+00 2.18648046e-01
-1.45603526e+00 -1.05093682e+00 -1.12476873e+00 1.32323667e-01
7.42478520e-02 3.64014179e-01 1.78557426e-01 5.51994145e-01
-8.83022606e-01 1.93699837e-01 -3.27363908e-01 -2.83335987e-02
4.14610118e-01 2.99000472e-01 -8.80920812e-02 2.02537432e-01
-1.11649120e+00 7.25346029e-01 5.69538176e-01 2.43515834e-01
-5.88710368e-01 -4.76816922e-01 -8.32576871e-01 -1.35823637e-01
2.47735411e-01 -9.20979738e-01 7.57119596e-01 -1.47946668e+00
-1.66885114e+00 1.00096786e+00 -1.02906600e-01 -1.00687020e-01
6.83111489e-01 2.17910483e-01 -5.91250300e-01 -1.57691717e-01
2.05402672e-01 9.04644310e-01 9.92696702e-01 -1.70202518e+00
-9.30919945e-01 -9.22766179e-02 -2.54535109e-01 5.84540248e-01
-3.53043973e-01 -2.03157634e-01 -9.71240401e-01 -1.10260797e+00
4.86678109e-02 -7.79048145e-01 -1.10558771e-01 -1.61435932e-01
-5.09472251e-01 2.51892209e-01 8.55149090e-01 -7.62788475e-01
1.29057217e+00 -2.27923608e+00 4.17508870e-01 2.39283413e-01
5.00888377e-02 3.43859702e-01 -3.06746274e-01 -3.20994645e-01
-9.28894058e-02 -2.18745142e-01 -4.04739857e-01 -5.89565821e-02
-1.11026675e-01 5.77085800e-02 -1.87332958e-01 2.70546407e-01
3.77422035e-01 8.78261149e-01 -8.27544034e-01 -8.23934257e-01
2.39097774e-01 3.92772943e-01 -5.94868839e-01 5.59779108e-01
-1.23701565e-01 6.57432377e-01 -3.12166333e-01 5.05727828e-01
8.95322502e-01 -4.93892170e-02 1.43160475e-02 -7.16267765e-01
1.05682351e-01 -5.04709780e-01 -1.34825802e+00 1.53454292e+00
-5.19306302e-01 4.85936731e-01 2.44786665e-01 -9.25094426e-01
1.18837345e+00 -2.68278196e-02 3.00305218e-01 -1.05626953e+00
1.97630510e-01 1.50573552e-01 -6.97460817e-03 -2.75800020e-01
3.89930159e-01 -2.02857211e-01 -1.62388325e-01 1.21834435e-01
-1.73962161e-01 -4.27508920e-01 3.45036350e-02 -2.07581669e-01
4.01593000e-01 1.49111241e-01 1.93583146e-01 -8.09921771e-02
1.03259826e+00 -2.76937723e-01 9.63851571e-01 4.70119387e-01
-1.60250261e-01 8.89916420e-01 2.65145361e-01 -2.13317171e-01
-1.10646331e+00 -1.19651079e+00 -2.40093286e-04 8.98521960e-01
6.40472889e-01 -6.14491217e-02 -8.91723394e-01 -5.27831256e-01
-4.26195234e-01 5.88582218e-01 -4.40782070e-01 -4.96343017e-01
-8.74561548e-01 -1.06794643e+00 3.96394312e-01 3.60869348e-01
1.27115977e+00 -1.11231995e+00 -2.98646510e-01 8.16527754e-02
-6.47238970e-01 -8.66871655e-01 -8.40658128e-01 -6.64891601e-02
-3.42194289e-01 -6.43250763e-01 -1.02888393e+00 -1.03797805e+00
5.74972689e-01 2.28970513e-01 1.06383717e+00 -5.91187067e-02
-1.78700551e-01 -3.54187861e-02 -5.50510958e-02 -1.42213821e-01
-4.89352167e-01 -1.54867157e-01 -2.78602451e-01 4.08751696e-01
-1.41141430e-01 -3.93115759e-01 -8.23293924e-01 5.71624517e-01
-9.63507295e-01 4.29218054e-01 7.21998811e-01 1.03440857e+00
8.12272668e-01 4.06843036e-01 3.93805087e-01 -5.63851237e-01
6.87291920e-01 -1.53028339e-01 -5.13318181e-01 4.78995472e-01
-4.02238578e-01 -3.16557921e-02 7.43533254e-01 -3.98964792e-01
-1.38947499e+00 2.72252932e-02 -1.01740837e-01 -5.59171677e-01
2.01417252e-01 -3.82133760e-02 -8.53699565e-01 -1.75583899e-01
4.85633552e-01 6.28346562e-01 -6.10121079e-02 -4.24457490e-02
5.75448811e-01 5.06577075e-01 8.88898253e-01 -5.44885337e-01
9.42362845e-01 3.18449646e-01 -8.98633450e-02 -5.27273297e-01
-5.34207404e-01 -3.37854736e-02 -3.46457392e-01 -3.66061181e-01
1.06389856e+00 -9.63308454e-01 -5.69437444e-01 6.21149540e-01
-9.54114020e-01 -3.18496674e-01 -3.52355957e-01 1.76877707e-01
-7.16929793e-01 5.18133163e-01 -3.35758537e-01 -4.56657290e-01
-4.61130589e-01 -1.43546939e+00 1.04529226e+00 4.94323105e-01
3.03169936e-02 -6.63952827e-01 -1.03384696e-01 4.44944292e-01
4.86844718e-01 2.94196934e-01 9.19950187e-01 -6.46322444e-02
-5.47853887e-01 1.68148980e-01 -4.80338752e-01 5.84444344e-01
3.34443420e-01 2.29765996e-02 -7.92853713e-01 -3.16398889e-01
7.67554715e-02 3.14099863e-02 8.70902598e-01 3.22525591e-01
1.24195421e+00 -3.12637836e-01 -1.34291112e-01 9.37336981e-01
1.46028805e+00 5.07697165e-01 6.58341646e-01 2.76532352e-01
9.57726717e-01 5.96426845e-01 6.30759656e-01 4.29040253e-01
1.35197327e-01 1.03392673e+00 2.65396029e-01 -6.82653606e-01
-4.93754357e-01 -9.93131846e-02 3.73591751e-01 7.68117487e-01
4.42481972e-02 -4.01298344e-01 -5.67419052e-01 3.14489424e-01
-1.86672461e+00 -1.19993603e+00 1.91937402e-01 2.20399332e+00
1.14453721e+00 4.05885167e-02 1.14000319e-02 -6.75419495e-02
1.25306165e+00 2.58585483e-01 -6.57989383e-01 3.07586044e-03
-7.68762290e-01 1.95906475e-01 1.96209043e-01 3.26649755e-01
-1.15596282e+00 9.74278331e-01 5.38355589e+00 1.35020149e+00
-1.41500497e+00 3.60330530e-02 1.07838285e+00 -1.16974667e-01
-3.92267257e-01 -3.22715610e-01 -6.36498868e-01 8.73917639e-01
1.49783701e-01 -2.04769075e-01 5.11902273e-01 5.11472583e-01
2.91585803e-01 8.70854706e-02 -6.19065464e-01 1.29633534e+00
2.42768601e-01 -1.32511210e+00 3.99321020e-01 -3.52889746e-01
1.01688135e+00 -5.19121587e-01 3.75048369e-01 1.44119874e-01
1.11209303e-01 -8.23067963e-01 8.85338664e-01 5.98495960e-01
7.99752951e-01 -8.99681628e-01 7.24301457e-01 5.44256009e-02
-1.28704643e+00 -6.80901930e-02 -3.27257782e-01 4.06727523e-01
1.74439922e-01 3.99909019e-01 -4.31149751e-01 7.19872415e-01
5.92290401e-01 6.18523061e-01 -7.76560664e-01 9.16748047e-01
-1.03268236e-01 2.56836057e-01 1.66172665e-02 3.72038901e-01
-1.45607572e-02 -5.00599980e-01 5.70371628e-01 1.24230707e+00
3.24516743e-01 -3.13586672e-03 2.28912771e-01 9.71743286e-01
3.49478573e-02 4.10320133e-01 -3.17714214e-01 3.83457601e-01
2.79718310e-01 1.28029966e+00 -6.97614431e-01 -3.81992161e-01
-2.34090894e-01 1.17743802e+00 3.32208984e-02 3.45505327e-01
-1.13176644e+00 -2.40537226e-01 3.75074863e-01 -1.69933602e-01
3.17594230e-01 3.68226022e-01 -4.93033648e-01 -1.16710746e+00
9.96626168e-03 -1.18135488e+00 2.38164663e-01 -9.77434218e-01
-1.32129586e+00 7.52026558e-01 -1.96132764e-01 -1.50700235e+00
8.75498205e-02 -1.94572017e-01 -8.67608190e-01 9.60000873e-01
-1.29697704e+00 -1.30165517e+00 -6.39615297e-01 8.54565680e-01
5.71694970e-01 -3.26959342e-01 1.95804521e-01 3.68408054e-01
-8.72198999e-01 8.83168459e-01 8.61804038e-02 1.37663424e-01
9.49272811e-01 -1.08270240e+00 -3.35516743e-02 1.06072700e+00
-1.86013177e-01 3.65943819e-01 7.93090761e-01 -6.14129007e-01
-1.04916334e+00 -1.32366562e+00 3.37870508e-01 8.56470168e-02
2.22672984e-01 -1.30849212e-01 -7.91686416e-01 2.11506829e-01
6.27522111e-01 -8.19787532e-02 4.67431396e-01 -5.17650962e-01
2.09817430e-04 -5.97446024e-01 -1.02423203e+00 9.49636936e-01
9.36223447e-01 -2.09843799e-01 -3.64913493e-01 1.38382286e-01
6.08173132e-01 -4.19251472e-01 -6.18927121e-01 7.91894197e-01
4.34146613e-01 -1.00995147e+00 1.16776431e+00 -1.60080463e-01
6.49571657e-01 -8.21418285e-01 -2.31287792e-01 -1.22011220e+00
-5.13527513e-01 -6.01829529e-01 4.09717232e-01 1.60261071e+00
2.17797890e-01 -2.91468859e-01 5.96835136e-01 1.85788661e-01
-1.13099493e-01 -7.15697169e-01 -5.69067776e-01 -5.72432578e-01
-8.06395784e-02 -1.67775655e-03 6.37518883e-01 8.91097426e-01
-5.50821841e-01 4.22232717e-01 -5.96274734e-01 5.10483794e-02
6.50629818e-01 4.95899141e-01 1.04863656e+00 -6.76764548e-01
-5.81877053e-01 -8.01748097e-01 -1.91658735e-01 -8.57983530e-01
2.54397541e-01 -7.85374105e-01 2.20577389e-01 -1.26171935e+00
4.44206685e-01 -4.87766087e-01 -4.30156887e-01 2.27557167e-01
-6.34972930e-01 6.75023913e-01 4.28910613e-01 1.83322832e-01
-6.15680277e-01 8.69776964e-01 1.75236487e+00 -5.12575448e-01
-2.58477509e-01 -1.20690521e-02 -9.13782895e-01 6.55012906e-01
7.74284482e-01 -3.22304554e-02 -5.41550875e-01 -3.87101829e-01
-8.92409235e-02 2.43648484e-01 2.90018797e-01 -1.10146511e+00
4.38030288e-02 -3.58356088e-01 7.62438476e-01 -3.75666857e-01
2.63253570e-01 -6.14087999e-01 5.00858903e-01 4.54023629e-01
-2.71786779e-01 1.72775723e-02 1.36646688e-01 5.33638000e-01
-3.94432098e-01 2.12899502e-02 1.26882887e+00 -1.06779434e-01
-7.30662882e-01 2.84883022e-01 7.69097582e-02 1.85338199e-01
1.04628921e+00 -4.11987185e-01 -1.89134374e-01 -2.78306454e-01
-5.42124927e-01 1.03644535e-01 7.59429932e-01 3.89569253e-01
4.34673250e-01 -1.55498207e+00 -8.40118349e-01 3.96783471e-01
7.53971711e-02 -1.44507468e-01 4.63305295e-01 6.84716046e-01
-4.36823636e-01 -2.01996282e-01 -5.67966878e-01 -6.36045694e-01
-1.35936940e+00 6.76867783e-01 5.00981867e-01 -1.34842888e-01
-3.09382915e-01 8.76446068e-01 9.08603668e-01 -2.17554141e-02
4.75652367e-02 7.77487596e-03 -2.97634870e-01 4.87253182e-02
2.91288853e-01 2.19174206e-01 -1.73870713e-01 -9.84934866e-01
-1.63081095e-01 9.03606594e-01 5.92911541e-02 -3.83624695e-02
9.19317842e-01 -3.56707782e-01 -2.33560711e-01 1.61528274e-01
1.12598228e+00 3.14088911e-01 -1.34326577e+00 -3.50186497e-01
-4.86945719e-01 -5.81707001e-01 -2.01353561e-02 -7.74425566e-01
-1.55743456e+00 6.58492565e-01 8.60049844e-01 -5.21538705e-02
1.81563830e+00 -2.90122032e-01 8.77792120e-01 -1.87525183e-01
1.76744685e-02 -1.03286612e+00 3.89989287e-01 1.50138279e-03
9.52230513e-01 -1.21316159e+00 -1.95294291e-01 -4.55378324e-01
-8.33954692e-01 8.29848230e-01 9.22150373e-01 -6.94389939e-02
2.02758208e-01 1.83385506e-01 2.82796800e-01 1.01374887e-01
-2.64225513e-01 -2.00600296e-01 4.12658960e-01 5.21766961e-01
2.76450008e-01 2.17801072e-02 -4.13007945e-01 5.31560659e-01
-3.47774267e-01 -4.24381256e-01 1.89577997e-01 4.57909286e-01
-3.59295607e-01 -1.12401164e+00 -5.32971680e-01 1.40401751e-01
-3.02426040e-01 -1.11100048e-01 -2.57734835e-01 4.92744744e-01
7.11681783e-01 9.16865051e-01 2.07168516e-02 -4.31555897e-01
4.14093554e-01 -3.75283569e-01 5.10792971e-01 -2.25227728e-01
-6.80879891e-01 4.66979921e-01 -3.45707446e-01 -4.21325207e-01
-3.85854900e-01 -4.45516527e-01 -9.61478353e-01 -2.31737286e-01
-2.86359727e-01 -1.97476409e-02 1.26618221e-01 6.96355283e-01
1.83729231e-01 6.89561486e-01 9.48904932e-01 -8.51916969e-01
-1.06354669e-01 -5.08469105e-01 -4.13429886e-01 7.61635423e-01
1.32621363e-01 -5.24756014e-01 -1.96285710e-01 2.82124728e-01] | [11.21369457244873, -1.1563202142715454] |
9ccd1d31-2b36-4919-a706-77874597edff | sequentialpointnet-a-strong-parallelized | 2111.08492 | null | https://arxiv.org/abs/2111.08492v2 | https://arxiv.org/pdf/2111.08492v2.pdf | SequentialPointNet: A strong frame-level parallel point cloud sequence network for 3D action recognition | The point cloud sequence of 3D human actions consists of a set of ordered point cloud frames. Compared to static point clouds, point cloud sequences have huge data sizes proportional to the time dimension. Therefore, developing an efficient and lightweight point cloud sequence model is pivotal for 3D action recognition. In this paper, we propose a strong frame-level parallel point cloud sequence network referred to as SequentialPointNet for 3D action recognition. The key to our approach is to divide the main modeling operations into frame-level units executed in parallel, which greatly improves the efficiency of modeling point cloud sequences.Moreover, we propose to flatten the point cloud sequence into a new point data type named hyperpoint sequence that preserves the complete spatial structure of each frame. Then, a novel Hyperpoint-Mixer module is introduced to mix intra-frame spatial features and inter-frame temporal features of the hyperpoint sequence. By doing so, SequentialPointNet maximizes the appearance encoding ability and extracts sufficient motion information for effective human action recognition. Extensive experiments show that SequentialPointNet achieves up to 10X faster than existing point cloud sequence models. Additionally, our SequentialPointNet surpasses state-of-the-art approaches for human action recognition on both large-scale datasets (i.e., NTU RGB+D 60 and NTU RGB+D 120) and small-scale datasets (i.e., MSR Action3D and UTD-MHAD). | ['Tianjin Yang', 'Zhenjie Hou', 'Zhijian Wang', 'Qian Huang', 'Xing Li'] | 2021-11-16 | null | null | null | null | ['3d-human-action-recognition'] | ['computer-vision'] | [ 1.67946257e-02 -6.86368227e-01 -3.93032581e-01 3.58767994e-02
-3.07123244e-01 -2.81592399e-01 4.64083463e-01 -1.83157131e-01
-4.18597668e-01 1.41145766e-01 -1.49235517e-01 -1.99004769e-01
2.39295185e-01 -7.82504022e-01 -6.27374470e-01 -4.93599832e-01
-4.14442122e-02 3.68560284e-01 8.54739845e-01 -1.84543088e-01
2.63300478e-01 1.17940831e+00 -1.60878682e+00 2.46102735e-01
4.45426166e-01 1.22884178e+00 2.84833729e-01 8.47279847e-01
-4.58132684e-01 9.84432995e-01 -6.09397590e-01 -6.57073408e-02
5.70189416e-01 -2.57409334e-01 -5.74082136e-01 4.58197564e-01
4.44079816e-01 -8.21503282e-01 -7.63729632e-01 7.39988148e-01
4.59582567e-01 2.64700532e-01 5.66743091e-02 -1.54675388e+00
4.94105145e-02 -1.04594961e-01 -7.57243872e-01 3.53540242e-01
6.27985120e-01 5.32754004e-01 4.57296729e-01 -8.80838811e-01
7.02206552e-01 1.31826651e+00 6.55592024e-01 4.41037327e-01
-6.79369926e-01 -7.59399533e-01 2.29667142e-01 5.98984122e-01
-1.22996294e+00 -1.91289008e-01 9.80294287e-01 -2.40484461e-01
1.40582573e+00 3.37108403e-01 1.43861830e+00 1.00147009e+00
1.70299917e-01 1.21188807e+00 5.76550841e-01 -1.78307787e-01
2.48213068e-01 -9.85076308e-01 -1.83992341e-01 5.16721964e-01
-2.32254386e-01 1.26328692e-01 -7.90149033e-01 -6.65844679e-02
1.41978049e+00 6.89628124e-01 -2.01771334e-01 -6.00272357e-01
-1.62868392e+00 2.54728913e-01 3.95353317e-01 2.20293835e-01
-5.32661498e-01 5.47186494e-01 5.59327900e-01 9.78131741e-02
4.33296204e-01 -2.27593586e-01 -4.27228689e-01 -7.83164799e-01
-8.58388603e-01 2.92467773e-01 2.71115124e-01 1.29427254e+00
6.32614851e-01 8.16552341e-02 1.51986524e-01 5.06854653e-01
2.36941025e-01 9.09508646e-01 3.27608645e-01 -1.28630984e+00
8.00798774e-01 1.01006949e+00 1.57053366e-01 -1.28395069e+00
-3.82806033e-01 3.72550748e-02 -9.04258907e-01 3.97071332e-01
2.15675205e-01 3.05663526e-01 -8.38963926e-01 9.30401027e-01
6.45783424e-01 7.76576996e-01 -1.85690477e-01 1.04196179e+00
6.15746617e-01 7.24000096e-01 6.87724426e-02 8.17478746e-02
1.21704292e+00 -8.81748140e-01 -4.21329707e-01 -2.50333659e-02
7.64614403e-01 -5.52532256e-01 9.45087254e-01 1.47687614e-01
-1.23652720e+00 -8.42913270e-01 -9.89428461e-01 -2.74305552e-01
2.84269881e-02 -5.59879816e-04 5.79147696e-01 1.79534212e-01
-7.72096097e-01 5.37375569e-01 -1.34768558e+00 -1.33239746e-01
4.72083479e-01 3.16093504e-01 -5.43306708e-01 -2.54458249e-01
-8.11813831e-01 5.33380210e-01 4.06719476e-01 4.44221422e-02
-5.15577734e-01 -6.90559804e-01 -8.47200990e-01 -1.02621503e-01
3.73872161e-01 -7.79837668e-01 1.29423964e+00 -6.97891176e-01
-1.47399020e+00 7.09919214e-01 -1.67424798e-01 -4.52122331e-01
6.98471189e-01 -2.57263958e-01 -3.39786977e-01 6.69178963e-01
2.49981210e-02 7.83946276e-01 8.04976940e-01 -1.03928220e+00
-1.12731850e+00 -5.78275740e-01 2.01474294e-01 4.14911568e-01
-4.60589938e-02 6.53700754e-02 -9.38958406e-01 -5.94034493e-01
4.69392121e-01 -1.02099836e+00 -2.73323536e-01 4.24355775e-01
-3.02375127e-02 -1.89987808e-01 1.27121639e+00 -4.74560291e-01
9.10791099e-01 -2.35978818e+00 1.61062792e-01 9.25027207e-02
4.06166971e-01 4.86500651e-01 -3.04982774e-02 2.85468280e-01
-1.58554718e-01 -4.20144260e-01 6.29904121e-02 -3.75293911e-01
-7.40570650e-02 5.17284691e-01 -1.12558663e-01 5.89331567e-01
-6.44800216e-02 1.17816281e+00 -1.01494741e+00 -6.62459731e-01
9.47431922e-01 5.19813776e-01 -3.96044582e-01 -5.50553016e-02
-2.03882962e-01 3.10731411e-01 -6.92848802e-01 9.57148552e-01
7.56659329e-01 -3.90452415e-01 -2.41969928e-01 -1.58016518e-01
-2.53335804e-01 -6.04062229e-02 -1.22692490e+00 2.27907395e+00
-1.48969293e-01 3.92633557e-01 -2.34323800e-01 -7.82201350e-01
9.02174771e-01 3.20396423e-01 1.26986921e+00 -7.13273108e-01
2.32249752e-01 1.99365497e-01 -4.08969879e-01 -1.72353134e-01
5.86755037e-01 2.33316228e-01 8.20284486e-02 2.00506315e-01
-1.88583478e-01 -1.45642638e-01 -3.95423211e-02 1.29241524e-02
1.35738516e+00 3.84293586e-01 3.18940401e-01 4.28978860e-01
5.87238729e-01 3.32125455e-01 5.84486127e-01 3.62529248e-01
-5.45679927e-01 6.66112483e-01 2.33341560e-01 -7.38967776e-01
-1.23913205e+00 -8.95601630e-01 3.94221157e-01 5.23718953e-01
6.07273340e-01 -6.61530972e-01 -4.27985787e-01 -5.43674469e-01
7.78579563e-02 2.25764945e-01 -2.94261307e-01 -9.98383686e-02
-9.77773130e-01 1.95157677e-02 4.37197626e-01 9.22426581e-01
1.01238286e+00 -9.30917978e-01 -1.17986524e+00 2.60161728e-01
-2.53428251e-01 -1.38516772e+00 -6.00744724e-01 -2.29205459e-01
-1.27144623e+00 -1.11148727e+00 -8.58731389e-01 -4.84814793e-01
3.15741777e-01 8.29471171e-01 1.08688200e+00 1.88585594e-01
-7.29598105e-02 5.37810564e-01 -7.98533022e-01 -2.58560300e-01
2.66632717e-02 -2.42640957e-01 8.54470804e-02 -1.49799660e-01
8.21597278e-01 -7.27358580e-01 -7.88377404e-01 4.86568689e-01
-9.88461435e-01 3.58884156e-01 5.10880947e-01 4.08556640e-01
9.72000003e-01 -1.37549676e-02 -3.67778808e-01 1.54739663e-01
-1.08625211e-01 -8.08689557e-03 -5.04382610e-01 2.15831846e-02
2.36996710e-01 -5.20801663e-01 3.46455365e-01 -6.05624914e-01
-4.87827331e-01 5.55007577e-01 -1.41306326e-01 -1.38357913e+00
-2.34452486e-01 2.23930515e-02 -1.61463976e-01 -1.89966455e-01
2.97373205e-01 4.17419851e-01 1.96945414e-01 -3.70671242e-01
3.20612371e-01 4.48390514e-01 6.68067515e-01 -2.52584249e-01
7.86126494e-01 8.89858127e-01 1.42680824e-01 -9.35352266e-01
-3.19050133e-01 -8.32577050e-01 -1.14089167e+00 -6.51527882e-01
1.17605853e+00 -9.43102181e-01 -1.02092803e+00 9.41349864e-01
-1.41281462e+00 -3.49820256e-01 -5.58263898e-01 5.91724694e-01
-9.65409160e-01 5.83704710e-01 -6.12021744e-01 -5.38082004e-01
-1.57430202e-01 -1.05867505e+00 1.66448867e+00 -1.30539849e-01
-1.81115754e-02 -6.70015097e-01 1.14548893e-03 2.17783555e-01
-3.23187321e-01 4.42490965e-01 2.93614030e-01 -2.79653892e-02
-9.23693717e-01 -1.52988046e-01 -2.37672433e-01 1.65226236e-01
3.63592058e-02 -9.18217674e-02 -3.17030191e-01 -4.89672041e-03
1.76043436e-01 8.05713329e-03 4.35514033e-01 3.69187653e-01
1.23896897e+00 1.91189170e-01 -4.14320946e-01 8.54163229e-01
1.16340709e+00 4.65597451e-01 8.67822051e-01 5.52727401e-01
1.08008015e+00 3.77513207e-02 9.03721392e-01 7.16737568e-01
2.71137625e-01 1.04888260e+00 4.17062700e-01 -1.62976339e-01
-1.58947840e-01 -3.70206773e-01 3.34089696e-01 8.69678319e-01
-4.47197855e-01 6.40750453e-02 -1.13062024e+00 9.15740505e-02
-2.03940368e+00 -1.29997933e+00 -2.31807321e-01 1.92419517e+00
2.96018481e-01 3.77830341e-02 3.08342844e-01 5.07877529e-01
5.44872344e-01 3.47087771e-01 -7.07011759e-01 2.67612755e-01
-1.29899025e-01 5.75244687e-02 7.22956717e-01 1.38988808e-01
-1.04227495e+00 9.07798946e-01 5.49150085e+00 9.51002896e-01
-1.03076053e+00 6.35797605e-02 8.16276148e-02 -3.32499027e-01
2.43525133e-01 -1.95944130e-01 -6.74543619e-01 5.68604469e-01
5.15753806e-01 1.98807176e-02 -7.68058226e-02 1.05105555e+00
3.30242246e-01 5.26547059e-02 -9.58957374e-01 1.67873228e+00
-3.75998183e-03 -1.48124528e+00 -7.04747587e-02 2.52515405e-01
4.45992768e-01 1.64811060e-01 -3.76067668e-01 2.40796972e-02
1.54559702e-01 -5.92272460e-01 9.25035417e-01 5.06017625e-01
8.38588715e-01 -8.78137469e-01 3.90490264e-01 5.18646061e-01
-1.58050656e+00 -4.52572219e-02 -4.53676283e-01 -5.64821847e-02
5.69434524e-01 3.36870402e-01 -2.88296342e-01 6.84224546e-01
8.51012945e-01 1.43707478e+00 -4.04398829e-01 1.00251758e+00
1.74366646e-02 6.81699738e-02 -5.11713266e-01 1.01483278e-01
4.92088258e-01 -2.05597654e-01 5.56288719e-01 7.13830113e-01
5.23681402e-01 7.38089323e-01 4.59342867e-01 3.28643233e-01
3.58074248e-01 -2.22767964e-01 -5.89850903e-01 1.98225453e-01
2.83044040e-01 7.53029108e-01 -7.94650733e-01 -5.59677303e-01
-5.93926489e-01 1.31588781e+00 -6.38548061e-02 1.16321772e-01
-9.20367301e-01 -5.06140403e-02 9.99905527e-01 1.36362985e-01
5.68471909e-01 -9.91202652e-01 -1.55696779e-01 -1.34438407e+00
1.14295155e-01 -8.91315579e-01 1.88669160e-01 -1.05320811e+00
-8.84127021e-01 3.25234056e-01 1.80703074e-01 -2.13801122e+00
-2.84282595e-01 -6.07701302e-01 -1.78805947e-01 5.96649468e-01
-1.28897798e+00 -1.09871697e+00 -7.04338372e-01 1.23428893e+00
8.43046665e-01 1.07751088e-02 3.97781461e-01 4.03629959e-01
-9.52944532e-02 -3.32915387e-03 -5.22534028e-02 2.74573088e-01
1.00802451e-01 -8.87900233e-01 9.89547908e-01 7.35078692e-01
2.58778900e-01 9.28057507e-02 1.43413231e-01 -8.86973500e-01
-1.74786711e+00 -9.50225413e-01 6.83232605e-01 -6.96156740e-01
4.70736235e-01 -2.94560492e-01 -7.61972964e-01 5.49792707e-01
-4.94737267e-01 2.92345434e-01 3.35724443e-01 -5.51207304e-01
7.59089412e-03 -4.87721451e-02 -8.31820965e-01 6.87095702e-01
1.66784334e+00 -3.93895060e-01 -4.89776701e-01 4.49865013e-01
6.99443400e-01 -9.71031964e-01 -8.68279636e-01 2.88096696e-01
5.12624323e-01 -1.09314597e+00 1.43253875e+00 -3.92913789e-01
4.44603026e-01 -5.07795155e-01 -3.03111732e-01 -9.15140152e-01
-3.89174789e-01 -4.03073281e-01 -6.23811662e-01 5.37033677e-01
-5.29759109e-01 -2.73907661e-01 1.26479661e+00 3.75832170e-01
-2.65771061e-01 -7.31787860e-01 -1.19338965e+00 -9.29257452e-01
-4.31714416e-01 -8.92371118e-01 8.50025296e-01 6.79817796e-01
-3.17432016e-01 -2.47924760e-01 -2.96387821e-01 4.55632769e-02
6.81252182e-01 1.69675142e-01 1.26822042e+00 -9.67353463e-01
2.61048898e-02 -3.26248288e-01 -1.29378963e+00 -1.79529893e+00
1.03915393e-01 -4.18700278e-01 -1.87886208e-01 -1.45892835e+00
-3.22703511e-01 -4.73364532e-01 -4.45229886e-03 3.96260828e-01
-1.05883084e-01 3.09237689e-01 6.25605762e-01 6.33623421e-01
-6.07910335e-01 6.99170291e-01 1.49205863e+00 -1.73683792e-01
-1.84186324e-01 -2.41157208e-02 2.85988152e-01 7.50169575e-01
5.46896577e-01 -1.37496769e-01 -5.14773905e-01 -6.10291779e-01
-3.54490280e-01 3.75494033e-01 8.02191496e-01 -1.47541928e+00
3.33383262e-01 -3.81127506e-01 6.12372160e-01 -1.28389704e+00
8.83051574e-01 -1.23617995e+00 3.85341555e-01 5.22543371e-01
1.95139512e-01 4.07982230e-01 5.29168509e-02 4.95234787e-01
-3.11157852e-01 2.71224409e-01 4.66791153e-01 -3.51479352e-01
-1.24911690e+00 9.58157897e-01 8.69201869e-02 -3.16700488e-01
1.42919695e+00 -9.28780079e-01 8.87934342e-02 -1.06723547e-01
-4.13698584e-01 1.10097900e-01 8.40595365e-01 7.45542228e-01
1.06660235e+00 -1.76303458e+00 -4.05793786e-01 2.83509284e-01
8.05896446e-02 3.34495634e-01 5.85714340e-01 9.55746591e-01
-9.55182254e-01 5.31456769e-01 -4.66981232e-01 -1.20375800e+00
-1.61544883e+00 5.04921973e-01 2.72164375e-01 -2.97690835e-02
-1.34304190e+00 6.13911092e-01 -7.59769529e-02 -1.46986097e-01
1.46706790e-01 -6.84224784e-01 1.50988936e-01 -2.73276865e-01
7.61610150e-01 6.08681798e-01 -3.72263677e-02 -1.07571995e+00
-4.33161110e-01 8.01527500e-01 3.05611074e-01 1.12403901e-02
1.21743488e+00 2.50355061e-02 5.02077788e-02 4.76477265e-01
1.29190564e+00 -5.69103360e-01 -1.66792166e+00 -1.43983781e-01
-4.10023659e-01 -1.16256893e+00 -1.42211422e-01 3.98134887e-02
-1.06091571e+00 8.48196328e-01 5.64620316e-01 -6.49887994e-02
1.20285010e+00 -1.09149657e-01 1.28000426e+00 2.51158357e-01
8.44187021e-01 -9.30587351e-01 1.50739908e-01 5.79778790e-01
6.41948879e-01 -9.42401290e-01 1.30939066e-01 -4.58729804e-01
-4.62123156e-01 1.09406686e+00 5.80363750e-01 -1.56480923e-01
4.61842179e-01 1.53327376e-01 4.08629365e-02 -3.26868355e-01
-4.57759947e-01 -4.74407487e-02 1.40949458e-01 7.76063859e-01
-1.86084092e-01 -4.18107398e-02 -1.25555592e-02 -6.02971613e-02
-1.12169497e-01 3.70188653e-01 -4.24825493e-03 1.39852226e+00
-3.69029194e-01 -1.05862594e+00 -5.81153214e-01 1.69473067e-01
3.23474146e-02 2.92237431e-01 -2.31989667e-01 1.03114116e+00
1.18988559e-01 6.28350317e-01 2.89129972e-01 -7.29389787e-01
6.73513949e-01 -1.97188884e-01 5.16377985e-01 -3.12234521e-01
-4.22312230e-01 -3.58528607e-02 -4.00689214e-01 -1.27074671e+00
-8.78718138e-01 -8.50659549e-01 -1.41559339e+00 -5.83457053e-01
-2.94323806e-02 -2.82514483e-01 6.35262549e-01 8.38586688e-01
4.76691842e-01 3.55100423e-01 4.63034034e-01 -1.46329582e+00
-2.78604805e-01 -5.06376863e-01 -6.61161184e-01 5.43834329e-01
2.03102812e-01 -8.19066584e-01 5.85331023e-02 1.82015166e-01] | [8.189865112304688, 0.10553991794586182] |
d7c07c0a-ab46-4637-bd7f-46b236a2fee4 | automatic-pulmonary-nodule-detection-in-ct | 1904.05956 | null | https://arxiv.org/abs/1904.05956v2 | https://arxiv.org/pdf/1904.05956v2.pdf | Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection | Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure. | ['Sunyi Zheng', 'Raymond N. J. Veldhuis', 'Peter M. A. van Ooijen', 'Matthijs Oudkerk', 'Jiapan Guo', 'Xiaonan Cui'] | 2019-04-11 | null | null | null | null | ['lung-nodule-detection'] | ['medical'] | [ 2.63848990e-01 4.26534474e-01 -3.70407909e-01 1.05371997e-01
-6.33451641e-01 -3.63177001e-01 2.82278836e-01 -1.32623464e-01
-5.63637733e-01 3.44474167e-01 1.52113438e-01 -9.82053280e-01
-2.22714677e-01 -1.05464709e+00 -3.20101678e-01 -5.76527297e-01
-1.85148582e-01 6.31293833e-01 7.94827700e-01 3.74171376e-01
-2.41488546e-01 8.41537237e-01 -1.02358544e+00 5.59860706e-01
4.83106583e-01 8.72440338e-01 4.70004112e-01 1.05125475e+00
-6.17555007e-02 7.55946636e-01 -1.01549342e-01 6.94883522e-03
6.05144024e-01 -3.50911558e-01 -7.62180209e-01 2.29466066e-01
1.53126597e-01 -7.19161332e-01 -3.17848980e-01 6.62848294e-01
4.90103751e-01 -3.90819967e-01 7.96260536e-01 -4.78647858e-01
-3.59412283e-01 4.33489501e-01 -6.63229346e-01 6.25308871e-01
-4.05805111e-01 3.72698486e-01 5.56955755e-01 -8.47551703e-01
2.02216372e-01 6.19658947e-01 8.33011866e-01 5.21469653e-01
-5.08512259e-01 -6.15562379e-01 -8.01762640e-01 -7.04794154e-02
-1.17803800e+00 3.29469919e-01 1.09629385e-01 -5.28693736e-01
6.71843469e-01 5.68536699e-01 9.84361470e-01 3.25118631e-01
2.56751746e-01 4.81139332e-01 9.05895591e-01 -3.28604937e-01
-1.91882536e-01 1.53726622e-01 -4.06982362e-01 1.21799874e+00
8.47138643e-01 2.98014671e-01 4.67764646e-01 -1.69294789e-01
1.43311703e+00 3.86898369e-01 -2.96200573e-01 -2.79905111e-01
-1.46352935e+00 8.49460483e-01 9.49755669e-01 8.24080348e-01
-6.29433393e-01 1.99616686e-01 3.11863810e-01 -4.06985134e-01
-1.63434699e-01 4.67263639e-01 -3.27686965e-02 2.45477542e-01
-9.67389226e-01 -2.82558441e-01 4.37492281e-01 3.90965015e-01
1.27902329e-01 6.15889765e-02 -5.38226247e-01 6.91696942e-01
1.87596962e-01 4.64091808e-01 8.41825485e-01 -7.06302762e-01
1.71097666e-01 8.64041507e-01 -5.54706082e-02 -5.56441605e-01
-6.06456339e-01 -7.63687670e-01 -9.86763954e-01 3.72844897e-02
3.91230792e-01 2.77305543e-02 -1.33476377e+00 8.26624036e-01
1.83162645e-01 3.38861495e-02 -1.81265354e-01 9.53247964e-01
9.69925702e-01 1.53647229e-01 1.47411734e-01 5.85250370e-02
1.75131536e+00 -9.90695119e-01 -1.70429096e-01 9.34489667e-02
8.61404777e-01 -6.92560315e-01 9.64793801e-01 -1.30599946e-01
-9.48021472e-01 -3.93399805e-01 -1.01328170e+00 4.63893890e-01
5.44961914e-02 7.34361470e-01 5.28614998e-01 9.07074392e-01
-8.38415027e-01 2.30141163e-01 -1.18699384e+00 -4.73225683e-01
8.42290640e-01 9.00529921e-01 -2.36726612e-01 -1.02199633e-02
-7.62386560e-01 7.59358644e-01 5.32721221e-01 -7.38920420e-02
-8.08925271e-01 -8.69555652e-01 -2.37822756e-01 1.93560719e-01
5.55514276e-01 -9.67887521e-01 1.46075368e+00 -5.28572261e-01
-1.05219531e+00 8.76072407e-01 1.25572547e-01 -5.25882602e-01
6.53312802e-01 2.70615906e-01 3.98298465e-02 6.15629017e-01
6.40017018e-02 7.86839128e-01 3.94020259e-01 -7.59618521e-01
-8.35331798e-01 -2.21495777e-01 -1.17677756e-01 1.45075306e-01
-9.53830406e-02 -2.02484652e-01 -4.70237017e-01 -2.71968901e-01
2.71700561e-01 -1.06388557e+00 -5.54269433e-01 2.67748266e-01
-4.43170309e-01 1.49972394e-01 9.89696681e-01 -5.57071090e-01
8.48045945e-01 -1.60945129e+00 -6.88274145e-01 3.24816793e-01
5.81967592e-01 7.11637676e-01 3.30963045e-01 -3.47735405e-01
-7.59606138e-02 5.60941398e-01 -1.45267606e-01 5.33029258e-01
-5.87153196e-01 1.28135249e-01 7.21922398e-01 1.80502892e-01
3.13590884e-01 1.49873686e+00 -5.49432635e-01 -8.10956597e-01
5.59109747e-01 5.75784326e-01 -3.73983860e-01 1.88259352e-02
2.63994217e-01 5.67744792e-01 -6.75165176e-01 6.77279294e-01
5.85681498e-01 -8.53964984e-01 1.58516154e-01 -2.84838408e-01
-1.07850999e-01 1.24285214e-01 -8.04361761e-01 7.78569698e-01
-5.60772419e-01 5.70073724e-01 -8.26920420e-02 -4.44224417e-01
5.43020666e-01 8.43810856e-01 5.83788633e-01 -5.05273283e-01
3.32933724e-01 3.61637354e-01 8.65692258e-01 -7.36256957e-01
-2.31849819e-01 -4.33507800e-01 6.52478516e-01 5.41363895e-01
-4.09822673e-01 -1.28678739e-01 1.54354304e-01 -1.99833035e-01
1.30276918e+00 -6.13056421e-01 8.58520806e-01 -7.53019899e-02
7.03136683e-01 2.53288656e-01 5.00615574e-02 8.49509299e-01
-4.21203524e-01 7.31859744e-01 3.19334656e-01 -5.29191673e-01
-1.24206138e+00 -1.05489373e+00 -3.46987724e-01 3.50134850e-01
-4.64527965e-01 4.43136245e-01 -4.10191149e-01 -9.11742985e-01
-2.40350693e-01 -5.98896332e-02 -8.34320247e-01 3.16004276e-01
-9.18435216e-01 -9.12846029e-01 6.71622694e-01 8.05821419e-01
9.06641603e-01 -1.13816082e+00 -1.23859262e+00 6.13359176e-02
-1.73852786e-01 -8.89180541e-01 -1.12622045e-01 3.63730460e-01
-1.34843862e+00 -1.38968349e+00 -1.16054964e+00 -8.56808305e-01
8.53156209e-01 4.64805782e-01 9.70045149e-01 3.62023175e-01
-8.28077078e-01 1.06089160e-01 -1.19844630e-01 -3.57865572e-01
-5.82515299e-01 1.81504220e-01 -5.41006148e-01 -5.66297114e-01
1.55828252e-01 -2.02562571e-01 -9.22982812e-01 3.42886060e-01
-9.72624421e-01 1.40586674e-01 1.61055613e+00 7.90409029e-01
7.45154083e-01 -3.83658037e-02 3.03320348e-01 -1.28234088e+00
2.92215496e-01 -4.83614475e-01 -3.17316562e-01 2.51626819e-02
-2.21595317e-01 -1.69743866e-01 4.93355364e-01 -4.01802033e-01
-9.48910654e-01 2.01310724e-01 4.23289426e-02 -3.78691733e-01
-3.15649211e-01 4.32888031e-01 6.24128222e-01 -3.60429347e-01
9.17493105e-01 1.98961318e-01 7.27562085e-02 4.72794548e-02
-1.45021781e-01 5.06589174e-01 4.63543862e-01 2.15572417e-01
8.31201017e-01 7.06724644e-01 4.59415466e-01 -8.32738578e-01
-6.90402865e-01 -9.09006178e-01 -9.38344657e-01 -1.44354776e-01
1.05614579e+00 -7.53983080e-01 -4.18868005e-01 -3.66529107e-01
-6.37467146e-01 -2.44337581e-02 -3.49735498e-01 8.95242035e-01
-2.12370172e-01 3.54744524e-01 -6.72492683e-01 -3.95691067e-01
-7.14296520e-01 -1.19058657e+00 6.51672482e-01 3.82095337e-01
-1.21487387e-01 -8.68191481e-01 -2.54135251e-01 3.80520284e-01
9.22996640e-01 1.10340722e-01 1.12251842e+00 -7.93435037e-01
-8.77213955e-01 -5.44428587e-01 -7.20670819e-01 5.62379919e-02
4.50778455e-01 -8.70015770e-02 -7.38671362e-01 1.16936870e-01
-7.46460457e-04 1.52182475e-01 7.80465424e-01 9.36600268e-01
1.15619314e+00 -1.41763419e-01 -6.17660522e-01 5.82706809e-01
1.56001091e+00 4.71448064e-01 5.28686702e-01 3.72557878e-01
5.77296138e-01 2.01762676e-01 2.21279755e-01 1.73986197e-01
-3.98864359e-01 4.65915613e-02 8.14488530e-01 -6.09019041e-01
-5.79088092e-01 6.87922016e-02 -5.15067995e-01 4.89391983e-01
-5.07231891e-01 1.98977068e-02 -1.21789479e+00 7.37714410e-01
-1.11179316e+00 -7.67266452e-01 -5.73164344e-01 2.04862833e+00
3.19409221e-01 1.03411369e-01 6.81645945e-02 1.17539778e-01
7.42654681e-01 -3.81871611e-01 -4.35332716e-01 2.25432552e-02
5.18478572e-01 6.29114985e-01 8.81830513e-01 9.66252908e-02
-1.24584138e+00 2.80367672e-01 5.98924446e+00 4.56334859e-01
-1.45052302e+00 2.02855572e-01 7.23663509e-01 1.09630249e-01
1.75551236e-01 -5.04223585e-01 -4.44075286e-01 -3.83736715e-02
6.32516146e-01 8.54687579e-03 -3.41977268e-01 8.84859860e-01
3.45932364e-01 -3.38993728e-01 -8.74758363e-01 5.17020285e-01
-3.67453396e-01 -1.55220687e+00 1.24841280e-01 3.08403105e-01
7.21929431e-01 2.62579739e-01 3.37328583e-01 1.14111826e-01
-7.32779428e-02 -1.28303838e+00 -1.31826237e-01 8.78435373e-03
9.79446948e-01 -5.59709072e-01 1.46744633e+00 4.10950154e-01
-1.28959072e+00 5.45490012e-02 -4.54883218e-01 3.32293540e-01
-2.49166965e-01 3.08375001e-01 -2.29036331e+00 3.03520381e-01
5.98928630e-01 1.36512890e-01 -8.70102704e-01 1.47891068e+00
7.58974180e-02 8.81082892e-01 -5.02030790e-01 -3.04314435e-01
4.72228616e-01 2.19912469e-01 3.11983228e-01 1.30006802e+00
6.25844777e-01 2.75437742e-01 -9.14276112e-03 1.02320218e+00
-2.13286523e-02 2.84388721e-01 -6.33935928e-01 4.70215306e-02
3.24414968e-01 1.46602368e+00 -1.40232468e+00 -4.00826663e-01
-5.91740549e-01 3.71567130e-01 -2.78466642e-01 -1.27193615e-01
-8.08635056e-01 5.90883903e-02 -4.43530560e-01 7.29851544e-01
6.09901428e-01 2.26384804e-01 -3.59033495e-01 -4.16449577e-01
-2.43079364e-01 -4.76981252e-01 3.84277970e-01 -5.32247484e-01
-8.37768137e-01 7.61437178e-01 -1.30666539e-01 -1.43235552e+00
-2.07779005e-01 -7.89425731e-01 -8.88179362e-01 7.06218660e-01
-1.35074973e+00 -1.31244183e+00 -7.22323656e-01 3.32961231e-01
4.74144310e-01 4.63897064e-02 6.34714603e-01 6.01264499e-02
-1.94435164e-01 2.44926751e-01 -1.35972112e-01 4.43372875e-01
2.80666709e-01 -1.34589720e+00 -8.73097312e-03 5.40834129e-01
-3.13327640e-01 3.72499615e-01 4.88409437e-02 -6.18524492e-01
-8.23898017e-01 -1.46223497e+00 4.79038686e-01 -1.25149965e-01
3.14569354e-01 5.78025639e-01 -6.53341949e-01 5.91715872e-01
-1.49888203e-01 3.96359265e-01 8.00029516e-01 -6.22929394e-01
1.40665904e-01 4.60938990e-01 -1.33285809e+00 5.35672247e-01
3.24170679e-01 -1.25001520e-01 -2.60757089e-01 3.97602737e-01
2.56116152e-01 -4.28972989e-01 -7.54966736e-01 7.99701095e-01
6.14972353e-01 -1.18146253e+00 1.15477979e+00 -1.37060791e-01
5.03149569e-01 -1.59532636e-01 2.83733845e-01 -5.64805210e-01
-6.36433065e-01 4.19718146e-01 3.59566152e-01 5.52414395e-02
7.20852017e-01 -3.39096457e-01 1.48838127e+00 2.34029949e-01
-1.79948777e-01 -1.19244361e+00 -7.32102811e-01 -4.75997388e-01
1.55685753e-01 -2.90316671e-01 2.44786665e-02 4.59196508e-01
-5.39133966e-01 -1.81930587e-01 2.23551959e-01 1.21657848e-01
2.69805610e-01 -1.88431844e-01 3.35639924e-01 -1.20839560e+00
-4.82836217e-01 -5.98428488e-01 -3.92715216e-01 -6.55192971e-01
-8.63710105e-01 -1.12058604e+00 -2.64420062e-01 -1.91516709e+00
8.41549516e-01 -2.20072061e-01 -1.95135444e-01 3.86961192e-01
-1.30071178e-01 5.64645886e-01 7.02948570e-02 4.96714115e-01
-2.03611404e-01 -1.95964471e-01 2.00261426e+00 3.23527753e-02
-2.80781351e-02 5.81009984e-01 -3.56699258e-01 9.44338918e-01
9.11863327e-01 -5.99309206e-01 -1.90061420e-01 4.19171304e-02
-2.96101123e-01 4.06154007e-01 5.13522506e-01 -1.31637824e+00
1.84370503e-01 3.06331068e-02 8.63248229e-01 -8.98480237e-01
1.71385273e-01 -8.45129907e-01 1.06015004e-01 1.45790219e+00
-1.27805755e-01 -2.63820350e-01 1.88750222e-01 5.50801635e-01
-1.11907586e-01 -4.72929895e-01 1.10008204e+00 -9.07164097e-01
-2.43221566e-01 3.74573231e-01 -7.59117424e-01 -4.41382051e-01
1.21852064e+00 -6.65229380e-01 1.30641768e-02 -1.50681764e-01
-9.25373793e-01 -2.16945410e-01 1.29936170e-03 -2.58920550e-01
6.13775492e-01 -1.11002111e+00 -7.46293485e-01 9.48092714e-02
-1.11942507e-01 1.38545379e-01 1.12122655e-01 1.43987715e+00
-1.21499848e+00 1.16176784e+00 -3.20661128e-01 -9.39567804e-01
-1.56562936e+00 1.57156557e-01 9.04437363e-01 -8.53177011e-01
-6.14975572e-01 1.03503716e+00 5.61841667e-01 -3.21090847e-01
1.30102346e-02 -7.55826831e-01 -3.03787231e-01 -5.82915545e-01
2.14085609e-01 2.72022665e-01 3.01806986e-01 -2.23697305e-01
-2.06882730e-01 3.82958949e-01 -2.65240103e-01 4.84423600e-02
9.02325332e-01 3.03635597e-01 2.43670255e-01 5.33999316e-02
9.75774646e-01 -5.74352816e-02 -7.76396632e-01 -1.64416984e-01
-1.05636390e-02 -3.98409784e-01 1.40017033e-01 -1.08545280e+00
-1.15073752e+00 9.86166239e-01 9.81644034e-01 1.03163853e-01
8.27306032e-01 2.35862479e-01 6.60461426e-01 3.65538627e-01
-1.23067334e-01 -2.40210533e-01 4.49267328e-01 2.04319149e-01
4.79479283e-01 -1.49049711e+00 7.44844675e-02 -8.24088752e-01
-5.17534852e-01 1.58079112e+00 8.09870183e-01 -1.16308078e-01
5.44006050e-01 3.09462816e-01 8.99371728e-02 -5.32762170e-01
-5.67259669e-01 -4.48432684e-01 6.35411978e-01 5.95785081e-01
9.26176190e-01 4.54462826e-01 -2.28156775e-01 3.88543546e-01
-6.32164115e-03 6.64971918e-02 7.02647686e-01 1.06375360e+00
-9.59104717e-01 -6.89729571e-01 -5.03328323e-01 1.10565090e+00
-7.93024004e-01 -1.54184652e-02 -4.79586929e-01 1.44547868e+00
2.78470397e-01 4.10087436e-01 4.73343469e-02 8.15280527e-02
1.55903384e-01 -5.11505492e-02 3.55470449e-01 -1.01591933e+00
-8.46801937e-01 3.45409900e-01 -1.33043945e-01 -8.99796337e-02
-3.16094011e-01 -3.00663292e-01 -1.42415094e+00 1.27308127e-02
-5.12650907e-01 -5.10834251e-03 4.97893572e-01 7.62979150e-01
-1.23635530e-02 9.72359061e-01 2.22209439e-01 -3.36672276e-01
-4.33113784e-01 -1.04160416e+00 -3.16170096e-01 -5.09868860e-02
1.33938998e-01 -3.73833746e-01 -2.47630835e-01 8.22747722e-02] | [15.359626770019531, -2.1555259227752686] |
dd14a0a2-8aee-4d8d-bc04-6ab9b26e5dba | modeling-hierarchical-syntax-structure-with-1 | null | null | https://aclanthology.org/2022.acl-long.37 | https://aclanthology.org/2022.acl-long.37.pdf | Modeling Hierarchical Syntax Structure with Triplet Position for Source Code Summarization | Automatic code summarization, which aims to describe the source code in natural language, has become an essential task in software maintenance. Our fellow researchers have attempted to achieve such a purpose through various machine learning-based approaches. One key challenge keeping these approaches from being practical lies in the lacking of retaining the semantic structure of source code, which has unfortunately been overlooked by the state-of-the-art. Existing approaches resort to representing the syntax structure of code by modeling the Abstract Syntax Trees (ASTs). However, the hierarchical structures of ASTs have not been well explored. In this paper, we propose CODESCRIBE to model the hierarchical syntax structure of code by introducing a novel triplet position for code summarization. Specifically, CODESCRIBE leverages the graph neural network and Transformer to preserve the structural and sequential information of code, respectively. In addition, we propose a pointer-generator network that pays attention to both the structure and sequential tokens of code for a better summary generation. Experiments on two real-world datasets in Java and Python demonstrate the effectiveness of our proposed approach when compared with several state-of-the-art baselines. | ['Pingyi Zhou', 'Li Li', 'Yao Wan', 'Jin Liu', 'Juncai Guo'] | null | null | null | null | acl-2022-5 | ['code-summarization'] | ['computer-code'] | [ 2.60583252e-01 1.98542252e-01 -3.77891272e-01 -2.02547684e-01
-5.96110582e-01 -4.47963953e-01 4.09542859e-01 5.09163380e-01
3.54843408e-01 2.37197146e-01 5.94320774e-01 -5.23697078e-01
2.36988097e-01 -5.54151475e-01 -6.82252705e-01 -1.83021545e-01
-6.08050898e-02 -4.29057717e-01 4.56859469e-01 -2.09582657e-01
8.02139163e-01 -2.15284660e-01 -1.64038992e+00 4.28269088e-01
1.35666239e+00 5.82871616e-01 3.20477635e-01 2.46977940e-01
-8.18114281e-01 1.16304696e+00 -5.84580183e-01 -6.03991032e-01
-1.36891633e-01 -5.49779654e-01 -8.89422536e-01 -2.21291110e-02
4.31536257e-01 -3.14078256e-02 -2.23736748e-01 1.37264764e+00
1.53083101e-01 -3.85200500e-01 3.28545094e-01 -1.27797687e+00
-6.77740216e-01 1.04672408e+00 -9.66694832e-01 -7.65504539e-02
4.10770983e-01 7.50200078e-02 1.29089093e+00 -5.95680296e-01
4.31350678e-01 1.03661764e+00 7.05491662e-01 4.65234697e-01
-1.04314566e+00 -3.75081688e-01 1.26943052e-01 8.24391097e-02
-1.14233506e+00 -3.84453803e-01 1.05043495e+00 -5.89934528e-01
1.09103990e+00 1.13313869e-01 3.91912580e-01 6.54160738e-01
5.50566673e-01 7.31156707e-01 6.33333266e-01 -4.27719772e-01
5.69832921e-02 6.34727404e-02 4.60131705e-01 1.11135411e+00
3.76012444e-01 -4.79310960e-01 -2.90205449e-01 -3.81996095e-01
1.65718317e-01 7.20214918e-02 -2.05972821e-01 -6.47289097e-01
-1.07521200e+00 7.04655647e-01 4.26543802e-01 2.82976180e-01
-1.37046188e-01 2.90595055e-01 9.17263806e-01 6.66353703e-02
1.99669883e-01 3.75107884e-01 -2.50976801e-01 -2.97484785e-01
-1.04488420e+00 2.13634655e-01 7.71744788e-01 1.31227541e+00
8.19418609e-01 1.28490746e-01 -1.36271715e-01 6.84523761e-01
4.34807241e-01 4.42324728e-02 5.65084696e-01 -7.85856247e-01
8.09517443e-01 1.48509490e+00 -2.72138268e-01 -1.19921327e+00
-9.26491395e-02 -5.49564064e-01 -8.20412159e-01 -1.41436905e-01
-1.59768417e-01 3.08327526e-01 -4.42907125e-01 1.47149444e+00
4.31944616e-02 -8.66268110e-03 1.87572073e-02 2.38502994e-01
8.47314715e-01 6.49285555e-01 -2.52626449e-01 -1.20330364e-01
1.27746665e+00 -1.33395076e+00 -5.57743609e-01 -2.81084418e-01
9.01071846e-01 -6.83368206e-01 1.16642439e+00 9.87600684e-02
-1.04220796e+00 -5.30107677e-01 -1.10252333e+00 -1.69459835e-01
-2.79659890e-02 2.43744522e-01 6.57713413e-01 6.62044227e-01
-1.05725992e+00 4.85663563e-01 -9.99665320e-01 -3.49854916e-01
4.29238230e-01 5.23960255e-02 -2.06945941e-01 1.94927007e-01
-5.77029526e-01 4.10784513e-01 5.91067374e-01 -3.45971547e-02
-5.42890549e-01 -6.74064279e-01 -1.05613899e+00 4.72078979e-01
5.77592731e-01 -7.55623460e-01 1.47742128e+00 -7.62324929e-01
-1.25015795e+00 4.56527978e-01 -3.71424079e-01 -3.18609565e-01
-8.32292661e-02 -4.29506414e-02 -1.32824108e-01 -1.48915946e-01
1.87076762e-01 1.20698735e-01 5.80407441e-01 -1.43578994e+00
-6.68168306e-01 -2.73723394e-01 2.51353472e-01 -5.91161922e-02
-6.34833574e-01 2.42546842e-01 -5.18462896e-01 -7.30067074e-01
-2.80861650e-02 -7.51936197e-01 -9.32409540e-02 -2.26781204e-01
-5.98363042e-01 -3.98398399e-01 7.58372545e-01 -8.78726184e-01
2.12115622e+00 -2.28479648e+00 3.16102743e-01 -1.26965746e-01
4.51441169e-01 2.13062420e-01 -6.61959127e-02 8.98328006e-01
1.10318348e-01 3.33569914e-01 -7.09687889e-01 -3.94862086e-01
2.07414478e-01 2.90942769e-02 -5.73857665e-01 1.72099248e-01
1.65557861e-01 8.44241858e-01 -9.93697464e-01 -8.00420523e-01
-1.96058854e-01 4.47130576e-02 -1.13766348e+00 3.25186700e-01
-5.01852393e-01 8.69708210e-02 -6.00935698e-01 6.65459991e-01
6.33041322e-01 -3.66027236e-01 4.00753260e-01 -9.82296839e-02
-3.43529969e-01 5.91023862e-01 -8.51499557e-01 2.11766267e+00
-4.57976401e-01 1.73342749e-01 -1.34935811e-01 -1.01203370e+00
8.75179410e-01 6.67974874e-02 3.07436228e-01 -5.83617806e-01
-2.14683130e-01 2.70325273e-01 9.12048505e-04 -7.24869192e-01
7.72335172e-01 2.79056132e-01 -4.47811037e-01 5.86096287e-01
-4.04629588e-01 -1.39459759e-01 3.75629961e-01 7.11710155e-01
1.35586941e+00 5.71252286e-01 5.13778210e-01 -2.63575822e-01
7.22656369e-01 9.42163914e-02 6.52510643e-01 6.29417241e-01
1.93418950e-01 4.30722505e-01 9.58666921e-01 -1.90752417e-01
-9.61323321e-01 -6.90518677e-01 2.47303680e-01 9.17431891e-01
6.81705251e-02 -1.15391922e+00 -1.03369617e+00 -9.99908209e-01
-2.25263730e-01 7.20868587e-01 -4.90627229e-01 -3.55912209e-01
-8.92005563e-01 -5.10923564e-01 6.74377978e-01 4.61109042e-01
4.82328206e-01 -8.68344843e-01 -8.00268292e-01 2.39291564e-01
-3.95355135e-01 -7.76689351e-01 -8.28613162e-01 -1.39757782e-01
-9.14963603e-01 -1.05408621e+00 -2.77709246e-01 -8.62814486e-01
7.39090204e-01 4.10451174e-01 1.08024383e+00 7.09175289e-01
-5.92790954e-02 -1.38311600e-02 -6.87647820e-01 -5.78680038e-02
-8.85885775e-01 5.04693449e-01 -5.90895534e-01 -2.37699598e-01
1.08270288e-01 -7.65268087e-01 -4.13517088e-01 -1.28616542e-02
-1.22758281e+00 3.63013268e-01 7.18844414e-01 6.26532555e-01
9.95650068e-02 1.82450384e-01 3.23668361e-01 -1.18468785e+00
5.46991289e-01 -6.70557678e-01 -5.97640574e-01 4.54525888e-01
-5.81673443e-01 5.38240850e-01 9.33073342e-01 6.08605333e-02
-1.16794276e+00 -6.77270070e-02 -1.32581070e-01 6.68816641e-02
2.30694607e-01 1.00966728e+00 -2.36335799e-01 1.39453784e-01
3.51184011e-01 5.87501109e-01 3.66231659e-04 -5.77712834e-01
2.55997390e-01 8.71412575e-01 4.55942601e-01 -9.17239904e-01
8.38046372e-01 2.50014484e-01 -1.58829659e-01 -5.22434950e-01
-6.14417851e-01 -3.52414519e-01 -4.72020179e-01 3.00837427e-01
5.10719359e-01 -6.52481318e-01 -3.28798145e-01 4.70684826e-01
-1.48700166e+00 8.40886906e-02 5.92014566e-02 -2.75818020e-01
-4.31389362e-01 1.06768882e+00 -4.42848086e-01 -4.65566099e-01
-4.92126793e-01 -1.52449346e+00 1.23373747e+00 2.36565806e-02
-2.06647113e-01 -7.01517403e-01 2.30565786e-01 2.22479731e-01
6.78169966e-01 1.78594500e-01 1.53664362e+00 -3.62739444e-01
-7.89623320e-01 4.42417301e-02 -3.66230279e-01 1.99333593e-01
3.84388059e-01 3.66839230e-01 -4.59263384e-01 -2.53645986e-01
-4.72950153e-02 -6.90103248e-02 7.07990706e-01 -1.19262561e-01
1.29412174e+00 -6.96578741e-01 -4.67531055e-01 6.16955757e-01
1.45688951e+00 1.97833985e-01 6.70494020e-01 3.83719206e-01
8.74691665e-01 6.75264180e-01 1.99131250e-01 6.29305243e-01
9.05564725e-01 6.75520241e-01 7.58949876e-01 2.85847902e-01
-2.42058396e-01 -5.26033938e-01 4.68371570e-01 1.46080554e+00
4.24447030e-01 -3.55880223e-02 -1.05386472e+00 7.73206890e-01
-1.90591705e+00 -8.84930313e-01 -4.65593904e-01 1.95073760e+00
9.61429656e-01 8.69000554e-02 -2.17430703e-02 7.14049935e-02
6.68618381e-01 2.21443862e-01 -3.28652233e-01 -4.06520814e-01
2.37599179e-01 -1.52743071e-01 1.70067534e-01 4.13001850e-02
-7.98200607e-01 7.08305717e-01 5.12003899e+00 5.91844857e-01
-8.90236080e-01 -3.26372571e-02 -9.48896185e-02 4.59307909e-01
-5.81914544e-01 6.90343559e-01 -6.85555220e-01 6.10353172e-01
8.42644811e-01 -6.78029180e-01 4.01018232e-01 9.42149162e-01
9.81279239e-02 1.18650300e-02 -1.14201605e+00 5.73620319e-01
2.04631835e-01 -1.32316911e+00 3.06869447e-01 -1.68981537e-01
7.89112449e-01 -2.24204049e-01 -2.27050513e-01 5.60543954e-01
2.16985956e-01 -5.66783369e-01 9.94046271e-01 3.65212351e-01
5.04826665e-01 -4.77069557e-01 6.47655189e-01 4.46985155e-01
-1.51030707e+00 -1.50895491e-01 -2.50140041e-01 3.27831320e-02
-8.81171152e-02 5.20003140e-01 -6.06468797e-01 9.94647622e-01
5.80535114e-01 9.89657462e-01 -1.09744811e+00 1.19294989e+00
-1.06983095e-01 5.47111750e-01 1.85121715e-01 -7.91990682e-02
2.22468331e-01 1.69838276e-02 3.74284416e-01 1.44201398e+00
4.85306770e-01 -3.43773007e-01 2.96984464e-01 1.15839696e+00
-2.69188285e-01 2.21736044e-01 -6.32824659e-01 -3.82385522e-01
4.98628706e-01 1.08181429e+00 -6.00940049e-01 -3.13145250e-01
-7.97474861e-01 6.84756577e-01 3.42554837e-01 7.23765939e-02
-8.34007621e-01 -8.59451175e-01 2.29639068e-01 2.02027723e-01
3.80731702e-01 -2.29922488e-01 -3.23915422e-01 -1.45062363e+00
4.85545188e-01 -1.16974568e+00 2.93940455e-01 -6.09969437e-01
-8.79318357e-01 6.87449932e-01 1.49755120e-01 -1.24991941e+00
-1.97364762e-02 -6.22445494e-02 -8.32434297e-01 6.10507548e-01
-1.52971721e+00 -1.19806898e+00 -3.34359020e-01 1.24886483e-01
6.71561778e-01 -1.10147260e-01 5.72917998e-01 3.23832244e-01
-7.51552463e-01 5.55157065e-01 3.89764607e-02 1.53252512e-01
4.44939137e-01 -1.28544617e+00 9.11016166e-01 1.25495982e+00
-1.80268943e-01 1.45506167e+00 6.49633646e-01 -6.99470878e-01
-1.77878606e+00 -1.15839052e+00 1.01786685e+00 -1.87863812e-01
9.11291778e-01 -3.23598176e-01 -1.23767567e+00 7.59352207e-01
5.56446791e-01 -2.52636880e-01 4.49718833e-01 -2.41347596e-01
-6.28461957e-01 -1.18713178e-01 -5.70081890e-01 6.04818523e-01
1.03046644e+00 -5.19563675e-01 -9.16861236e-01 3.25705968e-02
9.11872685e-01 -3.59894991e-01 -5.66139638e-01 2.07948819e-01
3.83257985e-01 -1.14149475e+00 5.48729777e-01 -3.62081259e-01
1.06468630e+00 -5.93191624e-01 -2.99772806e-02 -1.23807573e+00
-3.92869301e-02 -7.09522605e-01 -2.20788598e-01 1.68879497e+00
1.40275657e-01 -4.82938349e-01 6.20608628e-01 1.24802351e-01
-6.36212051e-01 -6.36877716e-01 -5.37601709e-01 -6.75201893e-01
1.28953354e-04 -1.81589916e-01 7.97741711e-01 8.32777977e-01
4.54278409e-01 4.73513037e-01 -2.68487036e-01 -1.21992780e-03
6.08796597e-01 5.27469099e-01 1.00075948e+00 -1.19770849e+00
-3.44158202e-01 -6.62074566e-01 -2.04388991e-01 -1.10369599e+00
5.16760349e-01 -1.23775041e+00 4.00704518e-02 -1.91879976e+00
6.65065527e-01 -2.64484793e-01 3.74058336e-02 5.88113248e-01
-3.00149590e-01 -4.86417353e-01 4.41046841e-02 3.99493128e-01
-6.75411105e-01 7.19583690e-01 7.69252062e-01 -3.78066093e-01
-3.26584056e-02 -9.87430289e-02 -1.05438101e+00 6.13117516e-01
7.55392194e-01 -7.88807929e-01 -5.18731236e-01 -8.15161526e-01
4.34257030e-01 3.12114745e-01 1.49029061e-01 -9.17174518e-01
4.98510897e-01 -1.45978212e-01 -6.98543489e-01 -6.01613343e-01
-2.95198381e-01 -7.51619279e-01 1.92493841e-01 5.57792187e-01
-3.27719659e-01 5.07790267e-01 1.75304696e-01 4.58762407e-01
-4.23398018e-01 -6.43584967e-01 5.83938956e-01 -2.96002656e-01
-7.03104675e-01 8.29843953e-02 -1.32435635e-01 2.83636123e-01
7.89128482e-01 -1.79589480e-01 -6.95492804e-01 1.55582920e-01
2.11437061e-01 1.92347929e-01 9.02781904e-01 6.28329873e-01
6.20338082e-01 -1.11114347e+00 -5.73255360e-01 2.24566117e-01
5.82195759e-01 -4.70449999e-02 7.48147890e-02 7.62327850e-01
-6.98068798e-01 4.30648863e-01 -1.22416154e-01 -3.76291424e-01
-1.26610875e+00 7.04012275e-01 5.29599153e-02 -4.88833547e-01
-6.87825620e-01 2.39020377e-01 2.29654625e-01 -4.86502707e-01
1.70314744e-01 -5.46904504e-01 -1.53258443e-01 -3.35731983e-01
4.17047650e-01 2.40824863e-01 1.31842211e-01 -4.55906540e-01
-4.18745458e-01 5.68681121e-01 -3.47210467e-01 4.48354244e-01
1.37466753e+00 -1.43611148e-01 -8.19611132e-01 2.21005917e-01
1.32740617e+00 3.26742828e-01 -8.36318254e-01 -3.11311334e-01
6.33537173e-01 -4.13551807e-01 -1.52250037e-01 -4.38956439e-01
-9.44631040e-01 9.65743065e-01 -5.11817262e-02 3.27803433e-01
9.45976794e-01 -1.59293041e-01 9.71847653e-01 3.99108499e-01
5.47043920e-01 -5.79995036e-01 1.84941098e-01 5.17476082e-01
6.58828557e-01 -9.18849885e-01 -2.48781387e-02 -5.09225070e-01
-4.19312865e-01 1.19519150e+00 6.00939810e-01 1.81382880e-01
1.74128368e-01 3.38064224e-01 -3.60770971e-01 -2.58498877e-01
-7.91373849e-01 1.31489038e-01 1.37484938e-01 2.56945044e-01
6.60585880e-01 -3.76127481e-01 -5.15768707e-01 6.29075110e-01
2.82406937e-02 1.12199031e-01 1.05268776e+00 1.49642563e+00
-5.01484871e-01 -1.44894898e+00 -9.21890065e-02 4.88904208e-01
-6.55568540e-01 -4.85903800e-01 -2.87462980e-01 5.76837003e-01
-1.33800358e-01 7.99436271e-01 -3.47194791e-01 -3.06345910e-01
4.92097169e-01 -2.51797363e-02 1.93044752e-01 -1.14724779e+00
-8.44007850e-01 -2.24871948e-01 -2.15150103e-01 -4.33538288e-01
-4.42316085e-01 -5.77647090e-01 -1.35863459e+00 -2.13493943e-01
-2.45524749e-01 4.32610750e-01 5.41260421e-01 5.14605582e-01
6.76103473e-01 7.47476339e-01 5.90690970e-01 -3.74714285e-01
-7.17172503e-01 -6.90773129e-01 -2.78560668e-01 4.03298289e-01
3.53135616e-01 -3.90762717e-01 -3.21458250e-01 4.04119283e-01] | [7.614256381988525, 7.937649726867676] |
2917cbf6-b8a5-4a87-ad06-842d8d108535 | edict-exact-diffusion-inversion-via-coupled | 2211.12446 | null | https://arxiv.org/abs/2211.12446v2 | https://arxiv.org/pdf/2211.12446v2.pdf | EDICT: Exact Diffusion Inversion via Coupled Transformations | Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem in denoising diffusion models (DDMs), with applications for real image editing. The state-of-the-art approach for real image editing with inversion uses denoising diffusion implicit models (DDIMs) to deterministically noise the image to the intermediate state along the path that the denoising would follow given the original conditioning. However, DDIM inversion for real images is unstable as it relies on local linearization assumptions, which result in the propagation of errors, leading to incorrect image reconstruction and loss of content. To alleviate these problems, we propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers. EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors which are used to invert each other in an alternating fashion. Using Stable Diffusion, a state-of-the-art latent diffusion model, we demonstrate that EDICT successfully reconstructs real images with high fidelity. On complex image datasets like MS-COCO, EDICT reconstruction significantly outperforms DDIM, improving the mean square error of reconstruction by a factor of two. Using noise vectors inverted from real images, EDICT enables a wide range of image edits--from local and global semantic edits to image stylization--while maintaining fidelity to the original image structure. EDICT requires no model training/finetuning, prompt tuning, or extra data and can be combined with any pretrained DDM. Code is available at https://github.com/salesforce/EDICT. | ['Nikhil Naik', 'Akash Gokul', 'Bram Wallace'] | 2022-11-22 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Wallace_EDICT_Exact_Diffusion_Inversion_via_Coupled_Transformations_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Wallace_EDICT_Exact_Diffusion_Inversion_via_Coupled_Transformations_CVPR_2023_paper.pdf | cvpr-2023-1 | ['text-based-image-editing', 'text-guided-image-editing', 'image-stylization'] | ['computer-vision', 'computer-vision', 'computer-vision'] | [ 5.84183931e-01 1.37852058e-01 2.24226952e-01 -1.04317747e-01
-5.39303958e-01 -6.51624084e-01 8.74860764e-01 -4.02599007e-01
-3.73375207e-01 3.55434716e-01 1.51052266e-01 -2.59033442e-01
7.13332891e-02 -7.00485885e-01 -9.35525358e-01 -6.10669971e-01
4.82942581e-01 3.15771103e-01 -7.80859217e-03 -2.90747106e-01
2.00690642e-01 4.29341108e-01 -9.56916928e-01 2.49546215e-01
1.01316619e+00 5.83464503e-01 4.24135029e-01 8.66834998e-01
-2.53271043e-01 9.28462088e-01 -5.32305002e-01 -6.17896318e-01
4.08965826e-01 -7.24041939e-01 -6.39477909e-01 1.17253289e-01
5.41378736e-01 -4.96623307e-01 -5.05255520e-01 1.29313636e+00
3.82608533e-01 -7.49554336e-02 7.52153635e-01 -1.10513663e+00
-1.32507765e+00 4.96253818e-01 -7.17035651e-01 -1.04619563e-01
8.40622708e-02 4.83226448e-01 4.78579402e-01 -8.93198073e-01
1.13883221e+00 1.26643610e+00 8.19899321e-01 7.19700456e-01
-1.82779062e+00 -6.52286112e-01 -1.60153806e-01 -1.73687980e-01
-1.29644644e+00 -6.09835804e-01 7.19594955e-01 -6.17862105e-01
7.14135349e-01 1.99912593e-01 5.67091525e-01 1.23834324e+00
2.29264081e-01 6.18297338e-01 1.32859421e+00 -3.30386788e-01
2.87262001e-03 9.06075910e-02 -3.38161349e-01 6.82862341e-01
-1.41796516e-02 2.74768233e-01 -3.21771890e-01 1.09761529e-01
1.18822181e+00 -2.37388667e-02 -3.05690527e-01 -2.33681351e-01
-1.28215694e+00 7.00546384e-01 5.17565310e-01 2.14239359e-01
-5.45495689e-01 5.01753688e-01 1.34177446e-01 6.67525589e-01
4.94505763e-01 4.30569619e-01 1.14502329e-02 -9.03210640e-02
-1.21582830e+00 2.22687900e-01 5.89941084e-01 8.15650702e-01
8.75556529e-01 1.73482373e-01 -1.28964081e-01 7.86086202e-01
2.73127705e-02 7.14761555e-01 2.23576546e-01 -1.51892328e+00
2.85395771e-01 2.94018298e-01 -6.91363439e-02 -1.16024756e+00
2.03722239e-01 -4.08894271e-01 -1.17377019e+00 4.83768612e-01
2.69131452e-01 -3.57294977e-02 -1.22060943e+00 1.85015976e+00
1.21143162e-01 2.58751780e-01 -9.48870257e-02 7.92846680e-01
3.61960709e-01 8.32514822e-01 -1.42822623e-01 -1.38031900e-01
8.58380735e-01 -9.47174251e-01 -8.78351688e-01 -2.70688802e-01
3.83690655e-01 -9.98357117e-01 1.24500787e+00 5.95231354e-01
-1.48404801e+00 -3.69161695e-01 -9.12178874e-01 -4.39870089e-01
-8.24125707e-02 -1.63296789e-01 3.57085943e-01 3.65098387e-01
-1.30612326e+00 7.25531161e-01 -9.68704760e-01 -1.66926101e-01
5.56035459e-01 2.56430060e-01 -4.68082309e-01 -2.54778117e-01
-8.96817803e-01 8.68708134e-01 -2.02691093e-01 1.71531364e-01
-1.14287627e+00 -1.02102137e+00 -7.96111166e-01 -2.47557595e-01
3.25587064e-01 -9.20989871e-01 1.03798568e+00 -1.43366647e+00
-1.71043158e+00 8.88782859e-01 -2.59078711e-01 -4.06993270e-01
1.07237005e+00 -1.45562083e-01 -2.16539592e-01 1.28262505e-01
1.65208146e-01 9.08529162e-01 1.45748317e+00 -1.57697511e+00
5.05257323e-02 -3.37896054e-03 -1.05100900e-01 -3.79350781e-02
-1.35607451e-01 -1.22623757e-01 -7.56036699e-01 -1.03118694e+00
4.89634164e-02 -1.11248922e+00 -2.64242738e-01 4.94664043e-01
-4.11631852e-01 4.93069977e-01 1.01871300e+00 -9.63195622e-01
1.09943020e+00 -2.12402487e+00 6.99502647e-01 3.31235975e-01
4.26088423e-01 3.30531955e-01 -4.90608066e-01 3.22010726e-01
-1.02481641e-01 2.58529812e-01 -7.16839552e-01 -7.86525548e-01
-1.13613062e-01 5.23590982e-01 -4.68956947e-01 3.34387094e-01
1.03183873e-01 1.21166039e+00 -8.75741541e-01 -2.12466851e-01
2.48524949e-01 9.15039182e-01 -6.99922144e-01 2.07756862e-01
-1.75326750e-01 7.72586644e-01 1.45582542e-01 1.04594916e-01
8.79552245e-01 -1.53743982e-01 2.39456333e-02 -4.62214530e-01
-3.95212807e-02 -9.75497663e-02 -1.17313218e+00 1.99664056e+00
-6.59968615e-01 7.18649685e-01 4.26224083e-01 -7.46071756e-01
5.04368722e-01 8.26193094e-02 2.30887547e-01 -7.95315266e-01
-6.19385466e-02 2.52128273e-01 -2.58884370e-01 -2.44592369e-01
5.18328547e-01 -2.19678074e-01 3.20865452e-01 7.59133041e-01
1.33786067e-01 -5.58516145e-01 2.72052735e-01 5.88102460e-01
9.49682117e-01 1.78199679e-01 -3.35926354e-01 -1.37435794e-01
2.42235720e-01 -1.79722324e-01 4.05439168e-01 7.97700584e-01
2.77341843e-01 1.02721107e+00 4.94487971e-01 -1.68162331e-01
-1.31530881e+00 -1.19105339e+00 1.88612312e-01 4.16106045e-01
4.98992316e-02 -3.36163044e-01 -1.27558672e+00 -3.97237211e-01
-1.94876045e-01 8.57842982e-01 -7.22383738e-01 -1.77105084e-01
-6.24005318e-01 -4.54827845e-01 7.40020275e-01 1.75948143e-01
6.25075221e-01 -8.43943417e-01 -1.27939194e-01 1.76763520e-01
-2.68235147e-01 -9.23608720e-01 -9.82001662e-01 -8.75295177e-02
-8.39571774e-01 -7.04219520e-01 -1.05381250e+00 -5.28569400e-01
1.00497472e+00 2.49060541e-01 9.92345572e-01 3.16318154e-01
-2.72426307e-01 3.44011515e-01 1.87663689e-01 1.58192907e-02
-1.00211334e+00 -1.61278442e-01 -9.97345820e-02 1.61658242e-01
-3.59447718e-01 -8.11467290e-01 -7.28826106e-01 3.61555338e-01
-1.48414898e+00 3.76015633e-01 4.30150419e-01 9.34547186e-01
6.95971310e-01 -1.71207581e-02 6.54944554e-02 -1.16517365e+00
7.87735879e-01 -1.96468934e-01 -6.22365236e-01 1.12679258e-01
-8.05180311e-01 3.74091208e-01 4.93695855e-01 -7.41281390e-01
-1.16653621e+00 -1.17979087e-01 -1.76836863e-01 -7.88554430e-01
2.75802344e-01 4.67891186e-01 3.64673920e-02 -2.52416164e-01
8.11008096e-01 3.54952574e-01 4.71695453e-01 -4.94751662e-01
8.38358879e-01 2.97595501e-01 7.39517927e-01 -4.80691731e-01
8.39770973e-01 6.90217495e-01 -1.64500237e-01 -7.21287787e-01
-5.47873616e-01 2.32609361e-01 -5.36453366e-01 1.80371869e-02
7.15259194e-01 -8.33634615e-01 -3.18910688e-01 8.90542388e-01
-1.19576883e+00 -8.22654605e-01 -4.79418963e-01 -7.50274435e-02
-5.05656958e-01 4.06985492e-01 -8.89581382e-01 -2.27569759e-01
-2.39112541e-01 -1.46596503e+00 8.40681076e-01 -1.53604403e-01
-3.92536819e-01 -1.07734549e+00 -1.69043303e-01 2.52383500e-01
7.72293925e-01 1.33602992e-01 9.10308659e-01 3.50608140e-01
-7.92964399e-01 1.26201004e-01 -1.78087831e-01 7.41959810e-01
1.51132733e-01 1.40034765e-01 -6.43483877e-01 -2.95345187e-01
1.63656771e-01 -1.07990853e-01 9.65927660e-01 4.68492627e-01
9.64092374e-01 -4.48428959e-01 -4.26832438e-02 9.66811776e-01
1.34257376e+00 -1.55298769e-01 1.01374030e+00 1.63193092e-01
9.27013397e-01 3.34264964e-01 -2.42908355e-02 1.85877793e-02
2.95969486e-01 4.77506548e-01 2.30661884e-01 -4.31958973e-01
-7.27846920e-01 -4.91994411e-01 4.92138743e-01 9.38481987e-01
-5.56667335e-03 -1.33301184e-01 -7.03092217e-01 6.05032682e-01
-1.62735379e+00 -1.01331544e+00 -1.26541346e-01 2.11410356e+00
1.12003720e+00 3.76395658e-02 -3.50626647e-01 -9.70452875e-02
5.19115686e-01 2.16680497e-01 -7.15857983e-01 -3.39934319e-01
-3.23745012e-01 2.03640908e-01 5.51097274e-01 1.05343342e+00
-6.03251874e-01 9.91290927e-01 6.03276777e+00 9.16437447e-01
-1.40874541e+00 4.63631481e-01 6.16645336e-01 -1.13509744e-01
-7.52169371e-01 2.51856685e-01 -1.60362035e-01 4.37981606e-01
6.89501345e-01 -1.65422284e-03 1.14438248e+00 1.78318560e-01
4.87286180e-01 -2.57523078e-02 -8.23470533e-01 1.06793869e+00
-2.69377418e-02 -1.65912294e+00 4.02738452e-01 1.80177823e-01
1.07875669e+00 -3.06130070e-02 4.40629780e-01 -1.84623197e-01
4.74922419e-01 -9.83324289e-01 1.14014137e+00 8.09202313e-01
1.10652637e+00 -5.84580183e-01 1.67005941e-01 2.93807924e-01
-6.32129312e-01 1.99161276e-01 -2.74532080e-01 2.30222583e-01
4.93366569e-01 8.28157604e-01 -1.97282940e-01 2.05477878e-01
5.05817235e-01 7.89379597e-01 -3.42880309e-01 3.05496067e-01
-5.30425131e-01 6.51496172e-01 -3.55641067e-01 8.42110634e-01
1.04609504e-01 -6.56789362e-01 7.11807013e-01 1.14474487e+00
4.24497753e-01 6.25597686e-02 -3.67817163e-01 1.39274573e+00
-3.25929999e-01 -4.24659044e-01 -6.19572222e-01 -7.58100003e-02
1.33001745e-01 1.03235960e+00 -5.29230297e-01 -4.08879697e-01
-7.38809928e-02 1.74488425e+00 1.79127648e-01 6.84242904e-01
-8.73141527e-01 -2.20578238e-01 7.21689701e-01 3.88598144e-01
2.97060758e-01 -4.67599094e-01 -4.04642671e-01 -1.29926014e+00
-5.03282137e-02 -1.10955250e+00 -2.47808293e-01 -1.02262306e+00
-1.18990993e+00 6.65961564e-01 -1.80472136e-01 -9.44364846e-01
-7.31793940e-02 -1.49495229e-01 -5.74648261e-01 1.08694160e+00
-1.39677429e+00 -1.21687484e+00 -3.85211825e-01 5.55869281e-01
3.98412853e-01 2.15867668e-01 4.92447525e-01 5.03806412e-01
-3.63114476e-01 5.64728856e-01 1.87092006e-01 -4.98648323e-02
8.47361207e-01 -1.03830719e+00 7.05010772e-01 1.04001284e+00
1.27842247e-01 8.96752059e-01 8.21369231e-01 -8.06479037e-01
-1.39607537e+00 -1.14355612e+00 7.36170769e-01 -4.40624446e-01
6.09584987e-01 -3.25450510e-01 -1.01286304e+00 8.33585560e-01
5.61751366e-01 -3.18689682e-02 1.37193963e-01 -5.63350320e-01
-3.59445661e-01 4.81452830e-02 -1.12395775e+00 9.66888249e-01
1.35030282e+00 -8.57244730e-01 -1.59452975e-01 1.56690031e-01
7.30143011e-01 -5.71610689e-01 -8.68853331e-01 -3.19570974e-02
4.07947689e-01 -9.26432610e-01 1.05378330e+00 -1.73774227e-01
7.27734327e-01 -4.58001316e-01 7.81645477e-02 -1.54018390e+00
-3.00940603e-01 -1.15662742e+00 -8.76692608e-02 1.24226773e+00
4.84607488e-01 -6.39361858e-01 3.55532438e-01 7.41540670e-01
8.28600749e-02 -4.56638277e-01 -5.66183627e-01 -7.09310591e-01
1.79849654e-01 -5.09683669e-01 4.04391944e-01 1.05130148e+00
-7.27774799e-01 1.31318733e-01 -5.52488148e-01 -2.31464189e-02
7.63856232e-01 -2.76715308e-01 8.27449262e-01 -6.62305653e-01
-3.36880118e-01 -4.22706604e-01 -8.42441432e-03 -1.40524602e+00
7.93366060e-02 -9.78708863e-01 -1.44675598e-01 -1.54633975e+00
-3.10607105e-02 -4.93083745e-01 1.13432780e-01 4.32897270e-01
1.98865049e-02 5.27684450e-01 4.50740844e-01 5.74292362e-01
-2.68084500e-02 6.77526534e-01 1.56186128e+00 -3.66801888e-01
-1.57909870e-01 -4.60324973e-01 -7.58755922e-01 6.63155079e-01
4.58071470e-01 -7.76804566e-01 -5.68742514e-01 -1.02086020e+00
3.41759980e-01 -6.77084252e-02 5.51816165e-01 -6.63809299e-01
2.65633881e-01 -4.06506322e-02 2.06224188e-01 -6.21807063e-03
3.17770362e-01 -6.98886395e-01 8.66721690e-01 4.47037280e-01
-4.08813119e-01 2.32466429e-01 1.29761785e-01 5.10932267e-01
-2.68959552e-01 -2.70641625e-01 9.50103104e-01 -2.28143990e-01
-4.35756177e-01 2.55664229e-01 -2.85454690e-01 -7.40427233e-04
6.98775768e-01 -2.74772584e-01 -1.48249805e-01 -7.08907068e-01
-7.88667917e-01 -1.76426962e-01 9.91207778e-01 3.25905621e-01
5.88660479e-01 -1.20681369e+00 -7.26794362e-01 4.18902695e-01
-3.49008054e-01 3.75154652e-02 3.14735681e-01 1.03868330e+00
-8.04759204e-01 -2.47491285e-01 4.05277610e-02 -6.06992543e-01
-1.00797951e+00 4.88642216e-01 4.44543868e-01 -2.86715627e-01
-7.24517465e-01 7.71274745e-01 3.76063019e-01 -5.81927419e-01
-1.69255301e-01 -3.46297532e-01 5.26496589e-01 -1.67087436e-01
4.75899011e-01 2.15604752e-01 8.12415220e-03 -5.73322833e-01
1.12290896e-01 7.78648615e-01 -8.77334476e-02 -5.86511016e-01
1.33561647e+00 -4.33138072e-01 -4.27930266e-01 4.86225598e-02
1.31929934e+00 8.23443234e-02 -1.76161981e+00 -2.78001547e-01
-4.70274627e-01 -5.97398996e-01 3.61833096e-01 -8.39215279e-01
-1.39901149e+00 9.46445107e-01 5.64679682e-01 -1.53657839e-01
1.16611648e+00 -3.56287926e-01 9.86559093e-01 5.27518578e-02
1.32514924e-01 -8.80207956e-01 2.06442028e-01 3.95700663e-01
1.30659783e+00 -1.00347483e+00 -6.70716688e-02 -2.87612468e-01
-8.51368189e-01 7.83056557e-01 1.16001062e-01 -1.93689376e-01
6.89655542e-01 5.34295082e-01 3.13166291e-01 -1.42612040e-01
-4.67874914e-01 3.43476444e-01 7.07501248e-02 5.04901707e-01
1.08469814e-01 -1.81091964e-01 -5.71962968e-02 -3.93608632e-03
-9.91143845e-03 3.28164726e-01 5.23413539e-01 8.33248496e-01
1.96463451e-01 -1.30378604e+00 -3.16343814e-01 2.56338298e-01
-2.63398916e-01 -3.73234868e-01 -2.87378132e-01 4.00606066e-01
1.11148901e-01 7.04816043e-01 3.76400910e-02 -1.53175801e-01
2.93441951e-01 -2.70438492e-01 6.32760882e-01 -2.22343892e-01
-6.02073610e-01 1.22281089e-01 -2.11656153e-01 -6.79462492e-01
-3.94111216e-01 -5.08074582e-01 -1.21554768e+00 -7.83217132e-01
-2.07110658e-01 -2.46309772e-01 7.56975889e-01 7.21332371e-01
7.48852491e-01 4.72720861e-01 2.52202541e-01 -1.07258499e+00
-3.86883467e-01 -7.31266439e-01 -3.42734933e-01 8.11599433e-01
4.28099424e-01 -4.33827043e-01 -3.47259611e-01 5.98199844e-01] | [11.454667091369629, -0.4751112461090088] |
0f15642d-30c1-4606-be6c-52cff4348691 | unsupervised-hdr-image-and-video-tone-mapping | 2303.07327 | null | https://arxiv.org/abs/2303.07327v2 | https://arxiv.org/pdf/2303.07327v2.pdf | Unsupervised HDR Image and Video Tone Mapping via Contrastive Learning | Capturing high dynamic range (HDR) images (videos) is attractive because it can reveal the details in both dark and bright regions. Since the mainstream screens only support low dynamic range (LDR) content, tone mapping algorithm is required to compress the dynamic range of HDR images (videos). Although image tone mapping has been widely explored, video tone mapping is lagging behind, especially for the deep-learning-based methods, due to the lack of HDR-LDR video pairs. In this work, we propose a unified framework (IVTMNet) for unsupervised image and video tone mapping. To improve unsupervised training, we propose domain and instance based contrastive learning loss. Instead of using a universal feature extractor, such as VGG to extract the features for similarity measurement, we propose a novel latent code, which is an aggregation of the brightness and contrast of extracted features, to measure the similarity of different pairs. We totally construct two negative pairs and three positive pairs to constrain the latent codes of tone mapped results. For the network structure, we propose a spatial-feature-enhanced (SFE) module to enable information exchange and transformation of nonlocal regions. For video tone mapping, we propose a temporal-feature-replaced (TFR) module to efficiently utilize the temporal correlation and improve the temporal consistency of video tone-mapped results. We construct a large-scale unpaired HDR-LDR video dataset to facilitate the unsupervised training process for video tone mapping. Experimental results demonstrate that our method outperforms state-of-the-art image and video tone mapping methods. Our code and dataset are available at https://github.com/cao-cong/UnCLTMO. | ['Jingyu Yang', 'Xin Liu', 'Huanjing Yue', 'Cong Cao'] | 2023-03-13 | null | null | null | null | ['tone-mapping'] | ['computer-vision'] | [ 3.79118204e-01 -6.33463979e-01 -3.33909571e-01 -3.09974819e-01
-6.10449553e-01 -2.10853070e-01 3.59054387e-01 -7.65062690e-01
-2.10106716e-01 5.82587540e-01 1.53107971e-01 -6.21908270e-02
-1.23422192e-02 -9.11630452e-01 -7.50061393e-01 -8.25017154e-01
1.81425780e-01 -3.12455386e-01 4.19433206e-01 -2.59689987e-01
1.21474557e-01 9.99249443e-02 -1.54204488e+00 5.80222130e-01
8.97070944e-01 1.22293150e+00 6.09281659e-01 3.38666469e-01
-2.78806183e-02 1.03566301e+00 -1.86704680e-01 9.73953400e-03
4.84399468e-01 -7.00842559e-01 -5.00557303e-01 6.19078279e-02
3.56671989e-01 -7.63409257e-01 -1.07137847e+00 1.20728970e+00
4.62719023e-01 2.48886883e-01 2.37911060e-01 -1.19802761e+00
-1.01368427e+00 3.23342085e-01 -7.79306233e-01 3.81003082e-01
3.72229367e-01 2.82226771e-01 6.27766550e-01 -9.00124550e-01
7.44022429e-01 8.98940384e-01 2.81119138e-01 4.99294102e-01
-1.00051010e+00 -1.07845867e+00 -2.62332037e-02 4.82123613e-01
-1.53691816e+00 -4.51740026e-01 1.02506912e+00 -1.41944498e-01
7.05763042e-01 3.53025585e-01 7.84583926e-01 9.46257412e-01
9.91794933e-03 5.89728415e-01 1.40464127e+00 -1.85059264e-01
-2.39237890e-01 -6.75603151e-02 -6.85256958e-01 5.64113915e-01
-3.61065686e-01 4.54620004e-01 -7.72377014e-01 3.88176858e-01
1.26104295e+00 2.24241257e-01 -6.40847981e-01 -2.05446765e-01
-1.41656888e+00 4.64993566e-01 4.45968747e-01 3.42619032e-01
2.22937968e-02 2.09222719e-01 3.15116495e-01 6.24956489e-01
4.07731265e-01 -1.03457719e-02 -1.87788770e-01 -3.46049219e-01
-9.35512125e-01 -2.35828876e-01 9.80801582e-02 9.84673738e-01
9.55986023e-01 2.08998308e-01 -2.40605295e-01 1.11193800e+00
4.49996330e-02 5.58010101e-01 5.94482780e-01 -1.04841852e+00
5.69352090e-01 3.52722794e-01 -1.18246816e-01 -1.24600804e+00
9.01771337e-02 5.41038848e-02 -1.02696097e+00 1.15034245e-02
-5.82124889e-02 2.65344799e-01 -9.31697428e-01 1.54108989e+00
1.52306110e-01 5.33304572e-01 -2.22901627e-01 1.32072973e+00
8.09747756e-01 1.11735225e+00 -1.27934813e-01 -3.64037722e-01
9.88186955e-01 -7.31272399e-01 -8.53169382e-01 1.60036087e-01
3.24801058e-01 -8.28768075e-01 1.42323554e+00 2.95856416e-01
-1.17538810e+00 -8.58871698e-01 -1.12598515e+00 -4.44128156e-01
-3.81549954e-01 -2.88199503e-02 4.09740955e-01 3.38956565e-01
-9.47688818e-01 5.20953238e-01 -5.36537945e-01 -5.96281849e-02
2.97769129e-01 2.61392593e-01 -4.06081676e-01 -3.93355250e-01
-1.67877853e+00 5.50864816e-01 3.71344358e-01 3.09019923e-01
-8.33625436e-01 -7.34453559e-01 -7.58975685e-01 -1.31292254e-01
2.76058286e-01 -3.32339615e-01 5.71676970e-01 -1.18308759e+00
-1.71942806e+00 8.98740351e-01 2.66929150e-01 -7.22617209e-02
6.23710990e-01 1.73429102e-01 -6.88108325e-01 4.83616620e-01
-1.16129503e-01 9.15024936e-01 9.36711490e-01 -1.11333489e+00
-6.65425241e-01 1.91836193e-01 -2.32244469e-02 4.34529006e-01
-6.87490880e-01 1.20253392e-01 -8.66590858e-01 -9.77730751e-01
1.24140598e-01 -8.46670151e-01 2.32047930e-01 2.54588217e-01
-2.15308964e-01 3.65034401e-01 1.14934766e+00 -9.10525799e-01
1.39971602e+00 -2.39406514e+00 -2.75831688e-02 1.98825851e-01
3.02812070e-01 1.47898301e-01 -2.02812105e-01 -5.35991564e-02
-2.46385574e-01 -5.75415008e-02 -2.81070381e-01 1.38994768e-01
-9.72850174e-02 9.60510783e-03 -5.10954857e-01 4.94039178e-01
7.50126317e-02 1.08508706e+00 -7.66313374e-01 -5.77053547e-01
6.79858923e-01 6.37109816e-01 -3.29498470e-01 1.76110238e-01
1.02701895e-02 5.56105375e-01 -3.64420414e-01 6.21456504e-01
8.43960881e-01 -1.81962103e-01 3.53189968e-02 -7.23979473e-01
-3.76993239e-01 1.64745580e-02 -9.02925909e-01 1.96897817e+00
-5.76841474e-01 8.84679317e-01 -3.78685296e-01 -7.51367986e-01
1.15447903e+00 1.63986206e-01 7.40702093e-01 -1.40222466e+00
8.83380622e-02 2.47535706e-01 -1.15502402e-01 -5.71259499e-01
5.65013587e-01 1.23074010e-01 -6.37598932e-02 3.59233916e-01
-8.11197683e-02 3.06334645e-02 -1.86220314e-02 7.69424215e-02
8.84672225e-01 2.77232468e-01 -1.36966258e-01 -2.50200965e-02
4.47880983e-01 -3.70762795e-01 5.67240298e-01 3.52115214e-01
-2.75560409e-01 1.00929630e+00 2.07561687e-01 -5.00176609e-01
-1.34940958e+00 -1.17051697e+00 -2.23458767e-01 9.24546421e-01
7.54358947e-01 -1.82534188e-01 -4.62013304e-01 -2.00087771e-01
-3.48976731e-01 1.49014831e-01 -6.42193854e-01 -4.97567266e-01
-7.07395315e-01 -4.72428560e-01 3.35133553e-01 2.73082167e-01
1.19413340e+00 -1.07783556e+00 -2.73702592e-01 1.02115318e-01
-5.61723888e-01 -1.17744207e+00 -9.58100975e-01 -2.83608288e-02
-4.94436949e-01 -6.44380629e-01 -8.87938201e-01 -9.14067924e-01
3.72896761e-01 4.75962579e-01 7.34896898e-01 9.33495760e-02
-3.14625293e-01 8.48178566e-02 -5.64220309e-01 4.38030034e-01
-1.49538100e-01 -1.61956742e-01 -5.40368669e-02 1.63451001e-01
2.61850297e-01 -7.51267850e-01 -9.72822368e-01 7.11548090e-01
-1.28044069e+00 4.87870604e-01 6.03794277e-01 7.88775980e-01
7.97389030e-01 1.21072009e-01 3.82831693e-01 -5.46005845e-01
3.14026326e-01 -2.04697520e-01 -4.38486904e-01 3.79448593e-01
-3.09066683e-01 -3.86381298e-01 7.51831412e-01 -8.13718557e-01
-1.07082772e+00 -1.46410272e-01 1.73825890e-01 -1.00417650e+00
1.42809287e-01 2.38187864e-01 -3.33943695e-01 -4.54678297e-01
2.53505975e-01 7.34031856e-01 -1.95855647e-01 -4.45518456e-02
2.69060612e-01 7.78051138e-01 7.22689569e-01 -3.62094700e-01
1.00578988e+00 5.28330386e-01 -3.15465212e-01 -4.61823672e-01
-4.18427765e-01 -1.06726028e-01 -2.69167989e-01 -5.91110587e-01
9.87749696e-01 -1.21644592e+00 -4.96005237e-01 5.14070332e-01
-6.92652762e-01 -7.10511386e-01 -1.05804071e-01 5.49181700e-01
-6.59958184e-01 3.47509116e-01 -8.48201871e-01 -1.52720615e-01
-2.15592355e-01 -1.14691281e+00 8.93505514e-01 3.01918745e-01
3.66789699e-01 -6.84844732e-01 -1.10603534e-01 2.01037019e-01
6.41016424e-01 1.28773183e-01 5.89528501e-01 2.60600179e-01
-9.97851908e-01 2.40367681e-01 -5.89788556e-01 3.40996921e-01
3.88496369e-01 -6.13783784e-02 -8.13817978e-01 -3.22648436e-01
-3.62771563e-02 -3.39694470e-01 9.56817985e-01 4.13233846e-01
1.61945724e+00 -1.02218725e-01 -7.11743385e-02 1.11217690e+00
1.37822616e+00 3.25544178e-01 1.27787757e+00 4.85251397e-01
1.02363861e+00 2.93790102e-01 8.91668618e-01 2.80835748e-01
2.03847244e-01 9.39867198e-01 -6.21803850e-02 -4.98723090e-01
-4.02226180e-01 -4.44385707e-01 5.77650845e-01 9.17588115e-01
-7.66719654e-02 -8.33437741e-02 -4.39487398e-01 1.58419341e-01
-1.66334617e+00 -1.15394700e+00 3.96389812e-01 2.08417892e+00
1.05257845e+00 2.17619129e-02 -1.50026843e-01 -5.56067191e-02
1.08147562e+00 3.66226315e-01 -6.69293225e-01 -7.20040277e-02
-3.69134337e-01 3.72845158e-02 5.12653649e-01 2.44933248e-01
-1.02860999e+00 9.66378808e-01 5.10393572e+00 1.39928603e+00
-1.56652331e+00 1.88014016e-01 9.58829582e-01 -2.78409928e-01
-5.24247169e-01 -1.56888947e-01 -2.45103016e-01 9.18685675e-01
4.31443095e-01 -1.28350565e-02 9.29819822e-01 4.66445446e-01
5.02038479e-01 1.29977375e-01 -7.66020775e-01 1.42346478e+00
2.62884051e-03 -1.33691692e+00 9.62356031e-02 4.76722047e-02
1.05670476e+00 -1.38607815e-01 6.92176282e-01 7.49289915e-02
-2.31376335e-01 -7.92824924e-01 6.98955774e-01 5.23555934e-01
1.64620662e+00 -7.94912040e-01 2.78718024e-01 -3.32787395e-01
-1.55659831e+00 -7.02724084e-02 -5.74976563e-01 4.25133318e-01
-8.46366026e-03 4.38091874e-01 5.82839064e-02 4.44734961e-01
1.11135697e+00 1.10130012e+00 -4.13337588e-01 7.02857792e-01
1.24041259e-01 2.06302449e-01 -1.37641236e-01 4.41349953e-01
2.83465795e-02 -4.09332633e-01 2.52449155e-01 9.49792564e-01
4.90805715e-01 3.25465977e-01 8.38617608e-02 9.83698070e-01
-2.18656197e-01 -7.63149634e-02 -5.84294438e-01 9.20657068e-02
6.52737916e-01 1.41391122e+00 -7.61233270e-01 -2.37329587e-01
-6.13107800e-01 1.36863875e+00 -2.79852375e-02 5.15833259e-01
-1.14568138e+00 -6.74006283e-01 3.60354662e-01 1.55865207e-01
4.07298654e-01 -1.06455110e-01 1.21324249e-01 -1.28590691e+00
1.95186317e-01 -9.03187275e-01 1.20333210e-01 -1.20413017e+00
-1.17249298e+00 5.73381186e-01 -1.39963686e-01 -1.99983191e+00
9.36076045e-02 -3.01123738e-01 -6.00335062e-01 6.36064529e-01
-1.78243315e+00 -1.14207721e+00 -7.20369101e-01 1.00051022e+00
3.96927267e-01 -1.68599695e-01 1.97781816e-01 8.62681329e-01
-3.79520923e-01 7.70292938e-01 1.68446034e-01 2.43233472e-01
9.82880414e-01 -7.06436753e-01 2.24841237e-01 8.86677027e-01
-1.22496851e-01 5.43628931e-01 3.74923438e-01 -5.86166441e-01
-1.45809448e+00 -1.33981156e+00 1.56419456e-01 1.00707278e-01
5.65402806e-01 -5.16268253e-01 -9.61169243e-01 3.92153144e-01
1.94971971e-02 3.05195451e-01 4.71892834e-01 -5.91477871e-01
-3.73296678e-01 -5.36709487e-01 -9.68741357e-01 6.42771840e-01
1.22829485e+00 -9.69509482e-01 7.77927488e-02 -2.67070774e-02
9.89830852e-01 -3.90596867e-01 -1.07076013e+00 4.94681537e-01
6.62300110e-01 -1.11980259e+00 9.70047593e-01 3.36241096e-01
7.01271594e-01 -6.83061600e-01 -2.73163140e-01 -9.70614135e-01
-2.41639689e-01 -5.71921825e-01 -9.47890058e-03 1.32957304e+00
8.91880095e-02 -5.65597117e-01 6.10419214e-01 4.16529685e-01
-2.17260659e-01 -6.03215873e-01 -8.91545475e-01 -5.84327519e-01
-2.59261549e-01 -1.77794963e-01 5.45222461e-01 1.28351271e+00
-1.33563206e-01 -2.50104189e-01 -8.65324974e-01 -8.41814429e-02
4.55175161e-01 3.88982445e-01 4.09074873e-01 -4.16719109e-01
-2.37644434e-01 -2.59310722e-01 -4.65587586e-01 -1.11172318e+00
6.92739189e-02 -7.27601469e-01 1.93335898e-02 -1.07591558e+00
4.23892528e-01 -4.89402711e-01 -5.51833391e-01 3.30558896e-01
7.59757906e-02 8.30658913e-01 1.97221160e-01 3.49000394e-01
-7.39500284e-01 8.11976492e-01 1.68165338e+00 -8.26575160e-02
-2.43444473e-01 -7.34296739e-01 -2.80020803e-01 2.31501311e-01
7.72930801e-01 -2.24312916e-01 -4.74389106e-01 -5.23468614e-01
1.67211667e-01 1.58395275e-01 4.80235636e-01 -1.05923033e+00
2.87440479e-01 -2.30872065e-01 8.09627831e-01 -4.53871101e-01
2.94440478e-01 -7.29902625e-01 4.76218849e-01 2.15362698e-01
-5.26637077e-01 3.01094241e-02 -2.24306323e-02 3.67013961e-01
-5.32626867e-01 3.66082817e-01 9.52392042e-01 -4.29810248e-02
-1.01006353e+00 8.97279084e-01 1.22526139e-02 -1.57988459e-01
8.49008203e-01 -4.94387329e-01 -5.34260988e-01 -4.46186453e-01
-3.25196326e-01 3.10383569e-02 6.89382792e-01 6.76738501e-01
1.07994044e+00 -1.74494803e+00 -4.83029932e-01 3.76229018e-01
1.87029660e-01 -2.86466002e-01 8.97357106e-01 8.14477623e-01
-6.20353281e-01 -1.58841815e-02 -7.49268711e-01 -4.97454315e-01
-9.93322194e-01 6.12373590e-01 2.88594186e-01 1.04100458e-01
-7.03969181e-01 5.12552917e-01 5.94587564e-01 -8.44021887e-02
-2.55728606e-02 -1.44907057e-01 7.79657206e-03 -3.41997951e-01
6.67153597e-01 1.07680634e-01 -2.89352566e-01 -6.63396776e-01
2.30014301e-03 8.75970125e-01 -2.46042177e-01 -6.46022186e-02
1.13596320e+00 -6.11521780e-01 -1.30276516e-01 3.07267606e-01
1.67305958e+00 -2.41672710e-01 -1.50140393e+00 -2.44226798e-01
-6.38541043e-01 -9.46180284e-01 3.49421859e-01 -4.47045773e-01
-1.46151412e+00 7.60058522e-01 1.06697428e+00 -2.65982635e-02
1.71314418e+00 -2.52520651e-01 1.14055514e+00 -4.19035694e-03
2.79805422e-01 -1.23911464e+00 3.71501565e-01 1.86326668e-01
6.05605423e-01 -1.15474784e+00 -1.58905268e-01 -3.52633566e-01
-6.16136849e-01 1.11283851e+00 8.51838470e-01 -5.92067651e-02
4.61471379e-01 2.03654408e-01 5.69590628e-02 6.37905151e-02
-6.69171154e-01 -1.67928264e-01 2.22505823e-01 6.50250137e-01
1.79241329e-01 -3.04429859e-01 -8.97558965e-03 1.08251646e-01
3.37909572e-02 1.90818369e-01 3.89751345e-01 5.95350742e-01
-3.23510617e-01 -8.50490332e-01 -4.47827484e-03 4.28974092e-01
-2.37662524e-01 -3.32289726e-01 7.39123896e-02 6.21120930e-01
1.75341681e-01 6.74660802e-01 2.20805466e-01 -9.09740686e-01
4.74979356e-02 -5.96711338e-01 5.81784546e-01 -8.77096355e-02
-1.35454223e-01 2.85028219e-01 -3.67001086e-01 -7.62851894e-01
-6.15753949e-01 -2.01986700e-01 -1.14577746e+00 -5.66271245e-01
-1.87817425e-01 -2.33729750e-01 2.65612751e-01 5.36936402e-01
1.73175409e-01 4.79206026e-01 1.18291581e+00 -8.21802437e-01
1.54930398e-01 -6.00600600e-01 -9.23624158e-01 5.64873934e-01
2.44154871e-01 -6.34928405e-01 -2.49345690e-01 3.33118528e-01] | [10.941662788391113, -2.1558117866516113] |
1d26f207-4eeb-40e8-a6f3-e024ca00daae | inverse-consistency-by-construction-for | 2305.00087 | null | https://arxiv.org/abs/2305.00087v1 | https://arxiv.org/pdf/2305.00087v1.pdf | Inverse Consistency by Construction for Multistep Deep Registration | Inverse consistency is a desirable property for image registration. We propose a simple technique to make a neural registration network inverse consistent by construction, as a consequence of its structure, as long as it parameterizes its output transform by a Lie group. We extend this technique to multi-step neural registration by composing many such networks in a way that preserves inverse consistency. This multi-step approach also allows for inverse-consistent coarse to fine registration. We evaluate our technique on synthetic 2-D data and four 3-D medical image registration tasks and obtain excellent registration accuracy while assuring inverse consistency. | ['Marc Niethammer', 'Richard Rushmore', 'Raul San Jose Estepar', 'Sylvain Bouix', 'Roland Kwitt', 'Francois-Xavier Vialard', 'Lin Tian', 'Hastings Greer'] | 2023-04-28 | null | null | null | null | ['image-registration', 'medical-image-registration'] | ['computer-vision', 'medical'] | [ 2.65422940e-01 1.88688844e-01 -8.93636644e-02 -6.77898228e-01
-7.13187456e-01 -4.80615944e-01 7.67472923e-01 -2.40841046e-01
-5.93088269e-01 4.60578412e-01 3.50784272e-01 8.15976709e-02
-3.37048769e-01 -8.07420135e-01 -7.16633499e-01 -5.85093737e-01
-1.48070008e-01 5.89176118e-01 1.16452150e-01 -5.68792820e-01
7.87819922e-02 7.78613031e-01 -9.23759818e-01 -8.29385221e-02
7.32352197e-01 5.29696763e-01 -2.37283021e-01 5.12304187e-01
4.23216224e-01 3.15500766e-01 -8.82321075e-02 -1.51001140e-01
7.12976396e-01 -7.37195313e-01 -1.13787019e+00 -1.44562826e-01
8.86825323e-01 -1.94868520e-01 -1.51468456e-01 9.25208330e-01
4.98831451e-01 3.23357671e-01 7.89452374e-01 -1.11776006e+00
-9.76545691e-01 3.46103698e-01 -5.35481870e-01 1.22558884e-01
1.74686104e-01 -3.62285048e-01 8.05446446e-01 -6.98516965e-01
7.23813951e-01 1.06644940e+00 1.33581984e+00 6.41684711e-01
-1.59579647e+00 -5.37720680e-01 -4.38519210e-01 -1.78316742e-01
-1.43669307e+00 -6.92139685e-01 7.12295413e-01 -2.76753515e-01
6.55657113e-01 2.54524350e-01 5.33691406e-01 6.38385475e-01
7.42337286e-01 -3.86382230e-02 1.35543215e+00 -3.02342981e-01
-6.91499263e-02 -5.66743970e-01 1.18357442e-01 8.19124937e-01
7.60440677e-02 3.65718752e-01 -4.18136150e-01 -2.43501961e-01
1.27520680e+00 -2.31249616e-01 -2.71979272e-01 -4.60756779e-01
-1.50615978e+00 6.40502751e-01 7.44599402e-01 7.12286294e-01
-3.34779173e-01 3.80846471e-01 1.02737822e-01 5.83423913e-01
4.84575212e-01 4.18126523e-01 2.30630785e-02 3.91297966e-01
-9.58603263e-01 2.63858810e-02 8.49946618e-01 6.17557943e-01
7.82113791e-01 8.52950513e-02 1.78912640e-01 8.11579764e-01
4.44292784e-01 4.00301754e-01 6.09820604e-01 -1.45653689e+00
7.34930299e-03 -3.71505320e-02 -5.19823372e-01 -1.02024043e+00
-6.17954791e-01 -3.75263065e-01 -1.49140203e+00 6.13943875e-01
4.04407531e-01 3.13184947e-01 -8.42814207e-01 2.24709153e+00
3.07732880e-01 2.38177240e-01 1.21015981e-01 7.35668957e-01
7.70050943e-01 1.36742637e-01 -1.74068063e-02 -8.37909728e-02
1.28067625e+00 -5.12817562e-01 -8.84723186e-01 1.60137013e-01
4.90601033e-01 -7.49024749e-01 7.40941942e-01 -2.64985040e-02
-1.36854219e+00 -5.77952087e-01 -1.06029129e+00 -1.95254162e-01
-1.71945989e-02 -3.93065900e-01 4.35115665e-01 4.56976086e-01
-1.69034016e+00 1.05667102e+00 -9.85704839e-01 -3.65883976e-01
2.51133502e-01 8.40353906e-01 -1.04952419e+00 4.19208616e-01
-1.14745295e+00 1.23350811e+00 2.37157136e-01 2.09371746e-01
-1.52496502e-01 -6.80857956e-01 -1.06863034e+00 -4.66219097e-01
-3.93291503e-01 -9.97246742e-01 9.63276327e-01 -8.22209358e-01
-1.34849441e+00 1.33980024e+00 -2.76677966e-01 -2.43144974e-01
5.05225539e-01 2.73598373e-01 -3.49382102e-01 -1.45734437e-02
1.45705730e-01 7.69766867e-01 6.57812059e-01 -1.35705519e+00
1.85151249e-02 -5.97682297e-01 -2.32699677e-01 2.50757664e-01
-1.31135538e-01 -9.07176360e-02 -2.26818472e-01 -1.07608843e+00
8.69577706e-01 -1.26102710e+00 -4.60210323e-01 4.28414226e-01
-3.20994318e-01 8.63641724e-02 6.72997117e-01 -6.91820085e-01
6.20909512e-01 -1.79511821e+00 1.19582899e-01 7.05964029e-01
5.11800468e-01 -2.14785308e-01 -3.65420043e-01 -2.03227535e-01
-4.83785719e-01 6.17383681e-02 -6.26782060e-01 -5.04619122e-01
-2.10758567e-01 3.29581261e-01 -1.39835015e-01 1.11852181e+00
-1.53572872e-01 1.13635433e+00 -5.79498827e-01 -6.56946719e-01
7.40481913e-02 7.84936130e-01 -6.06694460e-01 1.71570718e-01
5.68610609e-01 9.57989097e-01 -4.07979101e-01 2.49184266e-01
7.30016351e-01 -1.02360256e-01 -1.23186044e-01 -6.90454602e-01
-1.60627570e-02 -5.45392483e-02 -1.00163209e+00 1.76489222e+00
-5.78218877e-01 5.24489880e-01 2.92073995e-01 -1.01916230e+00
9.76943731e-01 6.13636196e-01 9.42139506e-01 -6.80847347e-01
2.55868107e-01 3.11620742e-01 5.82293086e-02 -3.95438299e-02
4.24589843e-01 -5.56434393e-01 -6.64040400e-03 9.01827514e-01
-1.29337937e-01 -3.67198020e-01 -2.56599039e-01 -1.14212744e-01
7.94750094e-01 1.75701171e-01 5.71236849e-01 -7.46539533e-01
6.32820606e-01 -1.82541221e-01 5.36331415e-01 5.83983839e-01
-1.88523009e-01 1.00902140e+00 -1.52387008e-01 -6.08073711e-01
-1.09836662e+00 -1.30878437e+00 -3.20857167e-01 5.38009882e-01
2.10389197e-01 2.80058771e-01 -9.72008824e-01 -2.90267497e-01
-1.87745705e-01 -9.25362669e-03 -8.61577511e-01 -3.23579431e-01
-1.10807741e+00 -6.89430952e-01 8.53655338e-01 4.59375024e-01
8.42200935e-01 -1.03647077e+00 -2.40829457e-02 1.33343965e-01
-2.45252550e-01 -9.34911668e-01 -1.06675756e+00 8.82891268e-02
-1.22529995e+00 -1.07246411e+00 -9.07436728e-01 -1.16974163e+00
1.04970825e+00 5.51943434e-03 1.29646909e+00 4.26596224e-01
1.08960360e-01 2.93868363e-01 3.85917187e-01 3.60386133e-01
-9.55333173e-01 -3.49184498e-02 4.31492150e-01 -1.25075966e-01
-1.22318164e-01 -1.03553367e+00 -2.79003799e-01 6.16286099e-01
-9.47076321e-01 -1.60054535e-01 3.35382581e-01 8.66913617e-01
8.88924122e-01 -2.69455194e-01 3.87037396e-01 -8.17580521e-01
7.75592446e-01 4.35893098e-03 -4.48195249e-01 3.39299440e-01
-7.09100902e-01 3.07078868e-01 4.38498676e-01 -4.32107985e-01
-8.72644544e-01 2.38896564e-01 -6.25012815e-01 -2.38327727e-01
-1.34740949e-01 1.01188026e-01 1.02355555e-01 -9.13330615e-01
1.02847576e+00 1.67492583e-01 6.88300133e-01 -3.55069011e-01
3.82314980e-01 2.64375567e-01 1.03794324e+00 -6.73237383e-01
1.34762347e+00 8.07833016e-01 4.84838188e-01 -6.05434120e-01
-5.13284445e-01 -1.52961284e-01 -1.19962549e+00 -1.04428411e-01
1.10289097e+00 -7.68295109e-01 -9.75602865e-01 5.70781410e-01
-1.34865308e+00 -3.53134722e-01 -4.14183915e-01 6.52817309e-01
-1.04027498e+00 4.22553569e-01 -7.53618240e-01 1.77707165e-01
-4.78624225e-01 -1.26452696e+00 8.05725336e-01 -1.74707144e-01
-5.91992557e-01 -1.53651333e+00 5.11628211e-01 -1.33799285e-01
6.59311771e-01 5.53976059e-01 5.12101233e-01 -5.03291786e-01
-2.92875886e-01 1.22913182e-01 -1.50615662e-01 2.64252543e-01
4.68915880e-01 -4.37951446e-01 -7.28685796e-01 -3.15692842e-01
4.36952204e-01 4.61514369e-02 5.54148555e-01 6.47760034e-01
8.62233162e-01 -2.61529058e-01 -1.65271580e-01 1.12727964e+00
1.33677053e+00 -3.63798067e-02 4.94935811e-01 3.63918602e-01
9.89778399e-01 5.07770896e-01 3.14675346e-02 -4.46369320e-01
5.09987712e-01 1.07055795e+00 1.53297856e-01 -6.91286623e-01
-4.73460555e-01 9.18313861e-02 -5.33160195e-02 1.25563729e+00
-5.41474819e-01 4.31964785e-01 -9.02132690e-01 3.31681460e-01
-1.51448333e+00 -9.82672274e-01 -2.35860109e-01 2.09786868e+00
1.15373504e+00 -3.90717387e-01 -1.18059032e-01 -1.56460591e-02
7.60107219e-01 1.36539340e-01 -1.62303448e-01 -3.26527923e-01
-1.79017842e-01 3.67888123e-01 6.62332356e-01 7.88025737e-01
-1.04377687e+00 6.55505121e-01 7.94449472e+00 5.36586583e-01
-9.45191085e-01 3.41056436e-01 5.32703280e-01 6.70239627e-01
-5.27799129e-01 -2.15734363e-01 -3.57473344e-01 -9.97721627e-02
5.03749669e-01 -3.22464079e-01 5.50486326e-01 2.87248641e-01
1.29239440e-01 2.50389308e-01 -1.27012110e+00 8.61917078e-01
1.45331398e-01 -1.60765910e+00 -4.83259223e-02 1.75526857e-01
8.52975667e-01 3.36539410e-02 -2.34251767e-02 -4.17653680e-01
4.20846462e-01 -1.08663583e+00 5.76581836e-01 4.71717954e-01
9.52333093e-01 -4.28449750e-01 3.11719775e-01 1.28018677e-01
-1.31141496e+00 7.38577425e-01 -7.40228668e-02 3.02782267e-01
4.21459466e-01 4.05966550e-01 -2.51971841e-01 3.66305321e-01
6.58859909e-01 8.50773633e-01 -3.18840295e-01 8.24840128e-01
-1.32286549e-01 -2.15010196e-02 -2.99953610e-01 6.90864623e-01
-1.24501906e-01 -6.07116461e-01 5.86762607e-01 1.00156426e+00
4.43964332e-01 3.47255349e-01 -9.35651287e-02 1.04641938e+00
-1.64001137e-01 -1.14768997e-01 -1.00846863e+00 7.72950411e-01
2.91486055e-01 1.07370663e+00 -8.27782512e-01 -1.34161457e-01
-4.65600863e-02 1.00882816e+00 5.47827557e-02 2.00670168e-01
-5.23361027e-01 -1.83229104e-01 7.87814736e-01 -2.70687670e-01
-3.37379277e-01 -5.03139555e-01 -5.62220633e-01 -9.80023623e-01
-1.23935509e-02 -7.40718305e-01 2.36235842e-01 -5.12006760e-01
-1.38854039e+00 1.06776953e+00 -2.05225102e-03 -1.41739893e+00
-4.91087347e-01 -2.60911256e-01 -5.30992091e-01 1.15008581e+00
-1.20552111e+00 -1.28495467e+00 -3.60898763e-01 9.96663988e-01
-2.15361163e-01 2.94647459e-02 1.01383579e+00 3.62728983e-01
1.37314931e-01 6.93188727e-01 -2.90229470e-01 2.51662314e-01
8.43373835e-01 -1.19800019e+00 8.35930824e-01 7.97921240e-01
2.52577931e-01 9.61986959e-01 4.41070795e-01 -5.17363667e-01
-1.17807221e+00 -9.29884791e-01 1.08697474e+00 -4.82434094e-01
4.86350060e-01 -1.68890711e-02 -1.14410079e+00 9.40648317e-01
2.05246001e-01 3.82397652e-01 4.52834100e-01 -4.87259701e-02
-3.58524859e-01 -1.33901313e-01 -1.42879295e+00 6.33961678e-01
1.30071342e+00 -7.21315503e-01 -8.85847986e-01 2.88193315e-01
4.64464039e-01 -7.68512607e-01 -1.61461532e+00 5.88541448e-01
6.08069658e-01 -8.86987269e-01 1.49083626e+00 -1.21548802e-01
1.45197988e-01 -4.00667846e-01 3.57200317e-02 -1.29906428e+00
-4.75705564e-01 -7.29740024e-01 4.13711548e-01 8.37588012e-01
2.03481376e-01 -1.05860448e+00 6.01500928e-01 6.04851067e-01
-1.48192719e-01 -3.70666683e-01 -1.22579801e+00 -1.15201318e+00
2.43543595e-01 -1.72888845e-01 5.97041011e-01 1.29604197e+00
-3.73291820e-01 -1.51881546e-01 -3.28761309e-01 3.99604887e-02
1.05205989e+00 -1.18431233e-01 5.51505566e-01 -1.23929524e+00
-5.55403344e-02 -5.28220654e-01 -4.16281492e-01 -9.73815382e-01
5.74596941e-01 -1.25166440e+00 4.05786157e-01 -1.26398349e+00
7.97823910e-03 -1.03009355e+00 -5.65490723e-02 6.53894007e-01
3.02620441e-01 1.27400267e+00 -1.40606776e-01 6.63292110e-01
1.51464166e-02 2.10154757e-01 1.53753400e+00 1.53054059e-01
-3.01454365e-01 9.25095305e-02 -6.32993042e-01 7.45514572e-01
6.83836043e-01 -5.31997621e-01 -1.45144194e-01 -5.09985805e-01
-2.29246721e-01 7.30655640e-02 5.39355278e-01 -8.97702873e-01
4.57365930e-01 -7.05109909e-04 2.73284525e-01 -8.76103714e-02
3.55636477e-01 -1.00561869e+00 7.88478315e-01 6.87905967e-01
-4.83243763e-01 4.61283714e-01 1.43858576e-02 2.27582920e-02
-3.74631315e-01 1.30292520e-01 1.20827246e+00 2.63354313e-02
-5.80920935e-01 6.38839543e-01 1.32231906e-01 1.44905644e-02
6.92164660e-01 -5.45724571e-01 -3.89469005e-02 -3.66325259e-01
-8.79577756e-01 -2.86482394e-01 7.97224224e-01 3.88696760e-01
5.42157114e-01 -1.84767556e+00 -8.30496788e-01 5.58152616e-01
-1.96412131e-01 -1.72196016e-01 -1.03573985e-01 1.25879788e+00
-7.22743452e-01 5.97211048e-02 -6.25475228e-01 -8.05300951e-01
-1.50018263e+00 -4.78118006e-03 8.02271843e-01 -7.79583231e-02
-9.16328132e-01 5.66896379e-01 1.80798769e-01 -8.20723057e-01
-1.24469422e-01 -1.12922385e-01 -1.75827846e-01 -4.01386857e-01
2.28832394e-01 1.29670471e-01 2.38425195e-01 -1.24156940e+00
-4.96173561e-01 1.41597462e+00 5.45195997e-01 -4.28354800e-01
1.37379241e+00 -9.93249789e-02 -7.85499036e-01 -3.85597609e-02
1.65017879e+00 -2.51872707e-02 -9.74507332e-01 -4.50146317e-01
-2.05736920e-01 -2.25607097e-01 5.38828149e-02 -1.86555699e-01
-1.43086076e+00 3.24365824e-01 5.75276077e-01 1.30535709e-02
1.23831689e+00 5.58166318e-02 6.63004458e-01 4.08165932e-01
3.68296981e-01 -6.63400769e-01 -2.81663448e-01 6.19384646e-01
1.07634270e+00 -1.03768647e+00 2.99324602e-01 -4.52636361e-01
-1.40009999e-01 1.06130672e+00 1.79337800e-01 -5.91260612e-01
1.02527678e+00 4.41007853e-01 3.39447260e-01 -2.32539862e-01
-2.62591317e-02 1.40678167e-01 8.78093660e-01 7.96421230e-01
6.60057724e-01 -1.24767065e-01 -4.93769556e-01 1.57592855e-02
-4.22349632e-01 -2.49302089e-02 3.41231018e-01 6.68058097e-01
-5.48266321e-02 -1.44257748e+00 -5.65584362e-01 5.91349155e-02
-4.06448364e-01 5.21968491e-02 -1.23410791e-01 1.04081726e+00
-1.03673130e-01 3.84833395e-01 3.06780040e-01 -2.62334496e-01
2.70804018e-01 -4.99904126e-01 6.67669356e-01 -3.38582337e-01
-8.00845504e-01 -6.52390644e-02 -1.53106511e-01 -9.53860581e-01
-9.06355977e-01 -5.71606934e-01 -1.39244342e+00 -4.68927860e-01
-1.41574800e-01 5.04328609e-02 7.95177817e-01 9.90982175e-01
1.00210682e-01 2.82093346e-01 6.59972548e-01 -1.10654354e+00
-4.21910316e-01 -5.36652088e-01 -5.24075806e-01 6.38083220e-01
5.87832272e-01 -4.33891684e-01 -2.54570127e-01 4.02182162e-01] | [13.938958168029785, -2.5451152324676514] |
80cf2c73-de9d-42a1-8b2f-40e2dae90bcd | deep-hdr-imaging-via-a-non-local-network | null | null | https://ieeexplore.ieee.org/abstract/document/8989959 | https://ieeexplore.ieee.org/abstract/document/8989959 | Deep HDR Imaging via A Non-Local Network | One of the most challenging problems in reconstructing a high dynamic range (HDR) image from multiple low dynamic range (LDR) inputs is the ghosting artifacts caused by the object motion across different inputs. When the object motion is slight, most existing methods can well suppress the ghosting artifacts through aligning LDR inputs based on optical flow or detecting anomalies among them. However, they often fail to produce satisfactory results in practice, since the real object motion can be very large. In this study, we present a novel deep framework, termed NHDRRnet, which adopts an alternative direction and attempts to remove ghosting artifacts by exploiting the non-local correlation in inputs. In NHDRRnet, we first adopt an Unet architecture to fuse all inputs and map the fusion results into a low-dimensional deep feature space. Then, we feed the resultant features into a novel global non-local module which reconstructs each pixel by weighted averaging all the other pixels using the weights determined by their correspondences. By doing this, the proposed NHDRRnet is able to adaptively select the useful information (e.g., which are not corrupted by large motions or adverse lighting conditions) in the whole deep feature space to accurately reconstruct each pixel. In addition, we also incorporate a triple-pass residual module to capture more powerful local features, which proves to be effective in further boosting the performance. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed NDHRnet in terms of suppressing the ghosting artifacts in HDR reconstruction, especially when the objects have large motions. | ['Q. Yan and L. Zhang and Y. Liu and Y. Zhu and J. Sun and Q. Shi and Y. Zhang'] | 2020-02-10 | null | null | null | null | ['hdr-reconstruction'] | ['computer-vision'] | [ 9.19405296e-02 -5.85230768e-01 1.15717329e-01 -6.59567714e-02
-4.00810540e-01 -2.07258448e-01 4.59625185e-01 -4.88853216e-01
-2.43927956e-01 6.71414196e-01 3.16202521e-01 3.82616878e-01
-2.14595869e-01 -7.07671165e-01 -5.51130474e-01 -1.06857312e+00
2.82459706e-01 -1.33952081e-01 3.29449415e-01 -1.71665460e-01
1.75089553e-01 5.77224791e-01 -1.72256947e+00 7.38212243e-02
1.01243675e+00 9.77766335e-01 3.67224157e-01 3.21051270e-01
1.51318774e-01 1.07481408e+00 -4.89526898e-01 1.33317813e-01
5.34957647e-01 -4.32065606e-01 -4.50574040e-01 1.68476805e-01
5.47094762e-01 -6.58698201e-01 -6.89961731e-01 1.11760724e+00
5.56308508e-01 4.76278931e-01 1.16297066e-01 -8.59221160e-01
-5.28275669e-01 1.79730952e-01 -9.71329570e-01 4.16493744e-01
3.12601537e-01 5.16450107e-01 6.66103363e-01 -1.01564074e+00
7.05665827e-01 1.43488598e+00 3.97653222e-01 4.66537565e-01
-1.29233825e+00 -6.91636503e-01 1.06017590e-01 2.98178256e-01
-1.40251434e+00 -4.89837319e-01 1.03206778e+00 -2.48898193e-01
5.66736042e-01 3.05705339e-01 5.99361122e-01 9.96536136e-01
2.43961215e-01 6.57673657e-01 1.10731149e+00 3.40058878e-02
-2.92269029e-02 -3.25003564e-01 2.91527417e-02 4.76263553e-01
2.16018841e-01 2.04680726e-01 -6.40372097e-01 1.20193973e-01
1.02242184e+00 2.78186768e-01 -8.83804440e-01 -2.70551533e-01
-1.62043655e+00 3.60950321e-01 7.89426506e-01 4.53784645e-01
-4.95480418e-01 7.54225478e-02 1.63555294e-01 1.66799769e-01
2.37117916e-01 2.29365170e-01 -2.45018512e-01 2.69324511e-01
-8.50137770e-01 1.09610669e-01 2.17676893e-01 4.56828505e-01
9.23252583e-01 1.39684036e-01 -2.96921104e-01 8.89223218e-01
3.45370591e-01 4.32232738e-01 6.11319661e-01 -1.05514169e+00
5.52350044e-01 4.21409994e-01 3.57596725e-01 -1.40504980e+00
-4.01961505e-01 -5.27198434e-01 -1.31309438e+00 3.44434500e-01
3.16008955e-01 2.98538692e-02 -9.19048190e-01 1.73872769e+00
4.53391403e-01 5.42676032e-01 2.33084932e-01 1.50879037e+00
8.36123586e-01 9.16324615e-01 -1.58813834e-01 -4.14821655e-01
9.78946328e-01 -8.76872122e-01 -9.32906449e-01 -2.02845737e-01
1.48127183e-01 -7.74036169e-01 7.55035043e-01 3.43138844e-01
-9.01113272e-01 -1.02494335e+00 -1.15273964e+00 -3.22935611e-01
2.91681588e-02 2.55270842e-02 3.06628138e-01 -8.52999315e-02
-7.87815154e-01 7.22945571e-01 -7.37281680e-01 7.87608176e-02
1.77247390e-01 1.97242618e-01 -4.23152983e-01 -4.62396353e-01
-1.24467206e+00 7.65050113e-01 3.83998066e-01 7.27819145e-01
-7.20732510e-01 -6.63680375e-01 -8.23251665e-01 -1.08918965e-01
3.61004859e-01 -6.90747321e-01 5.11693120e-01 -1.00319004e+00
-1.29672587e+00 3.15623224e-01 -2.19013453e-01 -5.09862229e-02
7.70492315e-01 -2.74566531e-01 -4.90765184e-01 1.28635868e-01
8.29530582e-02 5.65616071e-01 1.03437340e+00 -1.35172331e+00
-5.78995585e-01 -3.54197174e-01 -2.20783442e-01 4.20958430e-01
-2.21928716e-01 -3.15408051e-01 -6.17601573e-01 -8.39486957e-01
3.92373383e-01 -8.53364766e-01 -2.92927116e-01 8.40562806e-02
-2.59520531e-01 9.35234204e-02 1.03604865e+00 -7.11429894e-01
1.19472170e+00 -2.33498120e+00 2.90666491e-01 1.15994662e-01
3.81789327e-01 4.63366807e-01 -2.65127838e-01 -4.33874428e-02
-5.81173450e-02 -3.22592139e-01 -2.56595671e-01 -1.41314283e-01
-4.54678178e-01 2.28805885e-01 -2.90580601e-01 8.04848969e-01
8.53098258e-02 8.22401106e-01 -1.02796853e+00 -2.75647104e-01
7.95868993e-01 8.41507435e-01 -8.71021673e-02 2.23615125e-01
1.36550501e-01 9.10617828e-01 -5.33119261e-01 3.39175880e-01
1.07878542e+00 -1.95238948e-01 -1.12090729e-01 -5.33073545e-01
-3.04923534e-01 -9.50203985e-02 -1.57790637e+00 1.78493440e+00
-3.59147549e-01 6.26655817e-01 -1.00207143e-02 -6.70283139e-01
1.03854847e+00 -2.14442667e-02 8.90584707e-01 -9.41721976e-01
4.28264253e-02 2.78756917e-01 2.10576952e-02 -4.86003846e-01
4.03324306e-01 1.28518909e-01 2.32463285e-01 1.86849311e-01
-1.87813610e-01 3.60217363e-01 -4.04076315e-02 -6.39451966e-02
1.02609360e+00 6.61227405e-02 3.00492257e-01 -4.71538939e-02
9.18191373e-01 -4.19585764e-01 9.34594691e-01 5.63817561e-01
-3.02314460e-01 1.00083947e+00 -3.17368860e-04 -7.08526134e-01
-9.15307283e-01 -9.69679534e-01 -1.13147564e-01 5.08406818e-01
7.87573814e-01 -7.25187361e-02 -2.47577861e-01 -5.35626292e-01
-7.15023056e-02 2.77977049e-01 -5.30486226e-01 -3.04642081e-01
-8.92482936e-01 -8.78346562e-01 1.13545738e-01 3.61329079e-01
8.85812640e-01 -1.04160202e+00 -7.58907318e-01 3.58199149e-01
-5.56216121e-01 -1.22351635e+00 -5.63764393e-01 -5.35795689e-02
-7.80697763e-01 -8.85244608e-01 -9.32180941e-01 -5.68498254e-01
6.09334171e-01 8.11548114e-01 7.18533814e-01 2.38410994e-01
-2.78236687e-01 -1.67625904e-01 -2.85249442e-01 3.20250183e-01
-6.78191632e-02 -3.44869673e-01 -2.92501152e-02 5.05458474e-01
2.02101339e-02 -4.17254001e-01 -9.41039860e-01 5.33297777e-01
-1.17137158e+00 1.51195183e-01 5.68503916e-01 9.31916833e-01
6.33457005e-01 3.80780995e-01 3.91684622e-01 -4.99933362e-01
1.61396176e-01 -2.89298475e-01 -5.09269178e-01 8.07343498e-02
-2.92300642e-01 1.12788312e-01 8.80412936e-01 -5.23858249e-01
-1.23713815e+00 1.97277457e-01 -8.08097273e-02 -8.93690288e-01
-5.88462986e-02 -3.29774879e-02 -2.40367740e-01 -1.93582907e-01
3.25262338e-01 4.00643915e-01 -8.53181109e-02 -4.04433250e-01
2.65644908e-01 3.45809639e-01 7.06491411e-01 -1.11977190e-01
1.15985990e+00 6.94714010e-01 1.43240497e-01 -6.92493975e-01
-6.94232464e-01 -5.77278018e-01 -4.73191082e-01 -3.66865098e-01
8.23969126e-01 -1.10516930e+00 -6.36195719e-01 8.49737406e-01
-9.18514013e-01 -5.66822514e-02 -3.04044187e-01 6.00771129e-01
-3.68387818e-01 5.33368409e-01 -5.15760422e-01 -5.51453829e-01
-3.54470700e-01 -1.23724139e+00 9.29483116e-01 5.65677822e-01
2.00144097e-01 -6.58394277e-01 1.82663146e-02 1.57197371e-01
4.62413490e-01 3.99719536e-01 4.53058392e-01 -8.05360079e-02
-8.72705996e-01 1.66845545e-01 -3.76848280e-01 4.11049515e-01
2.92049676e-01 -1.81618556e-02 -9.25077319e-01 -4.44119245e-01
1.77083269e-01 -7.53415748e-02 1.07029486e+00 4.94751900e-01
1.07752407e+00 -1.09133795e-01 -1.16327949e-01 9.64819491e-01
1.78306377e+00 4.38590571e-02 8.79507840e-01 4.08027083e-01
1.08752418e+00 5.11505961e-01 9.19224203e-01 5.04241467e-01
7.10870400e-02 8.31291318e-01 5.77075243e-01 -3.56584281e-01
-4.68310237e-01 5.06228302e-03 4.74252760e-01 6.54315472e-01
-2.45394528e-01 -1.30158916e-01 -4.42789823e-01 3.85188639e-01
-2.04125905e+00 -9.77741539e-01 -3.21986914e-01 2.20077562e+00
6.35160267e-01 -7.00078532e-02 -2.96880126e-01 7.36095682e-02
8.20125163e-01 6.72217369e-01 -7.53106773e-01 2.34594569e-01
-4.39727962e-01 -6.06378764e-02 4.24834967e-01 3.42273593e-01
-1.02655435e+00 6.76474512e-01 4.90408182e+00 5.76613307e-01
-1.28680527e+00 -4.11546417e-02 5.02046943e-01 -1.38852075e-01
-1.72617316e-01 -1.20822668e-01 -6.82067037e-01 6.06200576e-01
3.54541421e-01 7.52177089e-02 5.07233024e-01 4.80564564e-01
4.45746750e-01 -1.88172564e-01 -7.73341596e-01 1.17716730e+00
7.37072155e-02 -1.13600039e+00 -2.45827679e-02 -8.81558657e-02
9.88912702e-01 1.54525379e-03 1.27949223e-01 -3.96424271e-02
1.01759017e-01 -7.82059133e-01 6.04994833e-01 8.29037428e-01
6.25717998e-01 -8.51602256e-01 8.45317602e-01 2.58894861e-01
-1.25476575e+00 -2.41647869e-01 -5.25096416e-01 2.10550025e-01
1.69203252e-01 8.32383335e-01 -1.99224725e-01 7.88246036e-01
9.61956978e-01 1.18715954e+00 -5.96138179e-01 1.02427578e+00
-8.85716528e-02 -7.01453909e-02 -2.30348647e-01 5.45382679e-01
1.20009378e-01 -3.06728542e-01 7.30515599e-01 8.50911736e-01
3.92836183e-01 1.77573249e-01 8.75950828e-02 7.95220852e-01
-2.70706490e-02 -1.58812374e-01 -5.96394479e-01 6.02670550e-01
2.04805464e-01 1.42633557e+00 -5.24262309e-01 -2.33999714e-01
-4.83352274e-01 1.21684408e+00 1.03830040e-01 6.15880013e-01
-8.86755407e-01 -4.00870621e-01 8.41789603e-01 -7.62394816e-02
4.13596064e-01 -4.98072952e-02 -3.37961353e-02 -1.55858195e+00
2.38630623e-01 -8.28512132e-01 2.55409539e-01 -8.42139661e-01
-1.15831530e+00 5.42694211e-01 -3.82796615e-01 -1.65135837e+00
-9.68680084e-02 -1.87270463e-01 -4.06798840e-01 9.02051747e-01
-1.82106245e+00 -7.58660197e-01 -7.98092902e-01 8.96632075e-01
6.03330135e-01 1.91481262e-01 1.77512228e-01 5.52415907e-01
-7.07974613e-01 2.50043392e-01 1.58324242e-01 6.67710826e-02
8.68311465e-01 -9.39043045e-01 3.90684009e-02 1.25900745e+00
-7.14345425e-02 5.33540189e-01 5.91678560e-01 -5.56935072e-01
-1.47189307e+00 -1.38419604e+00 3.82862031e-01 -4.64028902e-02
3.13020349e-01 -1.03501089e-01 -1.28910983e+00 4.49009150e-01
-1.11408740e-01 7.55658627e-01 -5.00126858e-04 -5.95039010e-01
-2.16768831e-01 -5.27988970e-01 -1.03475296e+00 4.32901919e-01
1.08338058e+00 -2.67051786e-01 -3.59551847e-01 -3.22812311e-02
7.14622140e-01 -4.63680774e-01 -9.41293776e-01 6.23429954e-01
4.42083359e-01 -1.22955859e+00 1.16013086e+00 3.84521857e-02
4.24028397e-01 -9.11490023e-01 -5.77716455e-02 -1.15553558e+00
-4.89530563e-01 -5.38616180e-01 -3.22251320e-01 1.28845584e+00
-3.46079886e-01 -6.38815165e-01 3.82298172e-01 3.74754131e-01
-5.25398366e-02 -5.09422660e-01 -8.80877495e-01 -4.94704276e-01
-4.87821668e-01 -6.18346110e-02 5.07869244e-01 9.32474971e-01
-7.39471912e-01 1.31533682e-01 -8.29820275e-01 3.16041321e-01
8.86571527e-01 3.26952815e-01 7.73712814e-01 -1.02128875e+00
-1.76643401e-01 -1.66358843e-01 -5.47187209e-01 -1.14602828e+00
1.22084588e-01 -5.59764385e-01 4.11778808e-01 -1.30430853e+00
1.70091555e-01 -3.97147834e-01 -5.96833229e-01 2.99501717e-01
-5.06748974e-01 4.61472034e-01 2.95769125e-01 5.01213908e-01
-5.71656048e-01 7.36804307e-01 1.65654063e+00 -2.82461774e-02
-3.75699580e-01 -1.84921086e-01 -4.65962619e-01 6.66019380e-01
5.14114082e-01 -3.15053165e-01 -2.83639669e-01 -5.37782490e-01
-2.62706071e-01 1.46196544e-01 5.21582544e-01 -1.24321032e+00
1.45177439e-01 -2.04066843e-01 1.01263845e+00 -6.41759038e-01
1.42853618e-01 -1.03261924e+00 5.04512429e-01 3.83496463e-01
-1.46532521e-01 -1.19325191e-01 -6.21951707e-02 7.21039295e-01
-4.51668024e-01 2.14242518e-01 1.23720610e+00 -2.14887131e-02
-1.02973318e+00 4.39398676e-01 -1.33961644e-02 -2.20852360e-01
1.10023892e+00 -2.15909228e-01 -4.38442171e-01 -1.28162101e-01
-3.98344904e-01 2.03695580e-01 6.21370018e-01 5.71436048e-01
9.21445251e-01 -1.38028049e+00 -5.89395761e-01 5.21559298e-01
-8.35030898e-03 2.26219088e-01 7.08177745e-01 9.82130110e-01
-3.97555351e-01 1.52864665e-01 -5.10346830e-01 -7.45174170e-01
-1.00046623e+00 6.17310345e-01 3.82961303e-01 -2.55737007e-01
-1.10578287e+00 4.73193765e-01 3.71012956e-01 8.89560506e-02
1.21092513e-01 -1.94736868e-01 -3.62272739e-01 7.06108063e-02
8.40847015e-01 4.61077422e-01 8.34044768e-04 -9.63368356e-01
-4.70134139e-01 1.00773227e+00 -5.62127307e-02 1.46829262e-01
1.35477400e+00 -5.92815161e-01 -7.44402185e-02 2.66898870e-01
1.41009402e+00 -4.76908460e-02 -1.67141747e+00 -3.66240233e-01
-3.82445484e-01 -9.39082086e-01 2.65520394e-01 -3.63115162e-01
-1.75323701e+00 6.23307109e-01 8.02085102e-01 -1.68076575e-01
1.69995439e+00 -3.17949623e-01 1.05121207e+00 7.59720281e-02
2.04030022e-01 -8.05437684e-01 1.95719495e-01 2.73031056e-01
7.57559538e-01 -1.22970510e+00 1.26360938e-01 -1.70243934e-01
-6.07381344e-01 1.30986774e+00 7.62290120e-01 -4.03855532e-01
3.11115086e-01 2.56541395e-03 1.67857468e-01 9.40744057e-02
-5.61062992e-01 -3.28581810e-01 2.40402997e-01 5.02021134e-01
-7.56235374e-03 -3.28806877e-01 -2.06213281e-01 -8.16885978e-02
3.27597141e-01 6.93883076e-02 5.92996895e-01 6.37948096e-01
-3.15911233e-01 -6.91557646e-01 -5.07320642e-01 2.69963622e-01
-3.80033225e-01 2.44674012e-01 1.05074145e-01 6.55875206e-01
2.27111429e-01 8.38527679e-01 4.70801108e-02 -5.35602331e-01
4.15282786e-01 -6.00084007e-01 2.26682365e-01 -1.76812977e-01
-4.50187862e-01 3.09274912e-01 -3.85406315e-01 -1.10996795e+00
-6.87009811e-01 -5.54879129e-01 -1.31308866e+00 -3.25643182e-01
-2.44136691e-01 -2.99610466e-01 2.79256314e-01 7.08319306e-01
2.31559962e-01 6.71185553e-01 9.60830092e-01 -9.54237938e-01
-3.74063730e-01 -6.64715767e-01 -6.63579285e-01 7.35405982e-01
9.11857963e-01 -7.24340200e-01 -6.05938911e-01 -5.02288155e-02] | [10.95154094696045, -1.91062593460083] |
77a5d721-782b-43fd-9a6b-35716e054a6c | block-bilinear-superdiagonal-fusion-for | 1902.00038 | null | http://arxiv.org/abs/1902.00038v2 | http://arxiv.org/pdf/1902.00038v2.pdf | BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and Visual Relationship Detection | Multimodal representation learning is gaining more and more interest within
the deep learning community. While bilinear models provide an interesting
framework to find subtle combination of modalities, their number of parameters
grows quadratically with the input dimensions, making their practical
implementation within classical deep learning pipelines challenging. In this
paper, we introduce BLOCK, a new multimodal fusion based on the
block-superdiagonal tensor decomposition. It leverages the notion of block-term
ranks, which generalizes both concepts of rank and mode ranks for tensors,
already used for multimodal fusion. It allows to define new ways for optimizing
the tradeoff between the expressiveness and complexity of the fusion model, and
is able to represent very fine interactions between modalities while
maintaining powerful mono-modal representations. We demonstrate the practical
interest of our fusion model by using BLOCK for two challenging tasks: Visual
Question Answering (VQA) and Visual Relationship Detection (VRD), where we
design end-to-end learnable architectures for representing relevant
interactions between modalities. Through extensive experiments, we show that
BLOCK compares favorably with respect to state-of-the-art multimodal fusion
models for both VQA and VRD tasks. Our code is available at
https://github.com/Cadene/block.bootstrap.pytorch. | ['Rémi Cadene', 'Hedi Ben-Younes', 'Matthieu Cord', 'Nicolas Thome'] | 2019-01-31 | null | null | null | null | ['visual-relationship-detection'] | ['computer-vision'] | [-2.38181978e-01 -3.28163326e-01 -3.13208662e-02 -4.69689578e-01
-1.17333841e+00 -8.57502937e-01 8.07749033e-01 2.90814489e-01
-2.32992351e-01 2.30190679e-01 6.06479585e-01 -3.69289458e-01
-1.95212334e-01 -4.47552502e-01 -6.48166597e-01 -6.49733067e-01
-2.78660059e-01 3.46629143e-01 -1.26471937e-01 -4.03230667e-01
-1.74801067e-01 2.91119218e-01 -1.59033859e+00 8.98495913e-01
5.39766550e-01 1.20083022e+00 -1.97730333e-01 8.09049487e-01
1.06914043e-01 1.07870007e+00 -6.51760250e-02 -7.10285664e-01
6.88676462e-02 -4.24290970e-02 -9.26102698e-01 -1.13777593e-01
9.60458755e-01 -4.13064361e-01 -6.95670068e-01 6.45817637e-01
4.82352495e-01 2.25670487e-01 6.84206247e-01 -1.50232720e+00
-6.91287518e-01 7.35853910e-01 -6.79996490e-01 8.15058798e-02
5.47825396e-01 6.13995269e-02 1.59592438e+00 -1.05395722e+00
3.86585057e-01 1.64592326e+00 6.82275176e-01 2.26335645e-01
-1.43505156e+00 -3.11950803e-01 5.85940816e-02 2.68930316e-01
-1.32637000e+00 -5.00934124e-01 5.43769717e-01 -7.31623292e-01
8.36515903e-01 5.52972913e-01 2.65899211e-01 1.03063202e+00
-6.30640835e-02 1.17516649e+00 9.96751964e-01 -1.24266088e-01
-7.57599175e-02 -2.11304605e-01 4.25500631e-01 9.71557140e-01
-2.43203074e-01 -1.05166540e-01 -8.55629385e-01 -5.42978525e-01
5.51111698e-01 1.49100274e-01 -2.85870075e-01 -7.36368537e-01
-1.58808708e+00 8.24288726e-01 6.87435448e-01 2.46660933e-01
-1.54216304e-01 6.69210672e-01 4.75422800e-01 3.04300308e-01
2.38292933e-01 1.17416099e-01 -3.63953441e-01 -1.65392399e-01
-5.48424721e-01 4.03682739e-01 7.40039468e-01 5.67196369e-01
7.68489659e-01 -3.90757561e-01 -4.17563617e-01 1.09219217e+00
4.92066264e-01 3.87085021e-01 -1.22132808e-01 -1.18476021e+00
5.52743673e-01 7.79878497e-01 -1.54756457e-01 -9.99235988e-01
-5.05632937e-01 -2.14089900e-01 -9.92393076e-01 -1.03662070e-03
5.45387626e-01 6.43975884e-02 -8.93855095e-01 1.91420293e+00
3.22120219e-01 -1.68182552e-01 -8.10447559e-02 1.08799863e+00
1.20159042e+00 6.24329507e-01 1.81084916e-01 3.32365751e-01
1.80331278e+00 -9.16444063e-01 -5.39000034e-01 3.23092490e-02
7.08645105e-01 -7.65748560e-01 9.70531583e-01 2.31114775e-01
-1.29963815e+00 -2.98805505e-01 -7.25286424e-01 -8.08240414e-01
-4.94256616e-01 7.79857859e-02 1.12879252e+00 4.33583260e-01
-1.30066299e+00 2.95652092e-01 -8.88990402e-01 -3.96667957e-01
3.62394333e-01 4.51301873e-01 -7.52402246e-01 -3.22017670e-01
-1.09404802e+00 7.88833737e-01 1.05425030e-01 2.90352941e-01
-9.28989351e-01 -8.09959650e-01 -9.73915815e-01 1.91872448e-01
2.25621462e-01 -1.20752335e+00 1.30544221e+00 -5.00807643e-01
-1.06133366e+00 9.15189624e-01 -2.09233731e-01 -8.31478238e-02
4.05958831e-01 -1.62991479e-01 -4.94043753e-02 1.93202719e-01
-1.97323471e-01 9.19894695e-01 7.55293369e-01 -1.36192274e+00
-5.22818267e-01 -4.20578003e-01 6.11669958e-01 2.60714591e-01
-2.67588317e-01 -1.24893747e-02 -6.56130433e-01 -4.31580633e-01
5.72178438e-02 -9.08019781e-01 -4.10775505e-02 2.33612746e-01
-2.93384314e-01 -4.44708586e-01 6.61196530e-01 -7.46760368e-01
9.48369145e-01 -2.15882659e+00 8.13091218e-01 2.11647391e-01
7.38874197e-01 -2.03853235e-01 -4.33186948e-01 7.44039297e-01
-2.99655385e-02 1.68267414e-02 -3.62045705e-01 -7.75281668e-01
4.92398560e-01 3.54982823e-01 -3.40095401e-01 3.54095101e-01
2.35851184e-01 1.08738542e+00 -7.71491528e-01 -3.21424365e-01
1.19424559e-01 8.42679739e-01 -6.39984131e-01 2.80982375e-01
-8.63566995e-02 2.35808641e-01 -1.39720470e-01 9.76958454e-01
7.09165454e-01 -5.55302143e-01 2.95012414e-01 -7.89676070e-01
1.80610120e-01 2.27592066e-01 -9.84944642e-01 1.89833331e+00
-3.75835627e-01 6.17494166e-01 4.02455389e-01 -7.07230985e-01
4.04776454e-01 2.10545972e-01 3.72139454e-01 -4.79108572e-01
2.38539979e-01 4.81227450e-02 -2.53298789e-01 -3.51628751e-01
6.94244742e-01 6.98968694e-02 -2.71686673e-01 4.97668475e-01
4.55948591e-01 2.17465609e-02 3.97836834e-01 6.41327500e-01
9.93397892e-01 -5.37530482e-02 -2.75871269e-02 -6.15750551e-02
3.63959014e-01 -2.40057558e-01 -1.18149579e-01 6.12124801e-01
1.89988792e-01 5.52559793e-01 9.18142557e-01 -3.16121906e-01
-7.63939559e-01 -1.27080870e+00 -1.97986364e-02 1.69870591e+00
1.74608547e-02 -6.74211562e-01 -3.27125639e-01 -5.76297104e-01
3.28257382e-01 1.00402780e-01 -9.02466297e-01 5.88362478e-02
-3.27532589e-01 -7.17000306e-01 6.87299907e-01 5.43763757e-01
1.61275119e-01 -3.30682039e-01 -1.62902027e-01 -3.77946854e-01
-5.40810227e-01 -1.09272027e+00 -4.27296549e-01 -4.88700904e-03
-7.40903795e-01 -1.06818080e+00 -7.51631618e-01 -5.25930285e-01
4.37070251e-01 5.14435828e-01 1.40206861e+00 9.90656912e-02
-1.15042843e-01 1.00795496e+00 -3.10622603e-01 1.29829437e-01
-1.41664326e-01 1.61306292e-01 -2.21673787e-01 2.13174403e-01
7.58423358e-02 -5.49640536e-01 -6.40298665e-01 1.70396671e-01
-1.27471459e+00 2.46049210e-01 5.29766560e-01 8.80295753e-01
3.73262465e-01 -5.34428775e-01 -4.49115895e-02 -3.90938103e-01
7.52422988e-01 -6.45848393e-01 -3.67272586e-01 4.11043108e-01
7.03416318e-02 2.60072470e-01 -1.76231675e-02 -3.69660765e-01
-6.08031034e-01 -1.34800121e-01 -2.38638464e-03 -6.20602369e-01
1.47754937e-01 9.53644574e-01 -4.94111814e-02 -1.74554944e-01
5.01910806e-01 -2.63827324e-01 2.44249552e-02 -6.54185176e-01
9.64326024e-01 3.08827549e-01 6.04870200e-01 -8.75241220e-01
7.38113761e-01 5.91758549e-01 1.03628471e-01 -6.05441213e-01
-7.32672930e-01 -5.72170019e-01 -4.83252406e-01 -1.58137709e-01
7.32271314e-01 -1.18301427e+00 -1.23782289e+00 2.75448620e-01
-1.17837512e+00 -1.69482291e-01 -1.00907190e-02 2.51886964e-01
-2.71382809e-01 5.97921968e-01 -7.45989561e-01 -6.46162927e-01
-1.91873282e-01 -1.21600604e+00 1.44934952e+00 -7.81182125e-02
-8.57948810e-02 -1.04282272e+00 1.75208956e-01 8.68493199e-01
3.83276582e-01 3.31766069e-01 1.05579138e+00 -2.91989923e-01
-7.44470358e-01 -6.77470267e-02 -6.03696108e-01 3.23367834e-01
-2.67508745e-01 -3.28482352e-02 -1.08736241e+00 -3.68507445e-01
-4.57722127e-01 -6.44103408e-01 1.39693975e+00 6.95445314e-02
1.00481248e+00 -1.73404187e-01 -1.26087904e-01 5.77301383e-01
1.17607772e+00 -5.61589241e-01 4.56999898e-01 -1.06139496e-01
1.20369232e+00 6.05471492e-01 1.09331533e-01 4.31833655e-01
1.09654701e+00 7.11807966e-01 6.30960822e-01 -2.81335056e-01
-7.73727149e-02 -4.99758050e-02 3.64608854e-01 8.81307840e-01
-2.00164765e-01 -1.40774012e-01 -1.22234559e+00 5.76357961e-01
-2.27250528e+00 -7.29971349e-01 -1.21999353e-01 1.92895460e+00
7.01450706e-01 -5.37072778e-01 3.22616249e-01 -1.62738815e-01
3.11762035e-01 2.22444028e-01 -1.84594885e-01 -3.25799525e-01
-2.77909577e-01 -7.31741451e-03 2.34540984e-01 6.68306947e-01
-1.27377951e+00 6.47520661e-01 6.14246988e+00 6.81707501e-01
-8.96304309e-01 2.47631222e-01 4.95363355e-01 -2.13104531e-01
-6.63874447e-01 5.01747150e-03 -3.72902751e-01 -3.48918140e-03
6.97364271e-01 3.07929873e-01 6.82673335e-01 3.00618708e-01
-3.17033827e-01 -3.45723666e-02 -1.51447701e+00 1.39150810e+00
7.69392252e-02 -1.38487148e+00 2.66916007e-01 -5.75614497e-02
5.45792460e-01 2.54898101e-01 3.91266882e-01 4.58468974e-01
3.98582578e-01 -1.16807461e+00 7.40856469e-01 6.72346294e-01
4.99336839e-01 -6.08509183e-01 5.94370604e-01 -1.21278331e-01
-1.23138678e+00 -1.31794304e-01 -1.62245914e-01 1.22411653e-01
1.16714202e-01 5.45719862e-01 -4.61374283e-01 6.81795478e-01
7.78569221e-01 6.29801631e-01 -8.14289808e-01 8.14378977e-01
1.30299330e-01 2.50386715e-01 -4.79849756e-01 3.30370277e-01
3.42831045e-01 -9.94971246e-02 4.88729686e-01 1.38314748e+00
2.76375175e-01 -2.99037211e-02 4.07916307e-02 7.96818018e-01
-4.43096995e-01 -4.24216315e-02 -4.90261972e-01 -3.07070911e-01
1.35867208e-01 1.49364507e+00 -1.76183730e-01 -1.86323315e-01
-4.62642133e-01 6.64881408e-01 6.33827448e-01 5.24566233e-01
-8.81680489e-01 1.17222235e-01 8.92167151e-01 -1.69828147e-01
3.54559422e-01 -5.43699145e-01 -2.75235355e-01 -1.55310297e+00
4.61170822e-02 -1.13736343e+00 8.30125928e-01 -8.36462855e-01
-1.69799399e+00 4.33048725e-01 2.28805780e-01 -1.03993690e+00
-1.22402653e-01 -8.20801735e-01 -1.24507941e-01 7.71485090e-01
-1.34369588e+00 -1.80366373e+00 -4.09721017e-01 9.42774236e-01
-1.45133346e-01 1.28514946e-01 7.74159074e-01 4.29677337e-01
-4.20854330e-01 7.40875125e-01 3.97619382e-02 3.72239873e-02
7.43282080e-01 -1.28563368e+00 4.96774763e-02 5.00760317e-01
2.04948738e-01 7.87244141e-01 6.16728544e-01 -1.25474036e-02
-2.06611013e+00 -5.65862298e-01 7.72183895e-01 -7.55875945e-01
1.06606364e+00 -5.79869092e-01 -8.22050810e-01 6.85434103e-01
5.14809489e-01 -2.22150199e-02 1.05109119e+00 6.30316615e-01
-1.14306366e+00 -1.77719831e-01 -7.39002585e-01 7.00284421e-01
8.62584949e-01 -1.02805960e+00 -2.96635151e-01 3.69095862e-01
6.63214564e-01 -4.14768279e-01 -1.29557085e+00 5.54552436e-01
7.25918770e-01 -1.02641022e+00 1.07929742e+00 -6.02375090e-01
5.05029738e-01 -4.89035428e-01 -6.80171490e-01 -1.07327509e+00
-3.71074855e-01 -5.83993196e-01 -6.03620827e-01 1.12420344e+00
4.22528327e-01 -3.33917141e-01 3.14995438e-01 7.59902000e-01
1.16633527e-01 -8.82224798e-01 -9.42559242e-01 -2.54901797e-01
2.04056092e-02 -4.48839605e-01 4.86806065e-01 1.21815658e+00
1.29818320e-01 6.33595705e-01 -4.22821283e-01 1.23116791e-01
5.68655908e-01 2.36672536e-01 8.67668092e-01 -1.03176010e+00
-5.24743080e-01 -7.80079424e-01 -4.50923622e-01 -1.07227707e+00
-5.06247059e-02 -1.08792567e+00 -3.55990112e-01 -1.68726206e+00
4.77268636e-01 -1.63637549e-01 -4.98165071e-01 8.78453612e-01
-1.33374020e-01 4.97608751e-01 5.05853534e-01 2.09865972e-01
-8.96113992e-01 6.04705691e-01 1.10166931e+00 -4.71490443e-01
5.30791655e-02 -4.91142571e-01 -9.02025402e-01 4.65833068e-01
5.23415089e-01 6.84745461e-02 -3.05506527e-01 -9.60247040e-01
6.71805263e-01 7.92365298e-02 7.62962341e-01 -5.36774039e-01
2.18565077e-01 1.34065181e-01 2.09167033e-01 -6.36083066e-01
8.11185837e-01 -7.44070768e-01 8.69911909e-02 -7.09296986e-02
-5.38702250e-01 2.06011400e-01 3.96256685e-01 3.88795972e-01
-4.01954591e-01 3.77924174e-01 4.91142094e-01 2.10408986e-01
-6.27977252e-01 3.54600489e-01 -1.16792567e-01 -1.72058225e-01
5.43005109e-01 1.63601965e-01 -7.24195004e-01 -6.09253645e-01
-7.20858574e-01 5.08228660e-01 2.78239667e-01 5.91442108e-01
6.44449532e-01 -1.64638734e+00 -7.89278150e-01 -2.50547111e-01
3.63218367e-01 -2.80143917e-01 6.42625391e-01 1.28413022e+00
-3.61349791e-01 2.55995125e-01 -9.49679166e-02 -8.33841205e-01
-1.42427182e+00 5.04398346e-01 2.68570721e-01 -4.17846143e-01
-1.09054185e-01 9.31141853e-01 4.52856243e-01 -7.10713804e-01
4.40116346e-01 -4.00909990e-01 -6.34742081e-02 3.81445110e-01
5.00615597e-01 3.90013963e-01 -3.11727747e-02 -7.32360482e-01
-5.33177555e-01 3.73358041e-01 -1.38847023e-01 -2.01479822e-01
1.20204651e+00 -7.13544786e-02 -7.04912186e-01 5.61424851e-01
1.48104656e+00 -2.60616064e-01 -9.98024285e-01 -3.92667145e-01
-1.65583640e-01 -3.98588806e-01 1.01622701e-01 -8.95885646e-01
-1.02408314e+00 1.07080281e+00 7.03907669e-01 2.77150869e-01
1.06499803e+00 3.34497184e-01 6.65342152e-01 5.18164933e-01
9.47131217e-02 -4.26794976e-01 1.01443194e-01 6.63284600e-01
1.13278854e+00 -1.24038005e+00 5.41798770e-02 -2.42634699e-01
-8.16172123e-01 9.88357663e-01 2.45473325e-01 1.66045412e-01
6.49257898e-01 9.19788927e-02 8.15866441e-02 -4.19545412e-01
-9.86122131e-01 -3.43591154e-01 8.58068824e-01 3.47116917e-01
5.83527327e-01 2.53496379e-01 1.03690147e-01 2.87550539e-01
1.53534487e-02 -3.06473255e-01 1.50930956e-01 8.47731054e-01
-1.27430737e-01 -1.17464113e+00 -4.54857945e-01 2.81876087e-01
-3.36654603e-01 -1.67137474e-01 -5.15361726e-01 5.89756310e-01
5.82891144e-02 8.85050476e-01 -6.07971586e-02 -5.84479332e-01
1.95779756e-01 -3.45919877e-02 7.39772320e-01 -1.76917225e-01
-5.96731186e-01 3.57759884e-03 3.22987080e-01 -7.04449177e-01
-5.78954279e-01 -5.39137721e-01 -7.68518567e-01 -7.16320753e-01
6.00517988e-02 -1.83341615e-02 5.78775942e-01 8.28036964e-01
5.04284382e-01 2.26295933e-01 3.40971559e-01 -1.07208693e+00
-4.09500957e-01 -8.42519045e-01 -3.54906976e-01 5.06315351e-01
6.14570260e-01 -7.56123722e-01 -1.59246385e-01 -2.87189074e-02] | [10.755874633789062, 1.54763925075531] |
96f0aeef-6f16-473b-8df6-bc928a8dc4b9 | stochastic-pitch-prediction-improves-the | 2305.17724 | null | https://arxiv.org/abs/2305.17724v1 | https://arxiv.org/pdf/2305.17724v1.pdf | Stochastic Pitch Prediction Improves the Diversity and Naturalness of Speech in Glow-TTS | Flow-based generative models are widely used in text-to-speech (TTS) systems to learn the distribution of audio features (e.g., Mel-spectrograms) given the input tokens and to sample from this distribution to generate diverse utterances. However, in the zero-shot multi-speaker TTS scenario, the generated utterances lack diversity and naturalness. In this paper, we propose to improve the diversity of utterances by explicitly learning the distribution of fundamental frequency sequences (pitch contours) of each speaker during training using a stochastic flow-based pitch predictor, then conditioning the model on generated pitch contours during inference. The experimental results demonstrate that the proposed method yields a significant improvement in the naturalness and diversity of speech generated by a Glow-TTS model that uses explicit stochastic pitch prediction, over a Glow-TTS baseline and an improved Glow-TTS model that uses a stochastic duration predictor. | ['Emmanuel Vincent', 'Vincent Colotte', 'Sewade Ogun'] | 2023-05-28 | null | null | null | null | ['zero-shot-multi-speaker-tts'] | ['audio'] | [ 2.22466290e-01 1.11581467e-01 5.36511913e-02 -3.57497543e-01
-1.01940119e+00 -4.36698139e-01 6.44228458e-01 -6.22736476e-02
-6.16157707e-03 6.47718787e-01 6.37579918e-01 -1.89808980e-01
1.94210902e-01 -6.10539079e-01 -4.81049567e-01 -9.66383159e-01
1.88736152e-02 3.90644044e-01 6.34191707e-02 -2.66558677e-01
1.78789988e-01 2.29382485e-01 -1.96193218e+00 1.19260594e-01
7.59319425e-01 7.16856539e-01 4.85660404e-01 1.45277190e+00
-2.51947045e-01 8.05277884e-01 -1.19608426e+00 3.11858989e-02
9.39810649e-02 -9.84368145e-01 -3.30465525e-01 7.00912401e-02
1.61089197e-01 -3.29487920e-01 -1.95351347e-01 7.90170908e-01
6.59383059e-01 6.20580375e-01 9.47490692e-01 -9.19885874e-01
-2.87443876e-01 8.56478631e-01 -9.04362351e-02 2.62499750e-01
3.81680697e-01 2.37344280e-01 9.95062172e-01 -7.30332077e-01
3.50021213e-01 1.41377842e+00 3.36276144e-01 6.89519227e-01
-1.23003697e+00 -7.87808836e-01 -1.82774514e-01 -1.14357218e-01
-1.35287666e+00 -8.43844831e-01 8.56620908e-01 -4.67012137e-01
8.37085187e-01 2.83713877e-01 5.92784047e-01 1.23412836e+00
1.87050149e-01 7.37198770e-01 5.60345829e-01 -8.11452210e-01
6.30215704e-01 1.16746323e-02 -3.37162346e-01 3.13459903e-01
-5.05683005e-01 4.29554015e-01 -9.09807265e-01 -2.06241161e-01
6.57233775e-01 -4.59601671e-01 -1.14651643e-01 1.95422679e-01
-9.09309864e-01 1.02598810e+00 -2.42648751e-01 2.66476214e-01
-4.65826362e-01 3.05765271e-01 3.58775496e-01 1.68864712e-01
4.93766159e-01 2.81905353e-01 6.77503273e-02 -6.00518823e-01
-1.49068058e+00 6.62283182e-01 1.07366765e+00 1.01390803e+00
5.63030541e-01 8.25070858e-01 -5.39511859e-01 7.71425366e-01
3.87281358e-01 9.32224154e-01 7.16685414e-01 -9.84333575e-01
4.45558488e-01 -3.49973381e-01 6.77677318e-02 -5.15287220e-01
1.41207948e-01 -2.32533216e-01 -5.14684796e-01 1.08552620e-01
2.86409557e-01 -5.16586244e-01 -1.08477283e+00 1.77420843e+00
3.30337673e-01 3.85070056e-01 2.97066033e-01 5.71311653e-01
4.79307860e-01 1.27698302e+00 -3.15740556e-02 -4.51643199e-01
9.27414656e-01 -8.95603299e-01 -1.06846678e+00 3.10707837e-02
2.72108406e-01 -1.02492034e+00 1.28639936e+00 3.37865919e-01
-1.14701724e+00 -8.85875762e-01 -9.86560166e-01 3.40939432e-01
5.01896665e-02 -1.82289451e-01 -1.46419689e-01 1.09369135e+00
-7.96905339e-01 5.59444487e-01 -7.55734384e-01 1.89558342e-01
-1.48740172e-01 -1.35525176e-02 3.76668304e-01 3.98182631e-01
-1.31611788e+00 4.25374687e-01 5.32161713e-01 -4.65131044e-01
-1.19772208e+00 -9.50402260e-01 -8.95518899e-01 3.53793383e-01
9.63397920e-02 -3.47826451e-01 1.74493086e+00 -5.83589375e-01
-2.21785045e+00 -1.10433713e-01 -4.97978836e-01 -5.76642275e-01
2.51434237e-01 -2.12475657e-01 -4.83249068e-01 3.13740045e-01
-2.36762792e-01 7.25573838e-01 1.25587845e+00 -1.10709488e+00
-7.77184963e-01 3.64023536e-01 -5.12213826e-01 3.25591624e-01
-2.17669994e-01 -2.38533646e-01 1.22504883e-01 -8.72830808e-01
-2.29792163e-01 -8.95912230e-01 -1.49927139e-01 -5.77533126e-01
-4.93775308e-01 -2.33821750e-01 8.62729490e-01 -6.61860704e-01
1.50743091e+00 -2.29055262e+00 2.73473151e-02 6.20454475e-02
-3.60343486e-01 3.46800447e-01 -1.11358970e-01 7.06048667e-01
2.50937611e-01 -1.07499920e-01 -1.52643412e-01 -6.23672247e-01
8.77605900e-02 2.92307317e-01 -7.89313018e-01 -4.37332056e-02
2.11707339e-01 4.72743630e-01 -1.00033224e+00 -4.54185188e-01
4.29931939e-01 7.82547057e-01 -6.95088506e-01 7.05384135e-01
-5.42333841e-01 6.15980685e-01 -5.41682467e-02 2.03562900e-02
1.80269897e-01 4.38719898e-01 -1.36150569e-01 1.72453016e-01
-2.15096280e-01 5.56773245e-01 -1.17778301e+00 1.57101488e+00
-7.93032467e-01 6.68748379e-01 -2.96788841e-01 -4.34881270e-01
1.36610329e+00 8.39807212e-01 2.10172534e-01 -2.17984423e-01
9.54908058e-02 1.31310225e-01 2.95552313e-01 -3.59555215e-01
7.82669902e-01 -4.90723401e-01 -2.08971277e-02 5.05989015e-01
4.14104104e-01 -7.60731757e-01 3.10767710e-01 5.15797064e-02
5.82148433e-01 -4.70082797e-02 7.70394132e-02 -1.89017877e-02
5.14399469e-01 -5.02332747e-01 2.51065165e-01 6.87820911e-01
1.66525260e-01 8.66937399e-01 2.50600189e-01 4.09079120e-02
-1.37206864e+00 -1.30643845e+00 9.56024006e-02 1.20808923e+00
-4.14606363e-01 -5.05065978e-01 -1.02466786e+00 -8.72206688e-02
-2.86743194e-01 1.44847846e+00 -1.93882167e-01 -2.76978999e-01
-6.97917402e-01 -2.15920553e-01 8.42790425e-01 3.02724600e-01
-6.93741217e-02 -1.28976011e+00 -6.07911527e-01 6.74551964e-01
-3.03057373e-01 -9.85763967e-01 -9.30355608e-01 1.87066883e-01
-6.46267354e-01 -1.36981294e-01 -9.79425132e-01 -5.54199159e-01
1.40960872e-01 -2.75839537e-01 7.41434693e-01 -6.19675636e-01
-1.64307222e-01 7.99579844e-02 -5.89886904e-01 -6.45916283e-01
-1.28659332e+00 1.37992740e-01 1.56362116e-01 1.37579560e-01
-5.53255752e-02 -6.33877516e-01 -3.51980448e-01 2.92395577e-02
-1.03948486e+00 -6.11362569e-02 1.69105291e-01 8.86133909e-01
4.13447738e-01 2.03382120e-01 9.98964548e-01 -6.05699062e-01
8.26485515e-01 -3.51059943e-01 -4.07895446e-01 5.35555296e-02
-4.15853322e-01 2.02481404e-01 9.57284510e-01 -7.87985921e-01
-1.37284255e+00 -5.03871180e-02 -5.47323823e-01 -6.35084093e-01
-3.11220437e-01 3.16217184e-01 -5.11848880e-03 5.60070813e-01
7.36097395e-01 5.50391436e-01 4.58046198e-02 -3.51745456e-01
6.37595773e-01 1.00519109e+00 7.69355714e-01 -6.30553961e-01
7.00986743e-01 -1.11221626e-01 -3.01011831e-01 -1.27258623e+00
-6.16393805e-01 -3.66667271e-01 -3.33704203e-01 -1.74280792e-01
6.22763455e-01 -7.80872703e-01 -4.12744045e-01 4.15815622e-01
-1.20185542e+00 -2.37847686e-01 -7.01896489e-01 7.49144554e-01
-1.10576451e+00 2.52164245e-01 -5.60494602e-01 -1.58409858e+00
-5.16145825e-01 -9.54675019e-01 1.10195088e+00 4.76234138e-01
-5.18682361e-01 -9.57967639e-01 4.25204933e-01 -2.85014566e-02
5.11742353e-01 1.29898012e-01 8.68018031e-01 -5.57989657e-01
-2.14342877e-01 -1.90450419e-02 6.67538762e-01 4.85010445e-01
5.28056324e-01 3.14682275e-01 -1.28036320e+00 -1.35583624e-01
6.07387014e-02 -1.32621199e-01 4.46129173e-01 6.60584092e-01
7.04364657e-01 -6.51773691e-01 1.49377704e-01 4.22167540e-01
1.02841640e+00 8.06473076e-01 5.90141475e-01 -5.49285948e-01
4.00386631e-01 6.51225626e-01 5.35830915e-01 8.15181196e-01
-2.49297917e-02 4.65107799e-01 -2.79638786e-02 2.07000285e-01
-3.54576349e-01 -6.11809313e-01 5.46639025e-01 1.33820939e+00
9.91002694e-02 -5.74357808e-01 -6.03768110e-01 7.34698057e-01
-1.38332331e+00 -1.26766849e+00 3.55924636e-01 2.37530136e+00
1.21154118e+00 2.46114388e-01 4.31784689e-01 5.23608029e-01
8.71621549e-01 3.16064566e-01 -4.59742874e-01 -8.45408976e-01
7.31872097e-02 5.87039053e-01 6.25778213e-02 8.29638004e-01
-6.57528698e-01 9.15470719e-01 6.58501911e+00 1.14540124e+00
-1.23303044e+00 -2.16362000e-01 3.68088216e-01 -2.06099078e-01
-4.35952485e-01 -2.99423099e-01 -1.07061064e+00 4.83266175e-01
1.74594295e+00 -7.63164341e-01 5.37700057e-01 5.85693777e-01
5.83806753e-01 9.09596607e-02 -1.10765135e+00 7.77062953e-01
-2.64731925e-02 -1.25964975e+00 1.22317471e-01 -1.31495014e-01
7.56851494e-01 -4.59587783e-01 4.28632408e-01 3.47061306e-01
3.03016514e-01 -1.02275419e+00 1.11440170e+00 3.85005444e-01
8.51584673e-01 -1.02310717e+00 2.77682632e-01 5.11165500e-01
-1.22759271e+00 2.05427200e-01 -1.98536068e-01 1.22936167e-01
6.38674021e-01 5.56538939e-01 -1.59114540e+00 3.82697523e-01
1.28474295e-01 7.26017589e-03 1.80106610e-01 9.08557236e-01
-1.42955348e-01 1.27257109e+00 -2.35062867e-01 -2.84402668e-01
4.39127922e-01 1.86198488e-01 6.94554627e-01 1.59766865e+00
6.22631729e-01 -2.98004765e-02 1.58498988e-01 9.74453211e-01
2.46001586e-01 1.16881169e-01 -4.40399051e-01 -4.01338369e-01
8.99316967e-01 7.32148707e-01 -3.63069028e-01 -4.54009563e-01
1.95310768e-02 7.09503472e-01 -4.53257769e-01 5.41880071e-01
-8.55823278e-01 -8.32495570e-01 5.72392106e-01 -2.24167164e-02
6.23291552e-01 -3.21727604e-01 -1.73935611e-02 -5.81145644e-01
-4.76139337e-01 -7.40813971e-01 -1.19700938e-01 -5.97891331e-01
-1.04400182e+00 7.59241462e-01 1.82982340e-01 -1.23070991e+00
-1.38608181e+00 6.53523952e-02 -8.12232018e-01 1.41109252e+00
-1.23943424e+00 -6.72585368e-01 3.34302306e-01 3.63658160e-01
1.13167715e+00 -3.25253218e-01 9.52049851e-01 -1.70268685e-01
-2.65212413e-02 6.12071991e-01 2.34922439e-01 -6.60313070e-02
5.11316419e-01 -1.26663613e+00 7.67631650e-01 5.59190631e-01
3.89913946e-01 3.98408622e-01 1.23520553e+00 -4.93534029e-01
-9.62841153e-01 -1.12851405e+00 9.75190520e-01 8.87051374e-02
3.07539880e-01 -4.32570428e-01 -9.53387439e-01 2.82506436e-01
5.54552555e-01 -3.65931064e-01 8.65352094e-01 -2.42709324e-01
-6.51143864e-02 1.01906836e-01 -1.08179545e+00 5.01871049e-01
3.77559304e-01 -5.48991382e-01 -8.55219066e-01 -2.76810192e-02
1.10616946e+00 -4.91624951e-01 -7.26663113e-01 -8.70797485e-02
5.47606170e-01 -9.43831801e-01 7.64592230e-01 -2.58824468e-01
2.13589609e-01 -2.63810188e-01 -3.03273261e-01 -1.85431159e+00
-3.92779224e-02 -1.12601674e+00 -3.11576784e-01 1.50508678e+00
4.65256214e-01 -3.11988682e-01 6.76957428e-01 1.94612846e-01
-2.74718702e-01 -3.41737360e-01 -9.53671515e-01 -1.09189320e+00
1.13657296e-01 -3.98837566e-01 7.23595023e-01 2.38999695e-01
5.42622176e-04 3.79341483e-01 -5.27734637e-01 1.91006497e-01
5.32142401e-01 -1.46557838e-01 7.22940803e-01 -8.27174366e-01
-7.07386792e-01 -2.62846231e-01 -2.21087560e-02 -1.21789002e+00
-2.16550641e-02 -4.42867428e-01 7.59205520e-01 -1.03477418e+00
-5.38096130e-01 -1.70555100e-01 -1.31534636e-02 -1.62757173e-01
-3.58929634e-01 -3.36077839e-01 5.68727911e-01 -1.41023770e-01
7.06447735e-02 1.00965357e+00 1.11819804e+00 -2.14147754e-02
-6.30664349e-01 3.23325366e-01 -1.42650977e-01 4.70949233e-01
7.44755983e-01 -6.53826237e-01 -9.05339837e-01 2.26810724e-02
-5.10489643e-01 6.21422589e-01 -1.85124382e-01 -1.15520775e+00
2.93273836e-01 -3.07613730e-01 8.29784796e-02 -9.18408573e-01
6.40468895e-01 -2.07533196e-01 2.04625785e-01 5.35653770e-01
-6.78241611e-01 -2.35828176e-01 1.31706089e-01 4.58486497e-01
-4.22481030e-01 -5.13296723e-01 8.35844994e-01 5.73259499e-03
-1.37767166e-01 6.19692765e-02 -8.34539592e-01 2.46681169e-01
6.45968437e-01 -1.97458863e-01 9.93938148e-02 -8.28497112e-01
-5.84282815e-01 -3.28002125e-01 -1.43673465e-01 4.02501106e-01
6.72117412e-01 -1.29419470e+00 -9.13113058e-01 4.45364565e-01
-1.78661972e-01 5.52791208e-02 1.78734556e-01 5.32198772e-02
-1.95260644e-01 5.33599555e-01 8.25807676e-02 -6.79925382e-01
-1.02986443e+00 2.54091054e-01 9.57840309e-02 -3.18793431e-02
-4.74223912e-01 8.20770264e-01 3.43394697e-01 -1.35408208e-01
4.58001643e-01 -4.71016377e-01 -8.42230767e-02 -7.86533356e-02
7.19099343e-01 4.33267921e-01 -1.38621643e-01 -6.16356373e-01
5.84482513e-02 3.64514351e-01 1.77600145e-01 -9.82438207e-01
9.00923431e-01 -2.31477499e-01 7.08806098e-01 1.00138843e+00
1.06466889e+00 3.58815074e-01 -1.46940243e+00 -5.06923683e-02
-1.16158113e-01 -4.64603782e-01 -7.44840130e-02 -5.97182512e-01
-6.30153418e-01 1.13073564e+00 2.54578292e-01 4.13480222e-01
9.17361200e-01 -2.51288176e-01 1.08939981e+00 6.96662515e-02
1.76836982e-01 -9.28705931e-01 3.12666655e-01 7.92666972e-01
8.15633178e-01 -5.65726876e-01 -6.60540760e-01 -2.13607788e-01
-8.74685764e-01 1.31548548e+00 2.40218669e-01 -4.97682579e-02
6.16781950e-01 5.07308722e-01 2.93756783e-01 5.05914748e-01
-9.53817248e-01 -1.22435123e-01 2.04819605e-01 8.07735443e-01
5.76152384e-01 1.54392615e-01 8.43898728e-02 1.94255814e-01
-8.91187370e-01 -2.32431337e-01 6.23622835e-01 6.06936336e-01
-8.89297724e-01 -1.20210469e+00 -6.76126659e-01 1.12863071e-01
-2.60799408e-01 -3.24963003e-01 8.15581381e-02 2.52658635e-01
-5.98542280e-02 1.24284649e+00 3.44000429e-01 -3.74264151e-01
2.67561615e-01 5.72797656e-01 4.01082933e-01 -8.24678123e-01
-5.53330958e-01 7.07983077e-01 3.53314471e-03 1.90915421e-01
-3.98176117e-03 -8.32910061e-01 -1.43001068e+00 -2.41605893e-01
-4.50933248e-01 5.22172689e-01 8.26335490e-01 7.13530600e-01
3.95884626e-02 8.52049649e-01 1.14646244e+00 -8.17726970e-01
-8.75388622e-01 -1.22093475e+00 -7.41976500e-01 2.14291334e-01
6.65512025e-01 -2.18363509e-01 -6.05402112e-01 4.99898702e-01] | [15.205803871154785, 6.348029136657715] |
61a7f2fa-ab0e-4267-989d-f902c353dd01 | meshwalker-deep-mesh-understanding-by-random | 2006.05353 | null | https://arxiv.org/abs/2006.05353v3 | https://arxiv.org/pdf/2006.05353v3.pdf | MeshWalker: Deep Mesh Understanding by Random Walks | Most attempts to represent 3D shapes for deep learning have focused on volumetric grids, multi-view images and point clouds. In this paper we look at the most popular representation of 3D shapes in computer graphics - a triangular mesh - and ask how it can be utilized within deep learning. The few attempts to answer this question propose to adapt convolutions & pooling to suit Convolutional Neural Networks (CNNs). This paper proposes a very different approach, termed MeshWalker, to learn the shape directly from a given mesh. The key idea is to represent the mesh by random walks along the surface, which "explore" the mesh's geometry and topology. Each walk is organized as a list of vertices, which in some manner imposes regularity on the mesh. The walk is fed into a Recurrent Neural Network (RNN) that "remembers" the history of the walk. We show that our approach achieves state-of-the-art results for two fundamental shape analysis tasks: shape classification and semantic segmentation. Furthermore, even a very small number of examples suffices for learning. This is highly important, since large datasets of meshes are difficult to acquire. | ['Alon Lahav', 'Ayellet Tal'] | 2020-06-09 | null | null | null | null | ['3d-object-recognition', '3d-classification'] | ['computer-vision', 'computer-vision'] | [-7.61202946e-02 2.70718962e-01 2.30785072e-01 -2.68844843e-01
-3.66953462e-01 -6.29638553e-01 5.58633566e-01 3.38860840e-01
-1.67725384e-01 2.10713610e-01 -2.56619602e-01 -2.83818990e-01
1.06209978e-01 -1.33033776e+00 -1.03925288e+00 -6.43380105e-01
-1.64137945e-01 1.00427830e+00 2.45802104e-01 -1.96477637e-01
3.68999869e-01 1.25798619e+00 -1.56548464e+00 4.65823680e-01
2.39763916e-01 1.01767170e+00 2.49128506e-01 5.81219792e-01
-6.53094053e-01 1.43129811e-01 -1.96212187e-01 -3.81327212e-01
1.26228154e-01 8.80910549e-03 -1.12460411e+00 9.25929099e-02
4.44898337e-01 1.55984731e-02 -9.71541107e-02 9.48094070e-01
4.22895461e-01 -6.84408296e-04 7.95656323e-01 -7.22411215e-01
-5.64457655e-01 3.90765876e-01 -4.85993743e-01 9.02060345e-02
1.42744486e-03 -1.01546273e-01 9.14820433e-01 -1.09344304e+00
9.48012650e-01 1.37504232e+00 1.02976823e+00 5.70533216e-01
-1.30551648e+00 -3.02298009e-01 8.42127353e-02 -2.65535057e-01
-1.23772693e+00 -8.52448717e-02 1.07074153e+00 -5.61166823e-01
1.06534326e+00 2.32437462e-01 9.71356750e-01 7.85167575e-01
2.37850294e-01 8.65159929e-01 7.96511173e-01 -1.70971543e-01
3.55112672e-01 -1.57499015e-01 -4.00764644e-02 1.13432968e+00
1.58891454e-02 -3.08040559e-01 -4.69606854e-02 -2.06964627e-01
1.25257063e+00 1.47598628e-02 -2.82531716e-02 -6.74365878e-01
-9.58370090e-01 8.51864755e-01 8.18331361e-01 4.14799660e-01
-4.14217263e-01 4.51737702e-01 3.86307895e-01 1.73204482e-01
8.09743822e-01 4.31145966e-01 -5.28864145e-01 2.15316713e-01
-9.50474858e-01 4.10981208e-01 9.04358149e-01 6.36543751e-01
9.70057905e-01 3.73697765e-02 2.39187390e-01 6.99486315e-01
3.09140831e-01 2.05188975e-01 -6.00827411e-02 -8.39425921e-01
1.75399050e-01 8.58190715e-01 -7.01034069e-02 -1.11884892e+00
-6.61662936e-01 -3.76916230e-01 -1.02651286e+00 6.75096035e-01
4.33335125e-01 1.06978096e-01 -1.17947841e+00 1.22956240e+00
3.00091237e-01 3.02058756e-01 -3.90425503e-01 7.49080837e-01
1.02866578e+00 6.44210875e-01 -7.77234584e-02 4.13335919e-01
1.30451024e+00 -5.94478071e-01 -2.95252930e-02 8.39116871e-02
4.31588382e-01 -5.74160397e-01 9.03510392e-01 2.84914434e-01
-1.47774220e+00 -5.46976388e-01 -8.69103134e-01 -1.75827533e-01
-6.45731032e-01 5.91595173e-02 5.74506402e-01 3.07765394e-01
-1.31777012e+00 1.25501204e+00 -1.04175115e+00 -3.56151044e-01
9.94661152e-01 4.58040237e-01 -1.11504897e-01 1.71787724e-01
-6.75378084e-01 6.64003730e-01 -8.13912824e-02 1.14553511e-01
-7.47004986e-01 -6.69181406e-01 -9.14185345e-01 2.33016655e-01
4.25641611e-02 -9.84608114e-01 1.08007061e+00 -8.39647293e-01
-1.35145867e+00 1.47884703e+00 -2.77139872e-01 -4.05777872e-01
5.34422994e-01 1.34445131e-01 2.58743554e-01 2.41257660e-02
-1.09804504e-01 7.79218256e-01 9.73305643e-01 -1.73318589e+00
-8.98722261e-02 -5.87263167e-01 8.08127820e-02 -1.28684103e-01
3.33727866e-01 -2.42740825e-01 -5.03177881e-01 -6.09676361e-01
5.08697748e-01 -8.38606596e-01 -6.17533207e-01 2.40411490e-01
-4.91868228e-01 -5.86480498e-01 7.33902633e-01 -2.78490275e-01
6.78261340e-01 -1.92764151e+00 3.82452071e-01 4.39736456e-01
3.55607867e-01 2.17165321e-01 -2.98770983e-02 3.22239608e-01
-1.08078495e-01 5.65633059e-01 -4.94411796e-01 -6.97179198e-01
-1.21416256e-01 3.69755000e-01 -3.23736250e-01 4.90503967e-01
4.67139632e-01 1.30403471e+00 -7.14547336e-01 -1.58535451e-01
2.46514425e-01 7.41005599e-01 -5.61665416e-01 6.68925270e-02
-6.48432434e-01 6.10265851e-01 -5.06953359e-01 4.87378508e-01
8.77302766e-01 -5.87480605e-01 -8.11028630e-02 -2.08874911e-01
-2.08344907e-01 1.47539571e-01 -1.04377997e+00 1.93178666e+00
-4.07656550e-01 4.18255240e-01 1.20008074e-01 -1.09410465e+00
1.10731578e+00 2.17404053e-01 5.63515961e-01 -3.88209611e-01
2.66534895e-01 2.66098708e-01 -4.24699903e-01 -3.92970055e-01
1.68933198e-01 -1.29695445e-01 9.00346786e-02 4.78639871e-01
-8.10957700e-02 -4.12352443e-01 -1.91060394e-01 -2.48405844e-01
7.72575915e-01 2.46015280e-01 -2.21948661e-02 -4.79612231e-01
4.91232932e-01 -5.50483353e-02 1.39580294e-01 5.28596878e-01
4.28636611e-01 9.56608474e-01 6.18672848e-01 -1.10926592e+00
-1.24467599e+00 -1.23520732e+00 -1.67897746e-01 8.55077386e-01
6.23643808e-02 -6.02421686e-02 -8.97275746e-01 -4.53778952e-01
1.47584766e-01 3.61448199e-01 -8.75287235e-01 3.73003632e-01
-1.00676644e+00 -3.17349017e-01 2.42882788e-01 5.76456547e-01
3.41044158e-01 -1.47169733e+00 -9.10175562e-01 3.33431125e-01
3.99043173e-01 -8.23013425e-01 -5.19535691e-02 1.64312989e-01
-1.26457584e+00 -1.11854005e+00 -8.30447316e-01 -1.01896513e+00
8.15849781e-01 -2.33983118e-02 1.53502262e+00 4.14477646e-01
-2.14908734e-01 3.75749081e-01 6.68001473e-02 -3.98087859e-01
-2.24535137e-01 3.59948248e-01 -4.26946968e-01 1.55258566e-01
8.78040045e-02 -9.46411014e-01 -5.33148825e-01 -1.74019322e-01
-7.29969263e-01 -1.18737081e-02 3.75304937e-01 4.25509036e-01
1.00457633e+00 -1.53875366e-01 2.03110993e-01 -1.18323088e+00
3.79340857e-01 -4.94234204e-01 -5.36815047e-01 -1.13676563e-02
-6.13699257e-02 1.02490567e-01 6.21083379e-01 -1.89219952e-01
-5.28839827e-01 2.43171245e-01 -6.93703711e-01 -7.08321631e-01
-5.00804484e-01 4.36717570e-01 8.65217671e-02 -2.26612926e-01
3.98783714e-01 1.16733417e-01 3.89826670e-02 -8.62573385e-01
3.82973373e-01 1.27071254e-02 3.89744729e-01 -6.64785564e-01
5.15463471e-01 9.18923199e-01 3.19441378e-01 -1.02015197e+00
-7.37690210e-01 -1.95810884e-01 -9.84298825e-01 -1.51806548e-01
9.64071333e-01 -4.45907980e-01 -9.73889232e-01 4.35882300e-01
-1.58066976e+00 -5.34950793e-01 -4.25729364e-01 -1.93494171e-01
-8.43649566e-01 9.79327783e-03 -7.23424435e-01 -7.26677835e-01
-3.78239810e-01 -1.15232325e+00 1.36708975e+00 1.43731788e-01
-9.53568667e-02 -1.17403460e+00 -4.95693162e-02 -2.93507069e-01
4.10894603e-01 6.60851002e-01 1.34378564e+00 -3.24436516e-01
-6.82354152e-01 -2.64367610e-02 -3.54255408e-01 3.38057205e-02
-5.99342920e-02 4.12157215e-02 -1.08630550e+00 -2.36867651e-01
3.99154648e-02 -1.79070607e-01 1.02331889e+00 6.08214915e-01
1.94573629e+00 -4.19447273e-02 -4.30203259e-01 8.22620511e-01
1.61190081e+00 -6.27592579e-02 5.86628973e-01 -1.60336599e-03
9.35306311e-01 5.68505883e-01 -3.36755961e-01 2.80970991e-01
3.53159606e-01 4.64074522e-01 7.05604732e-01 -2.81518996e-01
-1.23107120e-01 -1.21165574e-01 -2.89345831e-01 8.18853378e-01
-2.75941968e-01 -1.19715579e-01 -1.17525578e+00 5.20718455e-01
-1.62226784e+00 -5.84441245e-01 -3.32438886e-01 1.87922883e+00
4.68152881e-01 3.29477876e-01 -2.30560265e-02 -1.19577870e-02
4.77471650e-01 2.45110780e-01 -6.34636462e-01 -7.73244500e-01
-1.01945922e-02 7.19185591e-01 2.51738966e-01 4.82779235e-01
-1.09769356e+00 9.78836834e-01 6.11249495e+00 5.39070845e-01
-1.42123413e+00 -6.49121255e-02 8.62820566e-01 4.09543335e-01
-4.96717721e-01 -4.27911639e-01 -4.72801894e-01 1.87934831e-01
6.39768541e-01 3.10817122e-01 3.58178645e-01 7.33913839e-01
-1.52445049e-03 1.38186976e-01 -1.21282721e+00 1.04581928e+00
-1.34977520e-01 -1.89601874e+00 3.07379901e-01 8.31950456e-02
7.26600885e-01 4.17201042e-01 1.12490542e-01 -1.27206519e-01
2.12609455e-01 -1.47570825e+00 6.46195054e-01 8.28021228e-01
8.54850352e-01 -7.98279405e-01 4.91361827e-01 3.72539729e-01
-1.45817113e+00 3.51655960e-01 -5.48108697e-01 9.55448449e-02
6.39394000e-02 5.92560887e-01 -4.91073728e-01 4.80088860e-01
5.93032956e-01 7.01423109e-01 -3.96030545e-01 1.07618141e+00
2.45262403e-02 3.44970822e-01 -4.81064290e-01 3.39242741e-02
6.25516236e-01 -2.40249544e-01 4.99022901e-01 1.29475927e+00
3.23983371e-01 1.37278110e-01 2.48724312e-01 1.37503958e+00
-3.39702219e-01 5.25931418e-02 -9.98677433e-01 1.42754376e-01
1.21566646e-01 1.15139318e+00 -1.36504912e+00 -3.26894879e-01
-2.25033119e-01 8.72100711e-01 7.02126861e-01 3.24784160e-01
-3.19958657e-01 -7.29910061e-02 5.90944886e-01 3.94174933e-01
6.31823838e-01 -5.57693601e-01 -7.52731502e-01 -7.08599210e-01
-2.06706658e-01 -3.24234337e-01 8.08546767e-02 -7.70616353e-01
-1.42146695e+00 6.97932184e-01 -3.45854372e-01 -8.81222665e-01
1.64243817e-01 -8.12269568e-01 -8.99961829e-01 9.04951930e-01
-1.44023240e+00 -1.16488278e+00 -1.69382825e-01 3.93602699e-01
6.25215471e-01 1.27128139e-01 9.72277761e-01 9.48091075e-02
-9.53218490e-02 9.52602550e-02 -1.91884890e-01 3.14896405e-01
-2.49023557e-01 -1.43257666e+00 1.06331003e+00 5.94823770e-02
4.24079448e-01 3.63498926e-01 4.64155197e-01 -6.22049510e-01
-1.52838337e+00 -1.13515425e+00 9.21704352e-01 -6.09015167e-01
3.03394854e-01 -5.42425632e-01 -1.36919153e+00 5.54597676e-01
5.24235256e-02 2.84070134e-01 2.51683086e-01 1.66044347e-02
-2.76128650e-01 3.62435788e-01 -1.16716981e+00 4.99659121e-01
1.17984116e+00 -4.62552816e-01 -4.70739782e-01 2.42142946e-01
5.22390306e-01 -5.92821598e-01 -7.72078037e-01 4.65713292e-01
3.47574592e-01 -1.00926888e+00 1.14760566e+00 -9.70587432e-01
5.89927554e-01 -5.86162508e-02 4.51435819e-02 -1.33808792e+00
-3.44724655e-01 -4.84201819e-01 -1.00590445e-01 6.46979094e-01
2.81266958e-01 -3.75326544e-01 1.26942706e+00 2.16860667e-01
-3.03932965e-01 -1.47610235e+00 -1.02450931e+00 -3.98800284e-01
5.55054963e-01 -5.33374846e-01 7.29460776e-01 9.64306533e-01
-6.53582752e-01 1.37504950e-01 1.85490742e-01 1.83267176e-01
5.22618055e-01 5.53980052e-01 4.68185425e-01 -1.67305207e+00
2.35731155e-01 -8.85813355e-01 -3.22172105e-01 -1.15522790e+00
2.18381748e-01 -1.30958152e+00 -1.91953227e-01 -1.84706903e+00
-2.35327363e-01 -7.99889743e-01 -2.70739365e-02 3.13343704e-01
2.86070734e-01 3.99921954e-01 4.60228696e-02 -2.75951810e-02
-3.62907946e-01 4.25838411e-01 1.52307022e+00 -1.65414497e-01
-2.22255483e-01 2.39698678e-01 -2.01240554e-01 1.16200542e+00
8.21734667e-01 -3.55460584e-01 -4.14827839e-02 -8.40251684e-01
4.56105053e-01 1.42729543e-02 6.35727465e-01 -7.46546865e-01
3.21800947e-01 2.53315479e-01 5.35348475e-01 -9.84013200e-01
4.75034028e-01 -7.68168390e-01 1.70754403e-01 4.02397335e-01
-8.40229690e-02 3.18464726e-01 3.07272673e-01 4.97101098e-01
4.82152328e-02 -2.79350579e-01 8.56186628e-01 -8.16557646e-01
-3.27533782e-01 7.17397690e-01 -1.57557353e-01 3.39537337e-02
6.04352474e-01 -2.98155278e-01 2.55376220e-01 1.06003657e-02
-1.25299561e+00 9.46346074e-02 5.16058803e-01 2.23372325e-01
8.55164886e-01 -1.44049275e+00 -6.14495993e-01 4.12728727e-01
-3.87464225e-01 6.55763507e-01 1.02409266e-01 3.88845056e-01
-7.26325572e-01 2.12969258e-01 -1.91467628e-01 -8.85685205e-01
-8.10725093e-01 3.83354187e-01 6.94108903e-01 -1.71752930e-01
-1.08849204e+00 1.18151140e+00 1.35614097e-01 -6.84262335e-01
2.09990665e-01 -6.42574906e-01 -2.32458442e-01 1.98252574e-01
2.16398016e-01 1.42902315e-01 1.95886999e-01 -5.99572420e-01
-2.11648658e-01 1.11331701e+00 1.98416978e-01 2.56562501e-01
1.70585752e+00 2.26244763e-01 -3.99158150e-01 8.00291657e-01
1.33153903e+00 -2.84451723e-01 -1.22216928e+00 -2.23972917e-01
1.92494884e-01 -2.59872705e-01 -2.76619405e-01 -2.61448652e-01
-1.37803233e+00 1.41365123e+00 3.00173998e-01 6.71966791e-01
5.82936525e-01 3.61855805e-01 9.11305010e-01 3.61304194e-01
4.83099937e-01 -7.31200099e-01 6.03815056e-02 9.02831495e-01
1.11141968e+00 -1.00052667e+00 -2.46590018e-01 -4.30692881e-01
-1.13902204e-01 1.53618646e+00 2.73754835e-01 -7.89924204e-01
1.21053815e+00 2.65555352e-01 -2.44944260e-01 -9.03917253e-01
-4.13192242e-01 -2.53163755e-01 4.20987993e-01 3.28722924e-01
3.00774276e-01 3.80060747e-02 2.76328802e-01 3.19631547e-01
-2.97254473e-01 -2.78730422e-01 2.65452117e-01 6.45033717e-01
-5.93432665e-01 -8.67511153e-01 -7.46102482e-02 6.06300890e-01
-4.18054312e-01 1.24341682e-01 -4.14462119e-01 5.90543330e-01
3.33261907e-01 1.74200416e-01 4.94497389e-01 -9.74192619e-02
4.22727883e-01 2.42956892e-01 6.66321635e-01 -8.87400508e-01
-6.46983862e-01 3.09312344e-02 -2.65694708e-01 -6.18066728e-01
-4.31799501e-01 -5.57722092e-01 -1.56798720e+00 -4.00423557e-01
2.22578973e-01 -2.00186163e-01 7.43064046e-01 9.60377395e-01
3.03069532e-01 5.24562716e-01 5.51264048e-01 -1.57270885e+00
-1.98701859e-01 -4.13105965e-01 -4.81183797e-01 4.62603271e-01
3.87308568e-01 -6.01355016e-01 -1.69686526e-02 -1.55989155e-01] | [8.267056465148926, -3.6855616569519043] |
0e38564a-5998-475a-bb5c-e14fc88265ae | an-end-to-end-network-for-co-saliency | 1910.11819 | null | https://arxiv.org/abs/1910.11819v2 | https://arxiv.org/pdf/1910.11819v2.pdf | An End-to-End Network for Co-Saliency Detection in One Single Image | Co-saliency detection within a single image is a common vision problem that has received little attention and has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-to-end trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2,019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps. | ['Song Wang', 'Zhongyuan Wang', 'Qian Wang', 'Yuanhao Yue', 'Qin Zou', 'Hongkai Yu'] | 2019-10-25 | null | null | null | null | ['co-saliency-detection'] | ['computer-vision'] | [ 5.25849283e-01 1.32031664e-01 2.83838660e-02 -5.24704635e-01
-4.70264703e-01 -1.00859590e-01 4.22295600e-01 1.71195790e-01
-3.63715529e-01 4.10140544e-01 7.10508367e-03 1.13299772e-01
2.14498237e-01 -5.08197665e-01 -8.84172916e-01 -4.02369887e-01
-3.92546281e-02 4.98869382e-02 1.16605604e+00 -2.12549359e-01
4.74429309e-01 1.84413984e-01 -1.82354593e+00 3.85231823e-01
1.16532874e+00 1.07021034e+00 8.52462351e-01 3.79819214e-01
1.49710238e-01 5.93491077e-01 -1.76925614e-01 -1.85604930e-01
2.66294420e-01 -4.10820037e-01 -8.11539233e-01 2.35976100e-01
4.96481508e-01 -1.16473392e-01 4.71484959e-02 1.36559713e+00
3.98916185e-01 -9.75172445e-02 2.16312200e-01 -1.20296752e+00
-6.34613931e-01 4.62119877e-01 -9.11117375e-01 4.50593352e-01
-4.28887904e-02 1.25542939e-01 1.13933218e+00 -1.16309464e+00
3.67489308e-01 1.21683681e+00 3.65907103e-01 1.64943546e-01
-1.05004132e+00 -4.61195856e-01 3.92267376e-01 3.39815497e-01
-1.24147999e+00 -1.71821564e-01 1.01021123e+00 -1.81411952e-01
5.99035084e-01 1.01836771e-01 7.02657640e-01 3.62264723e-01
1.63719177e-01 1.17265069e+00 1.18957281e+00 -2.29973078e-01
7.67137036e-02 1.82127729e-01 -1.06468238e-01 8.83506417e-01
2.87024558e-01 9.21738986e-03 -6.64268553e-01 1.02775678e-01
1.01341939e+00 2.16371119e-01 -4.85915579e-02 -7.58730173e-01
-1.46369708e+00 6.86580241e-01 1.15605175e+00 1.02582492e-01
-5.09106040e-01 -3.56481411e-02 2.02658892e-01 -2.06063494e-01
4.52290982e-01 3.13782096e-01 -3.98143351e-01 3.97215933e-01
-1.21417046e+00 2.14822486e-01 1.50103495e-01 8.28865230e-01
1.04904914e+00 -6.97826520e-02 -1.73062757e-01 8.91192615e-01
3.04072648e-01 3.17707717e-01 4.24456507e-01 -6.26155078e-01
3.09777290e-01 8.95104289e-01 1.83149993e-01 -1.29828584e+00
-4.86656398e-01 -7.76135385e-01 -6.20336473e-01 3.10009480e-01
1.64333418e-01 5.76636828e-02 -9.95496154e-01 1.59846270e+00
4.24063444e-01 3.49744707e-01 -1.93703637e-01 1.52048898e+00
7.45117903e-01 2.94881970e-01 4.82579581e-02 1.21588141e-01
1.41376245e+00 -1.63249409e+00 -2.71823406e-01 -5.95042408e-01
1.35571897e-01 -7.87813246e-01 9.69414473e-01 2.95244134e-03
-1.27185059e+00 -8.31472933e-01 -9.83375847e-01 -3.13346356e-01
-2.66520977e-01 2.75396138e-01 5.27548432e-01 1.33200988e-01
-1.32129300e+00 3.52722317e-01 -7.29330361e-01 -3.27847302e-01
7.54177570e-01 2.37423599e-01 -5.45234196e-02 5.63507080e-02
-1.07516229e+00 8.63511086e-01 6.50216937e-01 1.77807957e-01
-1.12235296e+00 -4.88864034e-01 -8.46702993e-01 1.95603326e-01
5.26354134e-01 -7.61666656e-01 1.11024356e+00 -1.34119296e+00
-1.17690015e+00 9.13569927e-01 -3.89302999e-01 -4.73381490e-01
2.88499683e-01 -3.13910306e-01 -2.50480503e-01 3.41460109e-01
5.35961092e-01 1.09600413e+00 1.13883018e+00 -1.48023784e+00
-1.29627144e+00 -2.89573848e-01 -3.98538150e-02 5.43696225e-01
6.16822839e-02 2.95015901e-01 -5.06065488e-01 -6.00204527e-01
4.43448722e-01 -7.85583794e-01 -2.36654803e-01 2.74037272e-02
-6.08783901e-01 -1.30289063e-01 9.06383932e-01 -4.56773818e-01
8.98297548e-01 -1.90252531e+00 9.09779221e-02 -1.18565366e-01
4.21184689e-01 2.54763156e-01 -1.13919780e-01 -6.64302660e-03
-1.41763508e-01 -1.58667922e-01 -4.67910975e-01 -2.99600184e-01
-3.13592076e-01 -2.76436299e-01 -2.99922705e-01 3.86131078e-01
5.74559271e-01 1.00809681e+00 -1.28096938e+00 -7.02276826e-01
4.30782616e-01 2.49418810e-01 -4.85446274e-01 1.94608197e-01
-1.60062477e-01 2.48270601e-01 -4.93030906e-01 9.05750096e-01
6.99761331e-01 -5.30579627e-01 -2.38980949e-01 -1.92840025e-01
-4.26386744e-01 9.82210711e-02 -8.85997593e-01 1.74015248e+00
-8.08426645e-03 5.76263249e-01 2.19160896e-02 -9.33316171e-01
1.01085854e+00 -2.64135689e-01 2.63202339e-01 -6.09469891e-01
5.66969626e-02 3.66145283e-01 4.88229059e-02 -2.29146749e-01
6.81310594e-01 8.93800333e-03 1.67123839e-01 1.35846168e-01
3.57344933e-02 -9.06934123e-03 1.68433730e-02 9.46598575e-02
5.51306009e-01 2.03269094e-01 1.85159683e-01 -4.39892650e-01
5.65406919e-01 1.49958581e-01 6.85612619e-01 5.29306531e-01
-4.27362740e-01 9.69018579e-01 2.33279243e-01 -3.80352378e-01
-8.79356921e-01 -1.01912427e+00 1.40165865e-01 1.37913823e+00
8.73831332e-01 -1.53871462e-01 -7.97515035e-01 -6.25941634e-01
-1.78635374e-01 3.76839936e-01 -6.78244412e-01 -1.22575380e-01
-3.52298260e-01 -4.02143389e-01 -6.85684010e-02 4.06607598e-01
9.50419605e-01 -1.49208629e+00 -1.25843811e+00 1.74810752e-01
-2.58635789e-01 -1.07709730e+00 -6.91563249e-01 3.42348479e-02
-8.59378219e-01 -1.00549603e+00 -9.55098391e-01 -1.20914829e+00
8.95712435e-01 9.89907026e-01 1.09593892e+00 2.61560857e-01
-2.65549034e-01 -1.94771871e-01 -2.41754636e-01 -5.67853808e-01
2.11054355e-01 9.26315412e-02 -1.91127822e-01 4.45551544e-01
2.71503419e-01 -3.79600465e-01 -9.15334225e-01 4.91468251e-01
-8.07199717e-01 6.07503712e-01 9.25059080e-01 8.05222809e-01
7.53421187e-01 -2.13103190e-01 5.54488361e-01 -6.11763716e-01
2.81179279e-01 -3.02038342e-01 -6.11886740e-01 2.51930803e-01
-2.55979389e-01 -2.28460804e-01 4.14742410e-01 2.94725001e-02
-9.50688183e-01 5.00358760e-01 3.16096604e-01 -4.98298794e-01
-1.31817594e-01 5.11527419e-01 -6.44662231e-02 -2.34103233e-01
4.17344034e-01 5.89204311e-01 2.48157848e-02 -2.51124054e-01
3.84637326e-01 4.45546806e-01 8.77018034e-01 -1.22564144e-01
6.53713822e-01 6.29055858e-01 -1.86335444e-01 -7.33083665e-01
-1.32478988e+00 -6.44831836e-01 -8.37345719e-01 -2.94342667e-01
9.58657920e-01 -1.17560303e+00 -2.24931091e-01 6.43000662e-01
-1.05595458e+00 -8.79613534e-02 -3.84424515e-02 1.81363806e-01
-6.47728741e-01 2.42171243e-01 -2.01874614e-01 -5.59958756e-01
-4.89920110e-01 -1.17468143e+00 1.33677948e+00 7.09847748e-01
1.73619702e-01 -6.57465994e-01 -3.03192794e-01 2.13994473e-01
4.16802496e-01 2.69120246e-01 4.11239862e-01 -3.46721619e-01
-8.47715974e-01 1.87597841e-01 -8.52467358e-01 9.98712033e-02
2.69705534e-01 -1.86103925e-01 -1.02162051e+00 -3.45936388e-01
-1.11588597e-01 -2.68017381e-01 1.06222594e+00 4.83065456e-01
1.26102471e+00 1.00190267e-01 -4.19191748e-01 5.94437480e-01
1.41913807e+00 -9.98922437e-02 4.43200022e-01 4.97260034e-01
8.44669878e-01 7.02774644e-01 1.00486529e+00 2.44381502e-01
6.37437344e-01 6.00970030e-01 8.26256931e-01 -6.77371562e-01
-1.17487945e-01 -3.80147010e-01 1.18589200e-01 4.26223069e-01
8.91507119e-02 3.08005452e-01 -7.76753604e-01 1.04557788e+00
-2.02596784e+00 -7.72970676e-01 -2.22631805e-02 2.02298331e+00
8.82345319e-01 3.38321000e-01 3.71706814e-01 -2.90351421e-01
1.07314885e+00 2.11786613e-01 -8.56694579e-01 6.18419722e-02
-2.07723796e-01 -2.48355687e-01 4.31017727e-01 2.24784508e-01
-1.31354332e+00 1.32212770e+00 5.79722357e+00 7.02920258e-01
-1.48486805e+00 3.04819737e-02 8.41511548e-01 1.84239537e-01
-1.16072290e-01 1.34432033e-01 -7.14484990e-01 6.86845005e-01
2.29043871e-01 -1.34555519e-01 1.22674629e-01 9.80173171e-01
1.87580466e-01 -4.37004566e-01 -8.32836628e-01 9.26526964e-01
1.66126147e-01 -1.30037713e+00 -3.61643396e-02 -1.82166815e-01
9.81108785e-01 3.45470637e-01 2.55708545e-01 -1.23201935e-02
2.38210768e-01 -9.45986807e-01 1.03662074e+00 4.65389520e-01
5.99053144e-01 -7.16187835e-01 6.36828363e-01 3.71576697e-01
-1.39260900e+00 -1.86764047e-01 -5.86997449e-01 -5.88742681e-02
1.81330264e-01 6.21384919e-01 -8.14886332e-01 4.90042657e-01
8.26706648e-01 9.98809814e-01 -9.28897679e-01 1.39679027e+00
-2.60531276e-01 4.27420884e-01 -2.63963521e-01 -1.54440347e-02
5.08991420e-01 -9.65545550e-02 4.97042358e-01 1.08014250e+00
6.22910336e-02 -1.52485862e-01 4.14145172e-01 1.16336286e+00
2.22054675e-01 -1.99808151e-01 -3.03776175e-01 2.79869109e-01
4.11771119e-01 1.42612779e+00 -1.19459808e+00 -4.44680929e-01
-3.19461197e-01 1.04447675e+00 4.92775857e-01 2.18632892e-01
-8.38693917e-01 -4.41768736e-01 4.36416656e-01 2.09123194e-01
5.23102760e-01 -5.23382006e-03 -5.69653809e-01 -1.10710430e+00
-2.62054261e-02 -5.59169590e-01 1.46039292e-01 -1.04798269e+00
-1.09264708e+00 5.82864225e-01 -1.61971539e-01 -1.29409599e+00
1.54097944e-01 -3.16922635e-01 -7.26150930e-01 1.04791296e+00
-1.94785368e+00 -1.30000842e+00 -5.79190969e-01 5.27232111e-01
8.19814622e-01 -3.39150764e-02 2.86201745e-01 8.53517745e-03
-4.85738188e-01 2.54918605e-01 -3.33000898e-01 4.46227640e-02
5.44100463e-01 -1.24838257e+00 5.20962954e-01 1.21386552e+00
5.62513769e-02 6.14821255e-01 6.53952599e-01 -7.08255172e-01
-7.76874006e-01 -1.31298459e+00 8.60418677e-01 -2.56417155e-01
5.44593275e-01 -2.37953380e-01 -9.84833062e-01 2.39080086e-01
1.89657912e-01 4.20725524e-01 1.71241537e-02 -1.84452057e-01
-5.78232072e-02 -2.12060392e-01 -1.01774180e+00 6.49735212e-01
9.74029660e-01 -5.46577096e-01 -6.66046977e-01 1.45463869e-01
8.32755208e-01 -3.89057219e-01 -1.54954284e-01 4.33613420e-01
2.89671093e-01 -1.31798673e+00 9.94200110e-01 -2.03367203e-01
6.60915971e-01 -7.48780549e-01 1.82418093e-01 -1.32929802e+00
-6.09811842e-01 -3.30947608e-01 1.88467935e-01 8.46634030e-01
3.33977014e-01 -4.26325947e-01 6.66697443e-01 1.76165625e-01
-3.89313221e-01 -1.09983385e+00 -5.28844297e-01 -4.25581485e-01
-4.33557004e-01 3.32739055e-02 4.65979427e-01 7.76881635e-01
-1.86290845e-01 3.79129022e-01 -2.81175822e-01 3.77073854e-01
7.15106845e-01 5.96822619e-01 5.36944985e-01 -1.26511836e+00
1.09218404e-01 -6.27744019e-01 -4.78005350e-01 -1.34328699e+00
-2.04217359e-01 -7.90444434e-01 4.08645421e-01 -1.65503788e+00
5.20437062e-01 -3.24760854e-01 -6.05370700e-01 5.04976869e-01
-6.07926786e-01 3.80627722e-01 3.28953981e-01 2.45995343e-01
-1.02541590e+00 6.54568970e-01 1.45213747e+00 -8.97982866e-02
-1.71253458e-01 -2.05623671e-01 -9.55432117e-01 8.37375760e-01
7.94967651e-01 -2.62993991e-01 -5.08921027e-01 -2.95648664e-01
-1.30509660e-01 -9.59975943e-02 6.44519329e-01 -1.13165259e+00
3.90202969e-01 -1.75683722e-01 3.95810783e-01 -9.43940163e-01
1.28866583e-01 -6.84768319e-01 -4.77278769e-01 4.57040757e-01
-3.05631459e-01 1.20755315e-01 1.18731938e-01 6.57317817e-01
-4.32347357e-01 1.02549031e-01 1.05319047e+00 -1.82884619e-01
-1.11134398e+00 3.17916304e-01 2.03859851e-01 5.98721765e-02
1.13209355e+00 -4.87531722e-01 -2.35922962e-01 -1.24078922e-01
-4.06819820e-01 4.82693583e-01 6.18190646e-01 6.33654773e-01
1.00710642e+00 -1.14951789e+00 -6.86922967e-01 3.86886120e-01
1.85436442e-01 3.47542197e-01 3.21415514e-01 9.13934767e-01
-4.43092376e-01 3.81848842e-01 -5.47127783e-01 -1.07274044e+00
-1.24285138e+00 6.47644579e-01 2.71482289e-01 7.82499760e-02
-4.22221869e-01 1.09737289e+00 6.84564829e-01 -1.32252455e-01
3.41305090e-03 -4.40882325e-01 -3.67255896e-01 -1.95802122e-01
3.98067325e-01 -5.98457493e-02 -2.11965606e-01 -1.01637554e+00
-3.84849072e-01 6.81748867e-01 -1.55314773e-01 1.01759136e-01
1.20721519e+00 -3.64086062e-01 -2.83321649e-01 4.19829398e-01
9.26777482e-01 -4.15304154e-01 -1.62663615e+00 -4.95598108e-01
3.72466519e-02 -7.05582023e-01 1.44045100e-01 -8.19058359e-01
-1.17125821e+00 8.45662177e-01 6.26340508e-01 1.88549817e-01
1.24441302e+00 2.59950552e-02 8.07296336e-01 -1.30670890e-02
4.78627980e-01 -1.16078198e+00 3.36306125e-01 5.54108202e-01
9.49297011e-01 -1.63460004e+00 -1.35507241e-01 -6.52084470e-01
-8.56733501e-01 6.81668520e-01 9.44880009e-01 -3.74613941e-01
5.45813739e-01 -3.40057194e-01 -1.24424174e-01 -2.51080602e-01
-4.90219474e-01 -5.80898046e-01 5.76999068e-01 4.68660057e-01
1.69596374e-01 1.52251199e-01 -4.75985222e-02 4.51739013e-01
-1.19989216e-01 1.85204577e-02 3.64156514e-01 9.58569825e-01
-9.55282867e-01 -4.39565718e-01 -3.09532613e-01 4.59224761e-01
-3.51057023e-01 -1.49155110e-01 -2.95505792e-01 4.00203526e-01
2.89025664e-01 8.49358916e-01 1.17234528e-01 -3.65126252e-01
1.00585774e-01 -3.80697399e-01 -1.70944966e-02 -8.24945390e-01
-3.69232178e-01 1.18055701e-01 -3.76974523e-01 -6.41327322e-01
-7.24098742e-01 -6.10565960e-01 -1.39998007e+00 3.95442545e-01
-2.92131931e-01 -1.13461845e-01 4.86817598e-01 8.87097657e-01
6.50205553e-01 5.52616179e-01 7.81274259e-01 -1.22373772e+00
-2.18127578e-01 -9.18205798e-01 -5.16322494e-01 4.12074357e-01
6.11081600e-01 -8.73074889e-01 -1.56585991e-01 1.25665113e-01] | [9.794486999511719, -0.3374933898448944] |
963d0afa-d26d-4645-a60b-73f73ce20b8f | rethinking-the-learning-paradigm-for-facial | 2209.15402 | null | https://arxiv.org/abs/2209.15402v1 | https://arxiv.org/pdf/2209.15402v1.pdf | Rethinking the Learning Paradigm for Facial Expression Recognition | Due to the subjective crowdsourcing annotations and the inherent inter-class similarity of facial expressions, the real-world Facial Expression Recognition (FER) datasets usually exhibit ambiguous annotation. To simplify the learning paradigm, most previous methods convert ambiguous annotation results into precise one-hot annotations and train FER models in an end-to-end supervised manner. In this paper, we rethink the existing training paradigm and propose that it is better to use weakly supervised strategies to train FER models with original ambiguous annotation. | ['Bruno Lepri', 'Nicu Sebe', 'Weijie Wang'] | 2022-09-30 | null | null | null | null | ['facial-expression-recognition'] | ['computer-vision'] | [ 1.80397406e-01 3.08027655e-01 -2.67286181e-01 -9.21252668e-01
-7.26188958e-01 -6.79675817e-01 1.95954323e-01 -3.83585691e-01
-5.03038168e-01 1.03309631e+00 -2.98272632e-02 9.05419812e-02
3.72905344e-01 -1.40771449e-01 -3.56310427e-01 -4.68027532e-01
2.29817584e-01 4.66813862e-01 2.76645750e-01 -4.02542561e-01
-2.48407513e-01 2.88158745e-01 -1.40983891e+00 4.85839844e-01
5.51375270e-01 1.19659805e+00 -4.95341241e-01 4.87477988e-01
-4.36008453e-01 1.05932736e+00 -7.65965343e-01 -1.09694564e+00
7.36375973e-02 -4.07286435e-01 -1.15093112e+00 3.98439974e-01
1.87673345e-01 -3.21513236e-01 3.25491140e-03 1.19689310e+00
4.56685871e-01 -9.27833691e-02 2.03337878e-01 -1.56538808e+00
-5.75304270e-01 1.13153338e-01 -5.03565967e-01 -1.65999576e-01
6.43969953e-01 -1.89031869e-01 7.61827707e-01 -1.24058986e+00
7.06326187e-01 1.07493317e+00 8.65320027e-01 1.02420473e+00
-1.10031497e+00 -7.07995415e-01 3.09793502e-01 -4.08938080e-02
-1.78884709e+00 -7.18416750e-01 9.07684565e-01 -3.75389844e-01
4.53090817e-01 2.66468793e-01 4.92518991e-01 1.30382836e+00
-6.88912511e-01 9.06726003e-01 1.27257502e+00 -4.10962313e-01
2.23484308e-01 8.84809196e-02 -2.14519188e-01 6.67915404e-01
-3.76229852e-01 -2.57103682e-01 -5.80258548e-01 -4.22981650e-01
4.80600178e-01 -4.26649563e-02 -7.90475383e-02 -1.95145041e-01
-5.21491230e-01 6.88106537e-01 1.21893443e-01 3.68432611e-01
-3.22352797e-02 -7.05273077e-02 6.68948293e-01 1.65975228e-01
8.18022490e-01 1.89350501e-01 -5.35397112e-01 -2.47742042e-01
-8.10500741e-01 1.92085907e-01 7.71328628e-01 8.56249928e-01
1.06943119e+00 -1.22709675e-02 -1.61784172e-01 1.10535014e+00
2.12682679e-01 9.64120850e-02 4.44714040e-01 -9.68344867e-01
5.20138070e-02 6.30853593e-01 3.29460412e-01 -8.66307080e-01
-2.27812827e-01 1.92641377e-01 -4.69262391e-01 6.83865398e-02
4.94280636e-01 -4.50853199e-01 -8.45326126e-01 1.72712171e+00
3.34053487e-01 3.86540219e-02 -1.33586293e-02 1.17885923e+00
9.45559680e-01 1.00698352e-01 6.91616118e-01 -2.19573990e-01
1.14629054e+00 -1.04617274e+00 -1.18930876e+00 -1.84238791e-01
9.13931668e-01 -8.31919074e-01 1.09139025e+00 3.18801761e-01
-6.82102501e-01 -3.84979963e-01 -6.69530809e-01 -9.09254625e-02
-5.60710669e-01 5.71887314e-01 8.04229915e-01 5.36790133e-01
-9.25209522e-01 1.96501300e-01 -4.46179926e-01 -1.88319251e-01
7.48672664e-01 5.49537838e-01 -7.25220621e-01 1.02111481e-01
-1.23641610e+00 7.46139884e-01 4.26789165e-01 5.85022569e-01
-6.40956700e-01 -1.15483627e-01 -6.96776807e-01 -5.26551187e-01
6.23526752e-01 6.79147094e-02 1.69050634e+00 -2.17704463e+00
-1.88333416e+00 1.35820961e+00 -2.76860058e-01 5.77525422e-02
6.10633969e-01 -2.03666613e-01 -4.53577965e-01 8.17385316e-02
-1.10709824e-01 6.97682977e-01 8.44864368e-01 -1.45799959e+00
-3.41195196e-01 -3.99968177e-01 2.47790635e-01 -9.25980732e-02
-3.05617422e-01 5.31462610e-01 -4.66981411e-01 -6.60926819e-01
-1.84003666e-01 -1.01619995e+00 -1.94311142e-01 2.19720975e-01
-1.35448009e-01 -5.23070633e-01 9.17231381e-01 -3.17418486e-01
1.14236283e+00 -2.22291851e+00 -1.05962031e-01 -6.58344030e-02
4.15852040e-01 6.33392334e-01 -4.81905043e-02 -2.42056269e-02
-2.24507943e-01 3.75770469e-04 -1.76326826e-01 -7.56039202e-01
-2.16972288e-02 6.59916580e-01 -1.83630422e-01 3.07118297e-01
4.62691635e-01 8.53592753e-01 -1.15579093e+00 -8.46343398e-01
-2.54217178e-01 2.53757536e-01 -2.19498396e-01 6.12318456e-01
-2.21111909e-01 5.48216879e-01 -5.66884160e-01 1.13840294e+00
7.66025782e-01 -4.41340469e-02 2.91473955e-01 -1.92213953e-01
2.57745028e-01 -5.09781063e-01 -9.07712579e-01 1.64292943e+00
-1.73380762e-01 6.48825824e-01 3.41009259e-01 -1.03636980e+00
1.01165462e+00 5.95495164e-01 6.73720658e-01 -4.12166417e-01
3.50954771e-01 3.92572790e-01 -4.54163164e-01 -8.68921161e-01
5.24776518e-01 -5.47348976e-01 -1.09654099e-01 5.56066595e-02
4.49594676e-01 1.38233319e-01 -1.20775759e-01 -2.59968340e-01
7.40874946e-01 4.99421299e-01 2.59743273e-01 1.11963779e-01
6.71795487e-01 -1.16404571e-01 8.19453597e-01 1.73681393e-01
-7.60178208e-01 7.30811000e-01 5.91164112e-01 -8.84427786e-01
-6.49560452e-01 -6.43237233e-01 -5.98439872e-02 1.70185041e+00
-8.07965994e-02 -4.74367887e-01 -9.98928428e-01 -1.23734856e+00
-3.49494040e-01 -4.54710238e-02 -7.79175043e-01 1.83509421e-02
-2.43686229e-01 -5.36013484e-01 1.09159756e+00 6.08318329e-01
5.89126825e-01 -8.30319881e-01 -1.61157697e-01 1.17530420e-01
-3.47163916e-01 -1.49252570e+00 -3.22372735e-01 4.25042436e-02
-3.27336401e-01 -1.02413428e+00 -7.99637198e-01 -7.61324704e-01
7.86748171e-01 -1.30710721e-01 1.25292623e+00 3.43405247e-01
-1.28675729e-01 1.50797918e-01 -7.38123655e-01 -7.77019441e-01
-1.04692437e-01 -4.94397767e-02 7.38687515e-02 5.51632583e-01
9.70994532e-01 -2.28014439e-01 -2.73821801e-01 6.32915556e-01
-1.05091405e+00 -3.20724905e-01 1.61459759e-01 8.83946419e-01
6.01902008e-01 -5.59122145e-01 6.59712791e-01 -8.03079188e-01
5.05955279e-01 -2.93692887e-01 -4.52568382e-01 4.91676778e-01
-2.61535048e-01 -3.09173763e-01 4.52480316e-01 -6.84723258e-01
-1.10587835e+00 5.39683461e-01 -3.30982655e-01 -7.02924848e-01
-3.07045966e-01 1.94164693e-01 -2.47053728e-01 -4.90123928e-01
7.65806377e-01 -2.47635797e-01 -1.08595565e-01 -2.71028429e-01
7.85220563e-02 9.56657767e-01 3.88939977e-01 -7.63229847e-01
2.92818159e-01 4.08732921e-01 -3.37359190e-01 -5.47218680e-01
-1.23844290e+00 -3.23942304e-01 -8.53578448e-01 -4.90233481e-01
1.03486764e+00 -1.00206327e+00 -6.70950592e-01 4.62047666e-01
-1.33786607e+00 -3.43152583e-01 -1.16141804e-01 1.55968532e-01
-5.42674661e-01 3.36245328e-01 -3.96100581e-01 -1.03230429e+00
-1.31217986e-01 -1.08166468e+00 1.67999983e+00 2.41854653e-01
-4.21073496e-01 -7.59521306e-01 1.63867220e-01 3.53266060e-01
2.51663625e-01 2.56363153e-01 1.08372808e-01 -8.12935352e-01
1.79127529e-01 -4.48213875e-01 -3.65781397e-01 4.37217146e-01
8.21130201e-02 1.60516962e-01 -1.43881130e+00 2.34488070e-01
-3.56251389e-01 -9.77061331e-01 3.72409940e-01 -3.57259214e-01
1.52467477e+00 -2.20352441e-01 -1.37802362e-01 4.28736031e-01
1.19602334e+00 -9.16324481e-02 6.93398595e-01 6.80529401e-02
5.74600875e-01 8.31517518e-01 7.57815361e-01 4.70506966e-01
1.69227943e-01 8.99495065e-01 2.40965724e-01 -3.67604315e-01
3.70403200e-01 -3.61434102e-01 1.68448374e-01 2.26011083e-01
-3.18574041e-01 -9.59399641e-02 -8.86137784e-01 4.36469585e-01
-2.07276225e+00 -8.23599517e-01 2.10487828e-01 1.74843359e+00
1.31850588e+00 -2.63832569e-01 2.60192186e-01 -1.81090742e-01
6.31563663e-01 1.15279220e-01 -9.78256613e-02 -5.35952568e-01
-3.29843849e-01 1.05471730e-01 1.59674004e-01 4.30408776e-01
-1.20631540e+00 1.28715098e+00 7.21016216e+00 8.59571695e-01
-1.19203758e+00 4.11081582e-01 7.58968949e-01 8.39859247e-02
8.47441480e-02 -7.17397109e-02 -6.89208388e-01 4.86406296e-01
6.00792587e-01 3.39684814e-01 9.30284336e-02 1.10277891e+00
-6.12697452e-02 -1.58679470e-01 -1.03175592e+00 1.28082991e+00
2.09524900e-01 -8.08472872e-01 -1.66762784e-01 -2.93854743e-01
5.71723878e-01 -2.86246628e-01 -4.07529652e-01 4.18716908e-01
2.30337411e-01 -1.26266599e+00 6.16661608e-01 6.20268404e-01
8.50488186e-01 -3.75939757e-01 1.14782703e+00 5.99885769e-02
-9.03044760e-01 1.26266629e-01 -2.29499400e-01 -1.53159514e-01
1.19322456e-01 3.12901944e-01 -7.25048125e-01 2.69151121e-01
7.97147810e-01 3.03728431e-01 -6.28153622e-01 6.41965806e-01
-2.70473003e-01 5.58251858e-01 -2.85695195e-01 -6.93602636e-02
2.06285253e-01 -6.57870546e-02 1.68844387e-01 1.29114485e+00
-1.15531705e-01 3.78671467e-01 4.39074844e-01 5.01444519e-01
-4.28061992e-01 1.73834562e-01 -5.94029546e-01 -6.39970899e-02
1.16019152e-01 1.35268414e+00 -5.65906227e-01 -3.25535864e-01
-4.58390474e-01 1.22200477e+00 6.04540467e-01 5.38476765e-01
-9.04150844e-01 -1.36675134e-01 6.56432629e-01 -4.06930856e-02
-2.19800677e-02 -3.51439901e-02 -3.47142480e-02 -1.11789751e+00
2.99402982e-01 -8.46528828e-01 3.14939380e-01 -9.91408765e-01
-1.46239114e+00 9.35607314e-01 -1.43424854e-01 -1.16992462e+00
-2.16704503e-01 -6.43681705e-01 -3.71858180e-01 5.30507326e-01
-1.49612355e+00 -1.39364564e+00 -4.64006007e-01 6.75756991e-01
5.07964194e-01 -7.38758221e-02 1.11046600e+00 3.92450869e-01
-5.30835867e-01 9.28792477e-01 -4.17958736e-01 6.11873984e-01
9.40287888e-01 -8.92386854e-01 -5.50457835e-01 4.01129007e-01
2.57366132e-02 2.37026632e-01 7.39050984e-01 -3.19410771e-01
-8.98031950e-01 -1.00678504e+00 8.68006527e-01 -5.33055842e-01
7.25289583e-01 -4.66081798e-01 -9.85903740e-01 6.73830867e-01
1.78825811e-01 7.96087205e-01 1.06669211e+00 1.00740604e-01
-6.00078106e-01 -1.76534265e-01 -1.23052156e+00 4.25636441e-01
1.10411227e+00 -8.72378767e-01 -4.71404165e-01 4.51853842e-01
2.77786702e-01 -5.44494331e-01 -7.32359648e-01 5.57106197e-01
5.91884255e-01 -5.96409857e-01 4.19272006e-01 -1.00747490e+00
3.34133774e-01 -3.44019324e-01 -2.76399702e-01 -9.32872534e-01
2.88109750e-01 -8.50063086e-01 1.13715000e-01 1.37641919e+00
3.05114776e-01 -2.33881757e-01 8.69250178e-01 1.01680160e+00
2.24339724e-01 -7.22671866e-01 -1.01922083e+00 -5.20515621e-01
-3.26365680e-01 -1.96254089e-01 6.87627614e-01 1.24505317e+00
2.26858333e-01 2.73452193e-01 -4.78460491e-01 -8.07535127e-02
1.93742901e-01 -2.23926127e-01 7.58866549e-01 -1.26179016e+00
2.47318093e-02 -3.05834115e-01 -6.18589640e-01 -6.80853903e-01
7.99086154e-01 -3.71756911e-01 5.62673628e-01 -6.80761576e-01
-2.83407141e-02 -3.37990731e-01 -7.48968795e-02 9.66483116e-01
-3.55538696e-01 8.16370964e-01 -4.48294496e-03 1.31042793e-01
-1.32169533e+00 6.72422767e-01 7.52907634e-01 3.17675173e-02
-4.20458164e-05 -9.43762660e-02 -3.96070868e-01 1.05180585e+00
7.00459778e-01 -4.01451856e-01 -2.56724447e-01 -6.73328996e-01
3.20206434e-01 -1.13373913e-01 3.43411863e-01 -5.02612591e-01
6.48135552e-03 -2.94408917e-01 3.89667660e-01 1.92568041e-02
2.57516712e-01 -1.02879286e+00 -2.57443219e-01 -3.91007662e-01
-3.77399743e-01 -7.68861221e-03 2.03327626e-01 4.23049092e-01
-7.55940020e-01 -3.24247181e-01 6.48305416e-01 -1.81175098e-01
-7.37925053e-01 4.08308715e-01 -3.10452968e-01 8.97292495e-02
1.09331763e+00 -3.26958328e-01 6.05563149e-02 -4.91862267e-01
-1.08332014e+00 1.01475686e-01 4.81468737e-01 4.02470380e-01
3.89277816e-01 -1.50867331e+00 -4.76776749e-01 -9.76102948e-02
5.08621097e-01 1.64529812e-02 -9.24904179e-03 7.34308422e-01
-1.91399619e-01 -1.37264077e-02 -1.96073994e-01 -4.38522756e-01
-1.48384500e+00 3.14703703e-01 7.07415700e-01 3.57181802e-02
2.31310561e-01 9.76838887e-01 -9.84745026e-02 -5.34968972e-01
3.07573348e-01 2.94945300e-01 -2.04262450e-01 1.03429489e-01
6.22827053e-01 -3.48038413e-02 1.25756323e-01 -1.04451919e+00
-3.15271467e-01 5.47136366e-01 9.00399759e-02 6.66372180e-02
1.01092541e+00 -1.34752780e-01 -3.02564949e-01 2.89272875e-01
1.32294333e+00 -6.44907728e-02 -1.18586719e+00 -3.16810995e-01
2.60939062e-01 -6.25447094e-01 -2.99938917e-01 -5.97093701e-01
-1.03388810e+00 6.85381055e-01 6.75366104e-01 4.95976284e-02
1.36268663e+00 5.67989461e-02 4.85971481e-01 5.56937993e-01
5.09445131e-01 -1.52417409e+00 7.06245825e-02 4.13788825e-01
8.17680120e-01 -1.53424430e+00 -1.13447383e-01 -6.11938179e-01
-9.52161312e-01 1.10221267e+00 9.87085819e-01 2.09338978e-01
6.03153050e-01 3.64916772e-01 4.69071329e-01 -2.56609529e-01
-3.64097923e-01 -3.88598979e-01 2.46953350e-02 6.93827808e-01
6.21217787e-01 -6.29726127e-02 -5.02353489e-01 1.02039385e+00
2.02793002e-01 6.81431711e-01 1.96147770e-01 9.86776412e-01
-5.16922176e-02 -1.25966287e+00 -2.44488254e-01 -2.27866974e-02
-8.41211081e-01 3.58184934e-01 -9.98027146e-01 5.43985546e-01
4.19609666e-01 1.04558694e+00 -1.27131954e-01 -3.45828623e-01
5.57892621e-01 5.46106875e-01 3.32512289e-01 -3.31441194e-01
-5.05994737e-01 -9.69382375e-02 3.44268471e-01 -6.94769919e-01
-1.02268338e+00 -2.51571625e-01 -1.33161092e+00 8.71052817e-02
-3.64345163e-01 2.77111232e-01 2.37876013e-01 1.33067417e+00
3.75658512e-01 -8.86127129e-02 6.02779329e-01 -7.88260937e-01
-4.24826264e-01 -9.81316149e-01 -4.03870165e-01 8.54415059e-01
3.23021084e-01 -8.82989228e-01 -9.57215056e-02 3.18725973e-01] | [13.593207359313965, 1.677939534187317] |
6ec2fcad-256c-4528-9672-e0adbd4b139a | how-asynchronous-events-encode-video | 2206.04341 | null | https://arxiv.org/abs/2206.04341v1 | https://arxiv.org/pdf/2206.04341v1.pdf | How Asynchronous Events Encode Video | As event-based sensing gains in popularity, theoretical understanding is needed to harness this technology's potential. Instead of recording video by capturing frames, event-based cameras have sensors that emit events when their inputs change, thus encoding information in the timing of events. This creates new challenges in establishing reconstruction guarantees and algorithms, but also provides advantages over frame-based video. We use time encoding machines to model event-based sensors: TEMs also encode their inputs by emitting events characterized by their timing and reconstruction from time encodings is well understood. We consider the case of time encoding bandlimited video and demonstrate a dependence between spatial sensor density and overall spatial and temporal resolution. Such a dependence does not occur in frame-based video, where temporal resolution depends solely on the frame rate of the video and spatial resolution depends solely on the pixel grid. However, this dependence arises naturally in event-based video and allows oversampling in space to provide better time resolution. As such, event-based vision encourages using more sensors that emit fewer events over time. | ['Martin Vetterli', 'Adam Scholefield', 'Karen Adam'] | 2022-06-09 | null | null | null | null | ['event-based-vision'] | ['computer-vision'] | [ 8.29122186e-01 -2.74582207e-01 4.75829728e-02 -1.60277411e-01
-5.80378532e-01 -6.90828443e-01 4.96319115e-01 2.32195687e-02
-6.29124820e-01 7.02176511e-01 5.14066406e-02 1.15943896e-02
-2.61787735e-02 -8.68429720e-01 -8.31435084e-01 -6.35432899e-01
-4.02097136e-01 -1.54523656e-01 5.54419518e-01 3.94629091e-01
6.26022965e-02 5.42769194e-01 -1.75681388e+00 3.43124837e-01
1.38227552e-01 1.35197008e+00 3.49569201e-01 1.26236808e+00
6.05121143e-02 1.18089151e+00 -6.34387076e-01 2.90392011e-01
2.92562693e-01 -8.63148451e-01 -1.97827473e-01 3.91759098e-01
2.30494797e-01 -6.07493818e-01 -7.49497235e-01 8.73269916e-01
-6.70832023e-02 2.53052056e-01 3.84961873e-01 -1.10365176e+00
-3.00024301e-01 4.73017618e-02 -4.81273383e-01 4.44578588e-01
6.00450873e-01 1.14133596e-01 6.87877953e-01 -3.57150704e-01
7.64755249e-01 8.31480265e-01 6.23003364e-01 5.97549736e-01
-1.20862365e+00 -2.39222959e-01 -1.77811980e-01 2.12833256e-01
-9.56409156e-01 -5.95138967e-01 6.95531666e-01 -3.98605466e-01
9.86550033e-01 2.36409947e-01 9.29449618e-01 9.01947677e-01
3.97273123e-01 4.32816654e-01 7.95422971e-01 -4.78213370e-01
6.11187458e-01 -3.33179206e-01 -2.03708082e-01 3.75779659e-01
2.38504503e-02 4.14982527e-01 -9.52648342e-01 9.82378349e-02
1.30700159e+00 3.88209820e-01 -5.94905674e-01 -7.29665458e-02
-1.53268456e+00 4.89787161e-01 -3.65125798e-02 2.14125127e-01
-4.61441427e-01 7.55319655e-01 1.97209224e-01 3.85342956e-01
4.48379256e-02 3.11043382e-01 3.11310533e-02 -5.37975907e-01
-1.28412938e+00 7.77584836e-02 6.74724996e-01 8.79126489e-01
6.32271886e-01 1.55096740e-01 9.42922831e-02 1.69282854e-01
-7.54548013e-02 6.20389640e-01 3.46140593e-01 -1.67782009e+00
1.20240867e-01 2.41302536e-03 4.62139606e-01 -8.03620696e-01
-1.93587154e-01 2.36494303e-01 -7.05622435e-01 4.18538690e-01
6.56959116e-01 -1.69890434e-01 -6.81507587e-01 1.61778462e+00
-5.04318923e-02 6.52296662e-01 4.56524566e-02 9.41894889e-01
6.28239885e-02 1.10144281e+00 -2.81269759e-01 -9.49505925e-01
1.13179755e+00 -8.29473585e-02 -8.41113985e-01 6.17186651e-02
1.47459269e-01 -4.74881053e-01 6.05698645e-01 5.28534830e-01
-1.22447956e+00 -3.74390453e-01 -1.19944632e+00 7.95069933e-02
-3.29361223e-02 -4.78999972e-01 5.23371935e-01 4.22881097e-01
-9.85201001e-01 3.45741391e-01 -1.38269162e+00 -4.13636088e-01
1.87581882e-01 1.59016505e-01 -1.01410314e-01 3.17647308e-02
-8.51165771e-01 4.98270303e-01 1.24412283e-01 -3.72119576e-01
-6.93927646e-01 -7.65741527e-01 -7.36011565e-01 3.72372866e-02
2.16729566e-02 -4.18061137e-01 1.44343364e+00 -1.08571839e+00
-1.37922454e+00 5.07579863e-01 -4.47958350e-01 -9.40354288e-01
3.45156074e-01 1.96548477e-01 -4.80624765e-01 6.74767792e-01
-1.17674343e-01 6.25542641e-01 9.98024046e-01 -6.12326324e-01
-7.73703992e-01 -1.52792066e-01 3.42733979e-01 7.94525966e-02
-1.77458331e-01 -1.48865655e-01 -1.48934335e-01 -1.35243446e-01
2.27791965e-01 -6.71638191e-01 -8.99587870e-02 5.34347415e-01
2.46809065e-01 3.47243458e-01 1.00646579e+00 2.58842111e-02
9.55173433e-01 -2.37904453e+00 -2.88536817e-01 -1.75256059e-01
1.66498855e-01 -2.81319797e-01 1.02430962e-01 6.35459661e-01
3.04599285e-01 -3.31560373e-01 -2.33941004e-01 -1.82640299e-01
-3.89092445e-01 3.90681446e-01 -8.08177114e-01 6.76285803e-01
3.07544887e-01 4.48630393e-01 -9.79357898e-01 -5.28293312e-01
7.50971019e-01 7.44571507e-01 -5.27767241e-01 -3.05851884e-02
-4.65485126e-01 6.47334993e-01 -3.78992647e-01 4.68958765e-01
2.87594795e-01 -5.87088346e-01 1.08617954e-01 -1.85145721e-01
-6.01900101e-01 3.81056368e-02 -1.20225370e+00 1.63758779e+00
-3.33502918e-01 1.19658160e+00 2.16381058e-01 -7.98900783e-01
4.48006630e-01 6.22364581e-01 9.83922780e-01 -8.47950697e-01
4.03616903e-03 9.41086188e-03 -3.98727477e-01 -5.90119421e-01
7.26575315e-01 -3.47606838e-01 1.48287371e-01 4.32868153e-01
-2.02991515e-01 -6.42678142e-02 3.28385621e-01 1.58181846e-01
1.68943000e+00 2.76278481e-02 2.30385706e-01 1.86142400e-01
-1.42762437e-01 8.32982808e-02 4.94572729e-01 8.15777123e-01
-1.99139729e-01 7.63958454e-01 7.66209811e-02 -2.65855312e-01
-1.15741026e+00 -1.23335552e+00 -4.08114254e-01 5.87599695e-01
4.60864395e-01 -3.84027928e-01 -3.68310392e-01 2.09782660e-01
-8.15971270e-02 4.44780201e-01 -4.18722838e-01 1.91433638e-01
-4.31099832e-01 -4.92040694e-01 3.34259033e-01 6.09701097e-01
4.17974770e-01 -7.73047626e-01 -1.66242826e+00 5.77087402e-01
-7.12523833e-02 -1.38929892e+00 -3.38961422e-01 3.43852043e-01
-9.66093361e-01 -9.50434148e-01 -6.12230718e-01 -5.61917983e-02
4.35236663e-01 3.93399417e-01 9.64157999e-01 -4.57916319e-01
-3.47697675e-01 1.25277221e+00 -3.44729394e-01 -4.69866663e-01
-1.47819534e-01 -5.80257893e-01 -1.25506222e-01 1.73780784e-01
1.73049569e-01 -8.30893219e-01 -7.41567433e-01 -3.39065716e-02
-1.44083583e+00 3.90594378e-02 1.61253139e-01 4.51559216e-01
8.25067401e-01 1.35055840e-01 1.67489812e-01 -4.37806040e-01
4.37831432e-02 -5.32586694e-01 -1.01216435e+00 -4.23044488e-02
1.15276463e-02 -2.48858646e-01 5.90163410e-01 -6.31580830e-01
-8.54802907e-01 2.84225702e-01 4.13029104e-01 -6.89415753e-01
2.13380400e-02 2.65709400e-01 3.18902016e-01 5.56811020e-02
6.59628510e-01 4.02210295e-01 -1.43080205e-01 7.55035728e-02
8.24820921e-02 3.83300275e-01 8.59596312e-01 -4.01627541e-01
1.88367292e-01 1.19634831e+00 1.74782649e-01 -1.11474872e+00
-3.89089823e-01 -4.21297312e-01 -1.87735498e-01 -5.83780646e-01
9.55970883e-01 -8.89954805e-01 -8.17849636e-01 2.65483648e-01
-1.35953927e+00 -1.90381423e-01 -9.53921497e-01 8.16429436e-01
-1.00371957e+00 -5.57533577e-02 -8.16985965e-01 -1.14268863e+00
4.84883010e-01 -8.44038546e-01 1.05692947e+00 3.28236014e-01
-2.80006021e-01 -1.05703616e+00 -1.08162956e-02 -2.69890904e-01
2.71143407e-01 5.33262730e-01 2.14816108e-01 2.44607329e-01
-1.31495249e+00 -1.35191813e-01 -9.96602774e-02 7.57879065e-03
1.12617448e-01 3.47806886e-02 -9.15510297e-01 -9.52166766e-02
5.63585937e-01 4.72239070e-02 6.22382879e-01 9.27840531e-01
1.22372580e+00 -9.01363194e-02 -3.29595685e-01 6.17596567e-01
1.89392698e+00 5.93273461e-01 7.07094848e-01 3.22793610e-02
3.32131743e-01 2.27855906e-01 2.61921704e-01 7.42939711e-01
8.32619816e-02 5.50116777e-01 3.90663445e-01 2.15573698e-01
-6.34091049e-02 -1.12914458e-01 4.40221936e-01 4.74050552e-01
-1.23015605e-01 -5.05133331e-01 -5.87249994e-01 6.26767397e-01
-1.76343632e+00 -1.51694989e+00 -1.68498717e-02 2.39373875e+00
7.78227806e-01 -3.36968340e-03 1.31027415e-01 3.47333372e-01
6.96186900e-01 3.41998369e-01 -8.63509417e-01 -1.38624296e-01
-3.73408914e-01 1.95633382e-01 9.36856925e-01 4.17297006e-01
-7.06309855e-01 1.38905481e-01 7.10250282e+00 2.52580166e-01
-1.37398767e+00 1.23353682e-01 3.59739363e-01 -7.59594083e-01
-3.32760394e-01 -1.36228176e-02 -5.29171586e-01 7.74070203e-01
1.36804140e+00 -3.00817251e-01 5.52320421e-01 3.52598816e-01
4.97822583e-01 -5.17307043e-01 -1.42990053e+00 1.29104555e+00
-1.92764387e-01 -1.59472394e+00 -2.35225782e-01 2.30703652e-01
5.65732837e-01 -7.22621530e-02 -9.05929133e-02 -4.34401661e-01
9.75494757e-02 -7.50720203e-01 8.71206880e-01 7.17109442e-01
1.02855289e+00 -2.74004877e-01 -4.15086001e-02 2.73050904e-01
-1.30731940e+00 9.52148065e-02 -2.25179076e-01 -5.89142919e-01
6.55263543e-01 1.09700465e+00 -3.24987888e-01 -3.22770774e-02
5.97022772e-01 9.73786354e-01 2.63532817e-01 8.15891981e-01
3.91648948e-01 7.00973630e-01 -7.84986675e-01 2.63971627e-01
1.61014274e-02 -1.65303797e-01 6.04468882e-01 1.01210797e+00
7.12816596e-01 6.05679333e-01 5.93165457e-02 7.32827902e-01
1.32299483e-01 -8.22007418e-01 -8.48949492e-01 -1.84015125e-01
7.81302333e-01 7.18091428e-01 -8.31667244e-01 -3.58127147e-01
-9.22647119e-01 8.98900270e-01 -3.72321367e-01 6.34077191e-01
-9.60758448e-01 -2.74827719e-01 5.24714053e-01 4.81445134e-01
4.47387636e-01 -6.45283997e-01 -2.33960375e-02 -1.18790007e+00
8.73332694e-02 -3.82076144e-01 7.30330050e-02 -9.66835678e-01
-1.04549718e+00 6.04706770e-03 7.70632774e-02 -1.52633345e+00
-4.64058638e-01 -4.07954305e-01 -4.22782078e-02 4.54121232e-01
-1.16574717e+00 -4.58000690e-01 -1.82663962e-01 7.95864880e-01
5.13560236e-01 4.98828351e-01 5.73519230e-01 2.42577672e-01
1.27024099e-01 -1.27273142e-01 2.51355082e-01 -3.61480145e-03
3.74752581e-01 -9.84182894e-01 -2.45036352e-02 9.66174245e-01
4.20049578e-01 3.72122347e-01 8.16628754e-01 -3.84434789e-01
-1.99502015e+00 -9.01232541e-01 5.79150975e-01 -4.38614756e-01
7.02743769e-01 -9.09653381e-02 -7.26420522e-01 7.44213283e-01
4.48382497e-02 3.57221961e-01 5.16412914e-01 -4.81410354e-01
-2.69311756e-01 -2.69298226e-01 -1.14768302e+00 1.95217967e-01
1.08062768e+00 -1.08638597e+00 -2.87400544e-01 1.76124439e-01
4.85304326e-01 -5.41006923e-01 -6.68475866e-01 9.07581300e-02
7.32446015e-01 -1.27627242e+00 7.60109961e-01 1.81164131e-01
4.86376733e-01 -5.66064298e-01 -5.29034972e-01 -6.85527325e-01
-8.78320411e-02 -5.85920215e-01 -3.98543149e-01 8.75955462e-01
-1.23848215e-01 -7.10987210e-01 7.28268921e-01 7.33262062e-01
1.29659474e-01 -2.51536161e-01 -1.13099372e+00 -9.58201528e-01
-6.11528814e-01 -7.51002312e-01 3.02182466e-01 7.09859550e-01
1.00178279e-01 -2.00642720e-01 -1.57684550e-01 2.40864784e-01
8.29968989e-01 8.44983086e-02 6.94099218e-02 -1.00635433e+00
-4.46470678e-01 -7.61943832e-02 -7.11795986e-01 -1.44695401e+00
-3.38538587e-01 -1.62316620e-01 2.36579001e-01 -1.03131688e+00
-2.21597347e-02 -1.77143857e-01 -2.38350734e-01 -8.58235285e-02
5.10992885e-01 4.12809402e-01 1.49738923e-01 4.56001014e-01
-6.78409159e-01 2.70119160e-02 9.32570457e-01 1.35192811e-01
-7.80754462e-02 -3.80198121e-01 1.10603847e-01 6.23533130e-01
3.59526724e-01 -2.17631131e-01 -7.83875704e-01 -5.69073558e-01
4.67350632e-01 9.79648530e-01 8.16541553e-01 -1.53081918e+00
6.25761509e-01 -3.58695477e-01 5.01614034e-01 -5.07544696e-01
8.26212943e-01 -1.09180212e+00 7.80280948e-01 1.23656049e-01
-5.98276019e-01 1.65533543e-01 5.95466979e-03 9.87072051e-01
-3.45096558e-01 2.16401182e-03 8.18767011e-01 -3.46108943e-01
-7.79152453e-01 3.03621233e-01 -9.02535260e-01 -8.27149525e-02
9.79038298e-01 -8.28340530e-01 -1.87731192e-01 -5.10981679e-01
-5.67626178e-01 -4.13518280e-01 7.78501511e-01 -7.57007748e-02
6.44990087e-01 -1.23012018e+00 -1.23737417e-01 3.23485106e-01
-1.13185868e-01 -1.41268715e-01 2.01614350e-01 6.00274503e-01
-4.83478904e-01 2.76218057e-01 -2.20722198e-01 -1.06124306e+00
-9.11337078e-01 2.43331596e-01 2.53386557e-01 3.33567739e-01
-7.26941943e-01 7.38494217e-01 2.63511360e-01 7.77751386e-01
1.45455122e-01 -5.84850848e-01 4.08579081e-01 -1.61129475e-01
8.92736077e-01 3.97410721e-01 -2.43278503e-01 -1.96146458e-01
-2.15005979e-01 5.27058780e-01 3.05040628e-01 -7.92735636e-01
1.00192082e+00 -4.07629907e-01 1.19110562e-01 1.18221235e+00
1.08120334e+00 -5.46537042e-02 -1.85385394e+00 4.02773777e-03
-3.78563255e-01 -5.71178734e-01 1.70336008e-01 -2.33000770e-01
-8.11936617e-01 8.77336204e-01 5.85827589e-01 7.23608911e-01
1.48183715e+00 -5.21869212e-02 1.05139983e+00 -1.07239801e-02
8.04440022e-01 -8.89980495e-01 -7.81745017e-02 3.62038612e-01
2.86638409e-01 -9.32077467e-01 -1.63209260e-01 -2.24529535e-01
1.84402943e-01 1.16821563e+00 1.43479882e-02 -3.08611125e-01
6.05203629e-01 8.16026807e-01 -2.58957595e-01 -6.15071058e-02
-8.86435032e-01 -9.26822424e-02 -3.07358086e-01 6.59796596e-01
3.77033412e-01 1.22415863e-01 1.15367118e-03 -1.87992111e-01
-1.17015382e-02 5.81173241e-01 7.78981984e-01 1.08583176e+00
-5.63017190e-01 -8.45087826e-01 -5.14705122e-01 5.39775908e-01
-3.91873926e-01 8.85927379e-02 2.10305393e-01 5.07246196e-01
7.42476135e-02 1.03771579e+00 7.30506539e-01 -1.52124658e-01
-2.26744916e-03 -2.38543525e-01 9.75452960e-01 -4.97205168e-01
-1.37894787e-02 -4.64407615e-02 -2.47276276e-01 -8.47806931e-01
-9.99708056e-01 -8.88911486e-01 -1.55081117e+00 -5.00850439e-01
2.78676767e-02 5.31656481e-02 7.27932751e-01 8.01104724e-01
3.95174444e-01 5.88032186e-01 4.11946774e-01 -8.56144369e-01
-3.64610814e-02 -3.07170987e-01 -7.03078210e-01 2.09454253e-01
9.39258814e-01 -2.52179563e-01 -5.94684005e-01 8.70216250e-01] | [8.697234153747559, -1.3519951105117798] |
182ac7d4-c1fd-4481-aee9-6f5690073d7c | concept-oriented-deep-learning-with-large | 2306.17089 | null | https://arxiv.org/abs/2306.17089v1 | https://arxiv.org/pdf/2306.17089v1.pdf | Concept-Oriented Deep Learning with Large Language Models | Large Language Models (LLMs) have been successfully used in many natural-language tasks and applications including text generation and AI chatbots. They also are a promising new technology for concept-oriented deep learning (CODL). However, the prerequisite is that LLMs understand concepts and ensure conceptual consistency. We discuss these in this paper, as well as major uses of LLMs for CODL including concept extraction from text, concept graph extraction from text, and concept learning. Human knowledge consists of both symbolic (conceptual) knowledge and embodied (sensory) knowledge. Text-only LLMs, however, can represent only symbolic (conceptual) knowledge. Multimodal LLMs, on the other hand, are capable of representing the full range (conceptual and sensory) of human knowledge. We discuss conceptual understanding in visual-language LLMs, the most important multimodal LLMs, and major uses of them for CODL including concept extraction from image, concept graph extraction from image, and concept learning. While uses of LLMs for CODL are valuable standalone, they are particularly valuable as part of LLM applications such as AI chatbots. | ['Daniel T. Chang'] | 2023-06-29 | null | null | null | null | ['text-generation'] | ['natural-language-processing'] | [ 7.01467544e-02 5.10283351e-01 -1.45933717e-01 -1.17931046e-01
-5.08339286e-01 -7.11316168e-01 1.09441864e+00 6.61541998e-01
-4.28029805e-01 6.23883009e-01 -8.40508789e-02 -2.28717536e-01
-4.44718227e-02 -9.06619608e-01 -5.24521589e-01 -4.45745498e-01
-7.94136431e-03 6.21836901e-01 1.28726035e-01 -4.55938041e-01
3.45317245e-01 3.82581770e-01 -1.73535824e+00 7.72325456e-01
6.79224372e-01 7.88007081e-01 4.70639288e-01 6.56300068e-01
-1.16931021e+00 1.52455246e+00 -7.72382259e-01 -3.11433434e-01
-6.68003261e-01 -6.42478287e-01 -1.20837879e+00 1.68728396e-01
4.19919938e-02 3.95634249e-02 7.30804428e-02 9.20697510e-01
8.98830295e-02 2.33780235e-01 9.06597316e-01 -1.97762120e+00
-5.78415453e-01 7.01787233e-01 -1.59504399e-01 -6.64712667e-01
6.81300759e-01 -2.11120307e-01 8.11528206e-01 -9.32380795e-01
8.24988008e-01 1.77463186e+00 2.68586069e-01 8.19252431e-01
-8.02064717e-01 -3.19211990e-01 2.76744127e-01 4.99413192e-01
-1.28223562e+00 -9.87611040e-02 6.93642199e-01 -5.15302479e-01
1.01473415e+00 -8.20356533e-02 8.52164865e-01 8.63188386e-01
3.40946205e-02 1.40050089e+00 1.01893961e+00 -1.03341925e+00
4.28384960e-01 5.32147229e-01 -9.21594650e-02 9.05122697e-01
-2.24660605e-01 -2.74698257e-01 -1.10926867e+00 9.23488196e-03
1.01531339e+00 -1.39128029e-01 1.71776876e-01 -4.83625382e-01
-1.42257059e+00 1.00507331e+00 4.05044794e-01 5.37443340e-01
-1.38061360e-01 4.12384242e-01 2.83547014e-01 3.44471693e-01
-8.41407031e-02 4.77532178e-01 -1.22595087e-01 -1.85550302e-01
-7.58680463e-01 1.43487290e-01 9.43987787e-01 1.44407141e+00
9.24608707e-01 3.19118090e-02 4.48745936e-02 8.67752552e-01
3.51433992e-01 7.54363060e-01 6.63273096e-01 -1.08110833e+00
2.30388373e-01 9.49770391e-01 -6.01840466e-02 -9.32978570e-01
-4.28372502e-01 3.99724513e-01 -7.63123870e-01 1.80371433e-01
9.32237059e-02 -1.17057279e-01 -8.43723178e-01 1.51278400e+00
-5.45418821e-02 -1.86866388e-01 4.58355159e-01 6.03008091e-01
1.32769156e+00 7.87420750e-01 4.95356321e-01 -1.53029993e-01
1.33491254e+00 -6.87789381e-01 -7.94745743e-01 -2.85296321e-01
6.57320142e-01 -3.78431916e-01 1.00481081e+00 2.83659279e-01
-9.96116400e-01 -5.34569740e-01 -7.70426571e-01 -1.31845370e-01
-9.88282025e-01 -1.17193870e-02 1.01688576e+00 1.96398154e-01
-1.16489875e+00 5.83050288e-02 -5.22992194e-01 -8.67370486e-01
4.87225443e-01 2.40974486e-01 -4.65811223e-01 -1.74463570e-01
-1.30155325e+00 9.56518948e-01 5.79746842e-01 -8.93190969e-03
-8.40964496e-01 -2.12116465e-02 -1.21601796e+00 -4.37029041e-02
6.95137024e-01 -4.72150981e-01 1.33028603e+00 -1.22131503e+00
-1.25307393e+00 1.09902227e+00 -4.87107970e-02 -4.16332722e-01
2.25379437e-01 3.92989255e-03 -3.92991513e-01 6.37374341e-01
3.00169662e-02 1.39420819e+00 8.47730219e-01 -1.65452385e+00
-6.54270828e-01 7.91078731e-02 4.40692723e-01 3.64926815e-01
-2.60570049e-01 -1.28349245e-01 -4.30227816e-01 -1.90942958e-01
1.82449937e-01 -7.04401970e-01 -9.71195474e-02 2.42584661e-01
-2.65584558e-01 -3.91154081e-01 8.77639890e-01 -1.17868096e-01
7.73135424e-01 -1.77935755e+00 2.37762675e-01 1.71964511e-01
3.43293548e-01 3.06300223e-01 -5.17895877e-01 1.06010997e+00
3.99531662e-01 1.99402124e-02 -2.07891583e-01 -9.23737511e-03
1.92412421e-01 3.87839407e-01 -1.85694069e-01 -3.15096200e-01
4.34625179e-01 1.42165267e+00 -1.09576988e+00 -8.39844286e-01
6.00797534e-01 4.16070700e-01 -1.12120748e-01 1.87021345e-01
-8.96417439e-01 1.94046959e-01 -4.10976470e-01 5.07124722e-01
1.35990724e-01 -2.69495815e-01 4.62160081e-01 -5.54410256e-02
-8.36543273e-03 -2.74486899e-01 -9.61142182e-01 1.75145590e+00
-7.04838157e-01 1.11350787e+00 -1.75730199e-01 -1.05026233e+00
8.79444063e-01 5.55123866e-01 3.17462265e-01 -5.74260592e-01
-3.99091840e-02 -1.11738302e-01 -4.77992408e-02 -7.30997682e-01
4.42878783e-01 -4.88859266e-01 -1.05296284e-01 6.06967330e-01
4.91578996e-01 -6.07949734e-01 3.28327119e-01 8.28306496e-01
3.18038404e-01 2.43047878e-01 5.86452603e-01 4.54433858e-02
5.88998497e-01 3.57513636e-01 -2.40800619e-01 7.74990797e-01
1.36693045e-01 1.82518601e-01 7.00837135e-01 -1.48711160e-01
-5.58665216e-01 -9.97563720e-01 4.54004914e-01 1.14461124e+00
4.68768448e-01 -6.69025600e-01 -6.91646397e-01 -4.71264422e-01
-2.93227762e-01 7.19262898e-01 -2.24926218e-01 -7.98708797e-02
-1.65249869e-01 -1.35603279e-01 4.87698734e-01 7.01528072e-01
5.88755131e-01 -1.73166609e+00 -8.77630651e-01 2.59589493e-01
-4.95325804e-01 -1.35678124e+00 2.83219904e-01 -6.43231794e-02
-6.44046187e-01 -1.31798053e+00 -5.64268231e-01 -1.03942370e+00
7.14884520e-01 2.91935086e-01 1.16377068e+00 4.25125062e-01
-3.96713376e-01 1.30885863e+00 -6.32032692e-01 -8.50780129e-01
-6.19172454e-01 -3.15121800e-01 -1.53334603e-01 -1.35360718e-01
4.12784636e-01 -3.05979818e-01 -2.80310214e-02 -1.98743585e-02
-1.10115278e+00 4.94902998e-01 5.62001705e-01 6.22460186e-01
4.65125501e-01 3.78245525e-02 7.15362132e-01 -6.40766621e-01
9.31752324e-01 -2.37378612e-01 -2.94145584e-01 6.86008096e-01
1.81345437e-02 -2.64955442e-02 2.33751118e-01 -5.93501925e-01
-1.17923117e+00 -1.11382745e-01 -7.72777423e-02 -2.19825983e-01
-5.00879347e-01 1.01534128e+00 -7.98693225e-02 1.33532554e-01
4.99933273e-01 3.73502523e-01 -3.23426127e-02 -3.09150964e-01
8.18102777e-01 6.90867364e-01 4.01047468e-01 -8.99647355e-01
3.72950107e-01 4.97595191e-01 1.32310092e-01 -1.44467914e+00
-6.90641701e-01 -4.23587620e-01 -1.03119588e+00 -4.95314419e-01
8.44303727e-01 -7.45042324e-01 -1.10035527e+00 4.83716697e-01
-1.30037642e+00 -4.51308936e-01 -3.03491861e-01 2.64985502e-01
-8.09804559e-01 2.89958298e-01 -4.83925074e-01 -1.13033950e+00
-1.16175354e-01 -6.04632318e-01 1.00028074e+00 3.40655625e-01
-3.73362213e-01 -1.29825890e+00 -5.22437334e-01 2.35123411e-01
1.52035132e-01 3.25360149e-01 1.40644038e+00 -6.08206213e-01
-5.55408239e-01 -1.56341881e-01 -2.05469713e-01 1.02633245e-01
9.10242498e-02 -1.55165950e-02 -9.24822867e-01 -5.60803823e-02
-4.30765986e-01 -9.11230922e-01 6.55687809e-01 1.62326321e-01
7.61580944e-01 -1.88765928e-01 -4.73560691e-01 -2.48496547e-01
1.35747087e+00 3.06653351e-01 4.58764195e-01 4.13514860e-02
6.51007116e-01 1.03072834e+00 7.39170015e-01 2.03516006e-01
5.50676465e-01 3.99973392e-01 2.34275088e-01 -1.02764800e-01
-8.23307037e-02 -4.28898782e-01 4.33971614e-01 8.76640320e-01
-6.44000620e-02 -2.19016194e-01 -1.30351710e+00 5.38414001e-01
-2.21761179e+00 -1.03388691e+00 -1.27011448e-01 1.73633277e+00
8.88585627e-01 -8.64053220e-02 1.71921626e-02 -8.05604178e-03
6.30039036e-01 -2.09891781e-01 -4.84960765e-01 -4.53778774e-01
-2.59532839e-01 1.54128790e-01 -4.42293465e-01 4.70143288e-01
-8.75400007e-01 1.45934522e+00 5.85150576e+00 9.56846535e-01
-9.98010337e-01 5.84191196e-02 -3.61601636e-02 2.18027145e-01
-2.34907418e-01 5.73656559e-02 -5.04791141e-01 -1.42344996e-01
6.66443765e-01 -6.17831424e-02 1.62849978e-01 8.25275898e-01
-1.70167148e-01 -6.12459421e-01 -1.24688852e+00 1.24620569e+00
2.22444713e-01 -1.71555233e+00 5.28993845e-01 -3.12220067e-01
6.73604190e-01 -3.58943850e-01 -6.24237299e-01 5.41625917e-01
1.88148633e-01 -1.19698322e+00 8.35302472e-01 7.74231434e-01
9.48348224e-01 -7.95782447e-01 7.53923893e-01 6.72083914e-01
-1.42332745e+00 5.19036092e-02 -2.40606070e-01 -1.33289918e-01
9.34405476e-02 2.45845616e-02 -5.06705821e-01 4.38732386e-01
4.15008336e-01 6.73813343e-01 -5.59063494e-01 5.20896852e-01
-6.13825083e-01 1.26803011e-01 4.19092625e-02 -4.58364844e-01
3.13923359e-01 1.78977266e-01 6.59827441e-02 1.38880908e+00
-1.01154149e-01 1.77355856e-01 2.85644323e-01 1.03604817e+00
2.57384069e-02 7.43630975e-02 -6.23834431e-01 -7.73222268e-01
6.42478406e-01 1.10169423e+00 -8.74997735e-01 -6.54366791e-01
-5.34297943e-01 8.34887385e-01 3.26581925e-01 4.41493183e-01
-3.61281097e-01 -7.16759920e-01 3.21171463e-01 -1.31718695e-01
-1.64306968e-01 -4.86188173e-01 2.25261584e-01 -1.15242922e+00
-4.19644207e-01 -6.77097380e-01 2.33708680e-01 -1.35784674e+00
-1.32418776e+00 4.66398478e-01 4.07572955e-01 -1.17706943e+00
-6.14454150e-01 -8.73095334e-01 -4.64244753e-01 5.37042141e-01
-1.49064827e+00 -1.80426061e+00 -3.33896101e-01 9.15732920e-01
6.92741513e-01 -3.59650522e-01 1.11298084e+00 -3.89435858e-01
3.05175751e-01 -2.28694230e-02 -2.75778234e-01 3.50440949e-01
3.77500355e-01 -1.13035011e+00 8.28059688e-02 9.68481377e-02
6.42917156e-01 7.64597058e-01 1.43078431e-01 -5.70328951e-01
-1.39399672e+00 -7.61322558e-01 1.05612826e+00 -3.35146815e-01
6.13562644e-01 -5.90651274e-01 -8.47747266e-01 6.49048805e-01
2.94578910e-01 -6.46433234e-01 7.25203156e-01 1.12551982e-02
-2.18646973e-01 3.20400298e-01 -9.36998188e-01 7.74604440e-01
6.95642591e-01 -9.03146863e-01 -7.62246251e-01 5.16168892e-01
5.87479293e-01 -1.94674954e-01 -6.28461897e-01 -5.55041209e-02
6.34886742e-01 -8.69006634e-01 9.16776955e-01 -6.17943764e-01
4.40717787e-01 -2.96858460e-01 -7.49028996e-02 -1.14749062e+00
1.95565104e-01 -4.48761612e-01 -3.05216670e-01 1.31682694e+00
1.49711505e-01 -1.84483439e-01 4.45913136e-01 5.13848305e-01
2.57647038e-01 -3.48123729e-01 -5.64912379e-01 -7.35974073e-01
2.01984998e-02 -8.71046960e-01 2.69770175e-01 1.11782575e+00
7.22891331e-01 7.11080909e-01 -2.81123281e-01 -1.95444271e-01
4.37919676e-01 3.51331085e-01 6.34520829e-01 -1.41611254e+00
2.54177392e-01 -3.60152721e-01 -4.99177873e-01 -8.61666858e-01
3.17325324e-01 -7.77251244e-01 1.81617185e-01 -2.32022285e+00
2.13926956e-01 -8.52620974e-02 1.40422583e-01 8.15558434e-01
2.94576287e-01 -6.14980981e-02 7.05280721e-01 1.73462406e-01
-8.48747790e-01 3.79106492e-01 1.29244709e+00 -3.41867536e-01
-1.31960720e-01 -3.51047039e-01 -5.25094271e-01 1.05088341e+00
7.65215337e-01 -1.22735642e-01 -7.84064710e-01 -1.83520153e-01
4.77276385e-01 1.80662334e-01 8.65447879e-01 -8.86814654e-01
5.76149762e-01 -5.85421979e-01 2.84742236e-01 -5.89520276e-01
5.81776559e-01 -7.70321369e-01 -3.55390877e-01 3.20756465e-01
-5.58748484e-01 -3.27060610e-01 4.72250432e-01 4.15159613e-01
-6.75713360e-01 -4.03073370e-01 5.43921351e-01 -7.23504424e-01
-1.55378318e+00 -1.96866125e-01 -9.26294506e-01 1.24685273e-01
7.67428637e-01 -2.11522549e-01 -2.41496578e-01 -1.04791272e+00
-9.52255607e-01 4.75263596e-01 1.16510548e-01 6.93028748e-01
1.06961024e+00 -1.27664042e+00 -2.49830514e-01 5.86882755e-02
4.84770000e-01 2.72108875e-02 1.62307620e-01 4.78477359e-01
-3.88893247e-01 7.49542058e-01 -3.22277904e-01 -6.12767518e-01
-1.13731730e+00 5.17119706e-01 1.68002486e-01 3.63718927e-01
-4.17724073e-01 8.78039241e-01 3.36582273e-01 -6.29414618e-01
5.09859264e-01 -1.14583001e-01 -4.35104251e-01 2.39673659e-01
6.36386931e-01 -5.63827008e-02 -4.24905419e-01 -6.80482984e-01
-3.49059433e-01 6.97504163e-01 4.05090064e-01 -4.81922269e-01
1.11282408e+00 -2.47442678e-01 -3.59822094e-01 8.90843987e-01
8.39280725e-01 -4.51588541e-01 -8.11497867e-01 -3.24467868e-01
2.90525526e-01 9.85363349e-02 -3.54393870e-01 -9.52909529e-01
-4.95256513e-01 1.63254702e+00 1.69557676e-01 1.82289138e-01
9.78830040e-01 3.74720395e-01 4.02322561e-01 9.19982791e-01
6.50626063e-01 -1.31276238e+00 6.95063829e-01 7.18899131e-01
9.92157161e-01 -1.43797183e+00 -1.36363819e-01 -2.77845442e-01
-1.19670212e+00 1.46814907e+00 6.93837106e-01 5.12636065e-01
5.11182666e-01 1.96992040e-01 2.97558218e-01 -4.80890930e-01
-8.14815700e-01 -6.04406655e-01 2.88307518e-01 1.14586818e+00
4.74134803e-01 -2.39982139e-02 1.26133278e-01 5.02408922e-01
4.75279875e-02 7.48700127e-02 4.04414147e-01 1.27598202e+00
-6.77995086e-01 -1.06791353e+00 -2.79488117e-01 8.16692039e-02
1.94192156e-01 -2.56199658e-01 -8.20173025e-01 1.08171821e+00
2.44107708e-01 1.33116984e+00 8.32099915e-02 -1.44816294e-01
1.28214672e-01 3.36413592e-01 7.69250274e-01 -9.05169010e-01
-3.20009202e-01 -1.20685257e-01 1.45661086e-01 -2.59260505e-01
-9.77291346e-01 -2.01249748e-01 -2.00871301e+00 -1.55809805e-01
-1.99345022e-01 2.22033948e-01 7.90279984e-01 1.33769441e+00
-1.68304950e-01 1.99797809e-01 -5.72161302e-02 -8.03240716e-01
2.99339592e-01 -8.30855668e-01 -6.30117297e-01 3.39378238e-01
1.63860589e-01 -5.00414848e-01 1.10123999e-01 4.97313976e-01] | [10.59089469909668, 1.8899989128112793] |
2bf207a8-1161-4b7d-a307-247e48f74723 | evaluation-of-deep-segmentation-models-for | 2006.02662 | null | https://arxiv.org/abs/2006.02662v2 | https://arxiv.org/pdf/2006.02662v2.pdf | Exploiting the Transferability of Deep Learning Systems Across Multi-modal Retinal Scans for Extracting Retinopathy Lesions | Retinal lesions play a vital role in the accurate classification of retinal abnormalities. Many researchers have proposed deep lesion-aware screening systems that analyze and grade the progression of retinopathy. However, to the best of our knowledge, no literature exploits the tendency of these systems to generalize across multiple scanner specifications and multi-modal imagery. Towards this end, this paper presents a detailed evaluation of semantic segmentation, scene parsing and hybrid deep learning systems for extracting the retinal lesions such as intra-retinal fluid, sub-retinal fluid, hard exudates, drusen, and other chorioretinal anomalies from fused fundus and optical coherence tomography (OCT) imagery. Furthermore, we present a novel strategy exploiting the transferability of these models across multiple retinal scanner specifications. A total of 363 fundus and 173,915 OCT scans from seven publicly available datasets were used in this research (from which 297 fundus and 59,593 OCT scans were used for testing purposes). Overall, a hybrid retinal analysis and grading network (RAGNet), backboned through ResNet-50, stood first for extracting the retinal lesions, achieving a mean dice coefficient score of 0.822. Moreover, the complete source code and its documentation are released at: http://biomisa.org/index.php/downloads/. | ['Naoufel Werghi', 'Taimur Hassan', 'Muhammad Usman Akram'] | 2020-06-04 | null | null | null | null | ['scene-parsing'] | ['computer-vision'] | [ 1.82818752e-02 -1.12899147e-01 1.40214413e-01 -4.81556267e-01
-5.21107674e-01 -4.95737225e-01 1.37024105e-01 2.43706815e-02
-2.07165256e-01 7.78707445e-01 1.22346118e-01 -5.62920153e-01
-4.08854276e-01 -6.67639911e-01 -1.91931486e-01 -5.02904594e-01
-1.22156203e-01 -9.22798812e-02 2.89056540e-01 3.48654896e-01
5.68002105e-01 6.93396568e-01 -1.71526396e+00 5.16603410e-01
1.47933638e+00 1.26651466e+00 1.08291097e-02 1.04057825e+00
1.41342476e-01 8.45200062e-01 -2.38318443e-01 -4.43420410e-01
5.64133942e-01 -6.04386806e-01 -7.79929936e-01 3.30849677e-01
1.21947861e+00 -7.42166042e-01 -1.70707181e-01 1.16621590e+00
9.56476986e-01 -2.70236522e-01 5.02350628e-01 -5.26429474e-01
-6.74878776e-01 -4.03541373e-03 -5.65413952e-01 7.42849946e-01
-1.32838473e-01 7.02535272e-01 5.42960465e-01 -6.13005102e-01
4.90821958e-01 7.79275537e-01 6.22379482e-01 1.67222753e-01
-6.89422548e-01 -3.52558076e-01 -2.62219161e-01 3.09117943e-01
-1.03816628e+00 -5.43063343e-01 -4.10519093e-02 -1.07172465e+00
7.47218907e-01 2.20532060e-01 1.16422880e+00 3.96895528e-01
2.51817197e-01 2.11503416e-01 1.63712192e+00 -1.86339408e-01
-1.34433284e-01 1.27829064e-03 2.72332102e-01 1.01832783e+00
7.59688437e-01 1.50111690e-01 1.11415982e-01 -6.26875961e-04
9.64269400e-01 -3.25586110e-01 -2.58950591e-01 -9.10595618e-03
-6.61565781e-01 5.68117738e-01 5.17456412e-01 -1.50092185e-01
-5.47356129e-01 -3.09587687e-01 2.89564490e-01 1.96879104e-01
5.10488510e-01 5.46546400e-01 -1.83977336e-01 1.52901441e-01
-7.95567274e-01 -4.75932546e-02 2.45567635e-01 4.13497806e-01
4.86856788e-01 -1.67744458e-01 -3.04123014e-01 1.03728676e+00
2.69323885e-01 2.96226889e-01 4.52571958e-01 -1.12483871e+00
1.71126097e-01 1.02307117e+00 2.50835363e-02 -7.54580438e-01
-7.37948954e-01 -4.62236196e-01 -7.90501893e-01 5.16989827e-01
4.85048056e-01 -6.24368429e-01 -1.38192916e+00 7.49884188e-01
1.91244081e-01 1.80042475e-01 -2.36070588e-01 1.31811726e+00
1.23364878e+00 -1.38088539e-01 8.65469724e-02 8.55120793e-02
1.55093837e+00 -8.84553730e-01 -3.46340388e-01 -1.07449576e-01
5.81178844e-01 -1.02011824e+00 6.96501493e-01 2.93923318e-01
-1.36849058e+00 -5.16480029e-01 -7.12327778e-01 -3.58060718e-01
-2.64240682e-01 7.78400838e-01 8.52320790e-01 6.05475307e-01
-1.44140351e+00 2.25017816e-01 -7.82834649e-01 -6.36947274e-01
9.57715869e-01 2.12719738e-01 -2.46715367e-01 -2.91038811e-01
-5.49195588e-01 9.44983125e-01 1.39678985e-01 2.63048142e-01
-2.92336822e-01 -7.99429595e-01 -5.15766919e-01 -4.46186453e-01
3.98586690e-02 -1.29319632e+00 9.34207141e-01 -7.94302046e-01
-1.20935595e+00 1.27411568e+00 -3.09866309e-01 -6.11119449e-01
5.58266759e-01 -3.05457592e-01 -5.85177481e-01 6.25544786e-01
5.61572553e-04 4.48416084e-01 5.95898569e-01 -6.90035224e-01
-9.88562703e-01 -5.60729921e-01 1.85508519e-01 -2.26669032e-02
2.35015020e-01 4.71260428e-01 -2.89000273e-01 -1.24201939e-01
7.17024729e-02 -7.66905487e-01 -2.21520871e-01 2.09855750e-01
-7.74781525e-01 -5.33271171e-02 1.93244871e-02 -9.53117311e-01
1.12181151e+00 -1.85684180e+00 -4.46876764e-01 1.04375653e-01
8.23701799e-01 9.69283342e-01 -1.70851246e-01 -1.99638635e-01
-2.06726715e-01 3.31542790e-01 -1.08097605e-01 4.58548777e-02
-5.47591805e-01 -3.37778926e-01 2.44154513e-01 6.39394879e-01
4.15496200e-01 9.67691302e-01 -6.93967223e-01 -4.62248802e-01
5.58872461e-01 3.30088496e-01 -4.07757968e-01 -1.37139514e-01
1.28318906e-01 4.99145150e-01 -4.03589815e-01 1.03798497e+00
8.16518247e-01 -5.59608102e-01 -1.02188297e-01 -3.24891269e-01
-5.28574347e-01 6.81199878e-02 -8.35264623e-01 1.05387366e+00
3.10049916e-04 9.57972109e-01 -1.33564323e-01 -3.72607797e-01
6.39955521e-01 -1.18261157e-02 5.89121222e-01 -6.57993019e-01
3.03811640e-01 4.05371279e-01 4.93363351e-01 -1.00384033e+00
2.65793920e-01 3.44587207e-01 9.32814538e-01 8.62832814e-02
-3.02550316e-01 2.61955172e-01 6.00578249e-01 -3.10279250e-01
1.00934231e+00 -1.21473067e-01 4.10762578e-01 2.58475900e-01
5.06344318e-01 2.34694317e-01 4.13405806e-01 5.26690245e-01
-5.94426572e-01 9.05768514e-01 7.34745562e-01 -6.47062659e-01
-1.05284965e+00 -9.92626905e-01 -5.90383410e-01 1.03904583e-01
-9.67083499e-02 -1.47377729e-01 -6.55102253e-01 -2.13900089e-01
4.88784574e-02 -5.10705598e-02 -4.37469006e-01 3.89752716e-01
-1.76664978e-01 -1.16374719e+00 3.96791667e-01 2.60647207e-01
8.77870262e-01 -6.38626635e-01 -5.17058432e-01 -5.26783206e-02
-2.16627549e-02 -9.75446224e-01 9.26588997e-02 -9.67224896e-01
-9.75464880e-01 -1.82146275e+00 -8.12698722e-01 -6.51386559e-01
7.10803151e-01 3.77181262e-01 8.87913942e-01 8.12610388e-02
-1.07219541e+00 7.40568042e-02 -8.71378481e-02 -3.81673932e-01
-2.08448395e-01 -2.51054406e-01 -2.36116603e-01 3.20248604e-01
5.25513470e-01 -2.31771767e-01 -1.21336615e+00 1.28903016e-01
-4.75337356e-01 -3.18130776e-02 1.06724942e+00 3.30808133e-01
8.03548515e-01 -1.16302967e-01 9.22441110e-02 -7.51195967e-01
5.71239948e-01 -3.93152982e-01 -8.92706156e-01 1.63335010e-01
-6.10719681e-01 -8.90408158e-01 -6.82233125e-02 1.03453182e-01
-7.81908095e-01 -2.65047222e-01 2.61071056e-01 -2.12399274e-01
-6.79439366e-01 3.65804523e-01 5.21055520e-01 -4.25155222e-01
8.61224055e-01 -1.45217463e-01 3.37496817e-01 -5.98612487e-01
2.64395803e-01 9.97188032e-01 5.11123776e-01 3.74965779e-02
1.78467229e-01 7.09578753e-01 1.71387166e-01 -9.33921933e-01
-1.11657834e+00 -6.94013119e-01 -4.98025656e-01 -1.89952448e-01
1.10951340e+00 -9.34231400e-01 -6.31088793e-01 1.08418775e+00
-8.78382742e-01 -2.33939752e-01 -4.45976406e-02 9.08301592e-01
-3.43996495e-01 3.82697701e-01 -5.05017817e-01 -5.40557802e-01
-2.54227847e-01 -1.19613838e+00 5.46801805e-01 7.27034748e-01
1.65460825e-01 -7.96231091e-01 -5.95749728e-02 7.35455155e-01
5.10516644e-01 4.19909805e-01 9.68101799e-01 -1.30148605e-01
-7.79566169e-01 -9.64576453e-02 -1.10115504e+00 7.66929090e-01
2.28695601e-01 5.45144439e-01 -8.42521489e-01 -8.21641181e-03
-4.92469847e-01 1.18492261e-01 1.07241297e+00 1.21019554e+00
1.20499671e+00 1.51497601e-02 -3.21488194e-02 1.03096616e+00
1.56711984e+00 2.47432739e-01 1.12542748e+00 4.90278661e-01
5.82440972e-01 8.04183245e-01 3.10895175e-01 4.27516848e-01
4.51146036e-01 2.94328779e-01 5.68018317e-01 -5.31659126e-01
-8.38760555e-01 3.52184296e-01 -2.04261318e-01 1.91206217e-01
-7.41255581e-01 -8.18306673e-03 -1.20329130e+00 7.22729862e-01
-1.31012928e+00 -7.44837165e-01 -7.57139266e-01 2.09378648e+00
5.42324007e-01 -3.19985121e-01 1.26345441e-01 -5.58820367e-01
9.33959723e-01 -2.96326995e-01 -8.60363007e-01 -1.99969679e-01
-4.23001438e-01 2.76810884e-01 6.96167707e-01 3.06547821e-01
-1.28306067e+00 7.98350036e-01 6.13939619e+00 1.06280208e-01
-1.25251150e+00 -8.16321000e-02 6.76155627e-01 -3.33186299e-01
3.83211821e-01 -9.96036828e-02 -6.53348446e-01 4.62250441e-01
8.28256965e-01 1.31961182e-01 2.39578068e-01 3.31213959e-02
7.31235027e-01 -4.58506405e-01 -4.55900252e-01 7.93330073e-01
-1.16731338e-01 -1.51242709e+00 9.07716379e-02 3.61162692e-01
7.82659173e-01 6.40277386e-01 2.99435198e-01 -5.40341973e-01
8.73887073e-03 -1.14477921e+00 -2.30798706e-01 1.28731704e+00
1.12945127e+00 -1.91545293e-01 9.49177384e-01 -5.48702478e-01
-5.16897261e-01 -2.23563150e-01 -3.99545014e-01 -8.61988775e-03
-5.51959500e-02 7.92304516e-01 -8.76488268e-01 4.81946737e-01
8.27443957e-01 1.23272574e+00 -1.13492644e+00 2.13501287e+00
-1.69935837e-01 6.26987755e-01 4.85136509e-02 5.93977869e-01
2.27439657e-01 -5.88130057e-01 7.13163376e-01 7.44914353e-01
5.00129938e-01 1.18171871e-01 -2.58849442e-01 9.50711668e-01
3.45258951e-01 3.24690968e-01 -3.93550038e-01 -1.57112584e-01
2.14532152e-01 1.27450335e+00 -4.05235231e-01 -1.51215017e-01
-7.46367514e-01 1.86485931e-01 -2.14531243e-01 7.11356580e-01
-5.13609588e-01 -4.52439278e-01 1.04270327e+00 4.88679975e-01
-6.82934001e-02 5.45937009e-02 -6.05589688e-01 -9.28532541e-01
1.29885331e-01 -5.93496680e-01 2.68109888e-01 -1.17694569e+00
-1.42242718e+00 5.37245572e-01 -5.01909435e-01 -1.39526796e+00
2.40778416e-01 -8.32929313e-01 -4.93030757e-01 1.43511486e+00
-2.13254690e+00 -9.83866632e-01 -7.82723546e-01 4.62923259e-01
3.33796702e-02 -6.80428445e-01 3.96693528e-01 2.58727551e-01
-9.17096853e-01 1.12599351e-01 -7.73375854e-02 3.94125015e-01
9.32747185e-01 -1.18949592e+00 1.96718052e-01 1.00423717e+00
-6.75566137e-01 8.16021323e-01 4.21664715e-02 -6.80690467e-01
-6.39601231e-01 -1.44563377e+00 7.24960744e-01 -2.68698514e-01
7.95346022e-01 8.37749541e-01 -8.11016917e-01 6.11657619e-01
1.25103101e-01 2.67398298e-01 7.77743220e-01 -1.74149305e-01
-3.09434365e-02 -6.81602955e-02 -1.10286880e+00 6.16306841e-01
8.35250616e-01 -2.71492243e-01 -2.44096622e-01 5.61854482e-01
1.88409939e-01 -7.47016013e-01 -1.19418943e+00 5.62313676e-01
4.95361686e-01 -1.56902766e+00 8.64578247e-01 -7.58167565e-01
7.24249959e-01 -2.93594182e-01 1.60772890e-01 -8.53336751e-01
-2.59165585e-01 -5.85362375e-01 8.09127912e-02 6.65411174e-01
2.28072122e-01 -1.26710057e+00 5.27310371e-01 4.59825397e-01
-6.05747938e-01 -8.26922417e-01 -5.41405916e-01 -2.87013024e-01
-3.03784423e-02 -6.65607527e-02 3.59732717e-01 7.04496026e-01
-8.91133547e-01 -3.13815594e-01 1.46396995e-01 5.19627810e-01
7.07495868e-01 1.44413754e-01 5.36507130e-01 -1.47649825e+00
2.54135817e-01 -7.73590207e-01 -9.08279538e-01 -4.19290811e-01
-2.83790350e-01 -9.57843065e-01 -7.17600286e-01 -2.08225036e+00
1.63365275e-01 -5.22241890e-01 -3.15222025e-01 4.27260935e-01
-2.11351402e-02 5.97593427e-01 -1.73723698e-01 3.56466711e-01
-8.99908766e-02 -2.18901411e-01 1.83788669e+00 1.01238407e-01
-4.82909054e-01 4.05633807e-01 -1.04825354e+00 1.01587009e+00
1.18698049e+00 1.50244549e-01 -3.63900930e-01 -5.58680177e-01
9.58293676e-02 -1.15195222e-01 1.03144622e+00 -9.92210448e-01
2.08143473e-01 -1.68966278e-02 3.11741918e-01 -4.42574203e-01
2.32719649e-02 -1.10695727e-01 -1.42862618e-01 2.12846741e-01
-1.34321466e-01 -4.44343954e-01 3.01452637e-01 2.43149325e-01
-3.41020674e-01 -2.17091432e-03 1.02511334e+00 -2.66529560e-01
-8.90273988e-01 6.45861268e-01 -3.64604235e-01 2.18249887e-01
9.82956409e-01 -6.02735460e-01 -1.10948527e+00 1.73085347e-01
-9.43142891e-01 1.93296701e-01 4.56180841e-01 1.76355690e-01
7.43047893e-01 -6.30007744e-01 -1.21096087e+00 2.83149034e-01
1.85445487e-01 -4.70672324e-02 6.60857141e-01 1.58930659e+00
-1.00034344e+00 6.41395628e-01 -6.61915481e-01 -6.62770450e-01
-1.53115284e+00 -2.69549012e-01 1.09258389e+00 3.70178401e-01
-8.19940686e-01 6.88938320e-01 -7.26285204e-02 2.30085269e-01
-1.37456447e-01 -6.25359237e-01 -5.58540344e-01 2.24775210e-01
7.22971499e-01 8.14990282e-01 2.11565554e-01 -4.10994142e-01
4.79631908e-02 1.03400135e+00 -2.71522969e-01 5.16212106e-01
1.16340935e+00 -5.16957879e-01 -8.21365714e-01 -5.98264635e-02
7.87647784e-01 -9.28100795e-02 -1.01390183e+00 -3.56140882e-01
-3.55353743e-01 -6.37910187e-01 3.91767412e-01 -1.15730369e+00
-1.21203792e+00 8.69849980e-01 1.15562153e+00 2.94423312e-01
1.33234656e+00 -2.16162398e-01 6.21268034e-01 -9.73198563e-02
-7.24395411e-03 -6.17736638e-01 -5.24048805e-01 2.55935103e-01
5.45506775e-01 -1.33861780e+00 5.82655780e-02 -7.73423493e-01
-5.72289109e-01 1.15163422e+00 5.87208569e-01 -1.54063776e-01
5.03276527e-01 -3.47924143e-01 4.55465615e-01 -3.87781084e-01
-3.95073801e-01 -7.95668781e-01 7.40425646e-01 9.34643745e-01
4.79357749e-01 1.59969836e-01 -3.26095462e-01 1.09101295e-01
-1.78563192e-01 3.68031710e-01 1.07972479e+00 2.90493339e-01
-6.25948846e-01 -6.38751864e-01 3.59256715e-02 1.18039143e+00
-7.10572481e-01 -3.29234481e-01 -4.11475092e-01 7.25978076e-01
4.88407224e-01 1.02395916e+00 2.10065708e-01 1.37571439e-01
1.72543630e-01 -2.09648430e-01 3.85163099e-01 -8.25628757e-01
-3.97956342e-01 4.09061462e-02 3.53184342e-01 -9.27231848e-01
-7.76430190e-01 -5.80134392e-01 -7.72178352e-01 -9.60867479e-02
2.44972408e-01 -5.97536564e-01 5.39470613e-01 5.49883842e-01
7.28813291e-01 6.48133218e-01 2.62856692e-01 -2.49368310e-01
-9.20338035e-02 -9.84998405e-01 -9.33976889e-01 -8.68579000e-02
8.00802588e-01 -5.81393778e-01 -2.55100608e-01 2.73935646e-01] | [15.819971084594727, -3.995516300201416] |
839abc65-045e-4021-9c15-4bf679a3d224 | link-prediction-without-graph-neural-networks | 2305.13656 | null | https://arxiv.org/abs/2305.13656v1 | https://arxiv.org/pdf/2305.13656v1.pdf | Link Prediction without Graph Neural Networks | Link prediction, which consists of predicting edges based on graph features, is a fundamental task in many graph applications. As for several related problems, Graph Neural Networks (GNNs), which are based on an attribute-centric message-passing paradigm, have become the predominant framework for link prediction. GNNs have consistently outperformed traditional topology-based heuristics, but what contributes to their performance? Are there simpler approaches that achieve comparable or better results? To answer these questions, we first identify important limitations in how GNN-based link prediction methods handle the intrinsic class imbalance of the problem -- due to the graph sparsity -- in their training and evaluation. Moreover, we propose Gelato, a novel topology-centric framework that applies a topological heuristic to a graph enhanced by attribute information via graph learning. Our model is trained end-to-end with an N-pair loss on an unbiased training set to address class imbalance. Experiments show that Gelato is 145% more accurate, trains 11 times faster, infers 6,000 times faster, and has less than half of the trainable parameters compared to state-of-the-art GNNs for link prediction. | ['Ambuj Singh', 'Arlei Silva', 'Mert Kosan', 'Zexi Huang'] | 2023-05-23 | null | null | null | null | ['link-prediction'] | ['graphs'] | [ 4.26372327e-02 3.89276773e-01 -8.13996613e-01 -1.92783728e-01
-3.87893856e-01 -2.34651461e-01 2.48998225e-01 7.20210969e-01
-3.59027162e-02 9.55336750e-01 -1.95379317e-01 -7.16308832e-01
-6.29358947e-01 -1.39315248e+00 -9.05177116e-01 -2.54157394e-01
-8.20868254e-01 1.19354689e+00 4.41380918e-01 -3.10678035e-01
1.89484611e-01 3.73476297e-01 -1.17667401e+00 -1.91268753e-02
1.01915038e+00 9.21247423e-01 -3.06324154e-01 6.94883823e-01
-2.79975027e-01 7.78595209e-01 -4.45508137e-02 -8.24448884e-01
2.59040833e-01 -2.01341882e-01 -9.88163829e-01 -4.39041466e-01
8.86727095e-01 1.15978606e-01 -8.53281260e-01 1.00675118e+00
4.13037211e-01 -1.93805665e-01 4.88929868e-01 -1.68214083e+00
-4.45974767e-01 9.16491687e-01 -5.86378753e-01 2.16656938e-01
2.78487325e-01 -2.94096380e-01 1.61941874e+00 -4.16936666e-01
9.12830353e-01 1.22426391e+00 1.14514804e+00 1.61961779e-01
-1.61631751e+00 -4.80990887e-01 1.92960978e-01 5.91598272e-01
-1.28488767e+00 3.23020592e-02 9.65120256e-01 -1.56084031e-01
9.10980105e-01 2.14880809e-01 9.66413558e-01 8.01887155e-01
3.07847738e-01 7.03169286e-01 5.21215677e-01 -2.24451572e-01
-9.85523164e-02 -2.44397804e-01 3.63957733e-02 1.17718077e+00
7.28526592e-01 6.52590469e-02 -5.90881646e-01 -3.31539482e-01
6.66042686e-01 -1.87970340e-01 -3.29699069e-01 -9.54900980e-01
-1.15669358e+00 1.04647136e+00 8.59215856e-01 -1.92425177e-01
-1.03593595e-01 3.86431336e-01 6.24514163e-01 5.71284771e-01
7.39717782e-01 5.38884521e-01 -5.52223802e-01 4.84655574e-02
-6.48415089e-01 5.98811917e-02 1.40075564e+00 9.31151092e-01
8.27856421e-01 -2.06142426e-01 5.48339486e-02 7.36177921e-01
2.81670481e-01 9.48157683e-02 -2.33469531e-01 -4.30965602e-01
7.60104597e-01 9.63421524e-01 -7.46609271e-01 -1.45855868e+00
-5.96601844e-01 -9.71711099e-01 -1.12163949e+00 -1.12363659e-01
4.64178622e-01 1.41235232e-01 -8.05233061e-01 1.75754523e+00
4.32948709e-01 2.40631655e-01 -5.00825703e-01 5.26802123e-01
7.27768540e-01 3.02798271e-01 -3.43210474e-02 5.65688033e-03
7.93011785e-01 -1.01739788e+00 -3.01015735e-01 -3.43629867e-02
1.04574358e+00 -4.87286627e-01 6.73387587e-01 2.63871074e-01
-8.76644075e-01 -9.64911282e-02 -1.16853774e+00 -8.77981726e-03
-6.40195966e-01 -4.72347856e-01 1.05313528e+00 6.05412066e-01
-1.37302113e+00 1.10393465e+00 -5.35455108e-01 -7.02748418e-01
5.57440996e-01 5.57760775e-01 -4.52098399e-01 -2.45538950e-01
-1.18237078e+00 8.09171677e-01 5.80811799e-01 -1.30701303e-01
-3.86628062e-01 -8.63547683e-01 -8.61338913e-01 1.97085291e-01
5.78731537e-01 -1.05207157e+00 5.01397789e-01 -5.23937762e-01
-9.64937627e-01 6.04078710e-01 1.69045880e-01 -7.01523662e-01
4.44715530e-01 3.01219314e-01 -5.24875641e-01 2.19438002e-01
1.35650307e-01 5.18622756e-01 3.02982450e-01 -1.00805640e+00
-5.50779819e-01 -2.40722373e-01 -4.44672853e-02 -5.40526621e-02
-4.79070097e-01 -5.86591661e-01 -5.92300594e-01 -5.85985005e-01
4.33521837e-01 -1.01735508e+00 -1.99173704e-01 1.85605839e-01
-8.91143441e-01 -3.68926108e-01 7.29863286e-01 -4.55213577e-01
1.34886897e+00 -1.46239316e+00 -2.59791743e-02 9.35032010e-01
9.35613394e-01 2.69866884e-01 -4.20233130e-01 7.99669206e-01
-1.40224338e-01 2.33342424e-01 -8.47758874e-02 -4.83843014e-02
-2.70320736e-02 1.52945623e-01 4.45453748e-02 5.22799671e-01
4.14717719e-02 8.39411378e-01 -1.04435575e+00 -7.60656953e-01
3.21741216e-02 3.85742366e-01 -6.02282226e-01 -1.21817045e-01
-3.88131559e-01 4.23489101e-02 -3.13231170e-01 7.88696408e-01
6.11641526e-01 -6.74851835e-01 6.85630620e-01 -1.97974622e-01
5.21412194e-01 4.01099920e-01 -1.00734150e+00 1.41198194e+00
-2.06761524e-01 7.87759244e-01 -1.89879984e-01 -1.44093239e+00
1.00636721e+00 -5.00699766e-02 6.03758991e-01 -6.37507558e-01
-9.12569389e-02 2.66947001e-01 2.09024131e-01 -3.28462809e-01
1.29282117e-01 4.65189815e-01 3.59295428e-01 3.30000520e-01
1.29529729e-01 3.06107521e-01 6.07904792e-01 6.48717821e-01
1.86011434e+00 -5.38427159e-02 1.15309842e-01 -2.86834985e-01
2.28997499e-01 7.24281743e-02 7.20895112e-01 8.09667647e-01
-2.44066603e-02 4.24310327e-01 9.56209362e-01 -9.04117167e-01
-1.09770834e+00 -1.04490125e+00 9.73221809e-02 1.00248039e+00
2.01440737e-01 -7.67595232e-01 -4.14193898e-01 -9.78906274e-01
4.43283796e-01 2.53076196e-01 -5.56328118e-01 -2.52780020e-01
-5.54993033e-01 -8.18674266e-01 5.21346688e-01 4.89367962e-01
2.91869074e-01 -5.83712280e-01 4.68296647e-01 4.64226305e-01
-1.78497717e-01 -1.12559891e+00 -2.06789732e-01 7.52758160e-02
-1.28317738e+00 -1.53833425e+00 -8.88040885e-02 -9.84484076e-01
9.31266546e-01 1.53117791e-01 1.85781670e+00 7.43713558e-01
-3.96746129e-01 1.79312214e-01 -2.10106418e-01 -7.69334659e-02
-1.77563280e-01 6.42230868e-01 -5.35645224e-02 -2.54131019e-01
1.66411638e-01 -1.10527802e+00 -5.62838256e-01 2.72972405e-01
-3.25369954e-01 8.19583610e-02 8.90447021e-01 8.73429298e-01
4.64772582e-01 1.71292543e-01 6.06495857e-01 -1.50394213e+00
6.59024060e-01 -5.47955811e-01 -5.63196182e-01 3.53904754e-01
-1.19186270e+00 2.23673180e-01 6.64758146e-01 -8.53406414e-02
-2.15286344e-01 -1.19919404e-01 -8.18088949e-02 -9.85262394e-02
3.11932057e-01 8.42741787e-01 2.65861899e-02 -6.93099678e-01
5.23816526e-01 -1.89355224e-01 2.69796759e-01 -3.30889881e-01
2.35883653e-01 -6.35204390e-02 2.85860866e-01 -6.48945510e-01
1.16326857e+00 3.15353066e-01 7.88405240e-01 -5.49229383e-01
-6.70177162e-01 -4.35457706e-01 -5.34563065e-01 -3.07398200e-01
2.62698084e-01 -6.33202016e-01 -1.05993688e+00 2.21413791e-01
-9.98936534e-01 -3.34186137e-01 1.05778113e-01 4.03130770e-01
-3.97813678e-01 3.67096812e-01 -8.93184245e-01 -4.47712868e-01
-4.44895178e-01 -7.03045189e-01 5.38124144e-01 -3.87622900e-02
1.43828681e-02 -1.50042880e+00 4.00065817e-02 2.07745612e-01
5.37032306e-01 4.97298360e-01 1.48984754e+00 -9.78841424e-01
-9.50285971e-01 -4.54038650e-01 -6.06457114e-01 -1.60109043e-01
-1.96118340e-01 7.56264776e-02 -3.88284862e-01 -4.21298087e-01
-9.78936434e-01 -2.17958316e-01 9.87956464e-01 2.34015435e-01
1.35360813e+00 -4.21530575e-01 -9.46896017e-01 6.54681087e-01
1.68767798e+00 -5.91954887e-01 6.35026097e-01 3.21897924e-01
1.05306911e+00 5.32949448e-01 2.87622958e-01 4.97496873e-02
8.32397699e-01 4.83328015e-01 9.26603436e-01 -3.57478440e-01
-3.96666825e-01 -6.48796380e-01 -1.25439048e-01 1.00410402e+00
-1.22467853e-01 -5.56332529e-01 -9.81842279e-01 4.87702370e-01
-2.08414507e+00 -7.99566865e-01 -7.30821967e-01 2.30545020e+00
6.51296258e-01 5.58628261e-01 3.04582238e-01 1.88725948e-01
1.04196465e+00 8.85834694e-02 -4.18976337e-01 -1.36675537e-01
-4.52316962e-02 7.35065043e-02 8.09738874e-01 4.02879030e-01
-9.48666215e-01 7.71907747e-01 6.37374258e+00 9.22729135e-01
-8.87028575e-01 -3.47426176e-01 7.78248847e-01 2.18219683e-01
-4.12154108e-01 2.05806300e-01 -4.88147259e-01 3.21516693e-01
8.27959418e-01 -1.18534215e-01 5.57929397e-01 8.51858556e-01
-1.31371826e-01 2.02417746e-01 -1.41947865e+00 7.86408126e-01
3.60109508e-02 -1.78059876e+00 1.01942763e-01 3.64177436e-01
7.14049399e-01 4.10644531e-01 -1.26119047e-01 3.95579159e-01
5.67687213e-01 -1.06283712e+00 1.33847252e-01 5.16615152e-01
6.00319922e-01 -7.26353407e-01 8.51151228e-01 4.82624955e-02
-1.47431803e+00 1.17460936e-01 -5.48346341e-01 4.87321541e-02
-4.77031693e-02 1.23388672e+00 -1.14398420e+00 8.41619670e-01
5.55412352e-01 7.62957454e-01 -7.95986950e-01 1.65085626e+00
-5.60693368e-02 7.92949021e-01 -4.93313521e-01 -2.38350600e-01
-7.23361224e-02 -1.60009474e-01 6.53707981e-01 8.45423341e-01
1.15046673e-01 -4.69861954e-01 4.29406792e-01 5.61148584e-01
-6.62208796e-01 1.58813968e-01 -8.36645842e-01 5.79362847e-02
7.30338454e-01 1.37601697e+00 -7.47178674e-01 -4.28357832e-02
-3.06072474e-01 4.33009028e-01 8.96903634e-01 1.74898654e-01
-6.46093547e-01 -7.68202186e-01 3.67545336e-01 4.10332412e-01
2.36219928e-01 -6.00603521e-02 -1.73874930e-01 -6.87801957e-01
1.68127432e-01 -6.57904625e-01 7.07653165e-01 -3.55095565e-01
-1.76395226e+00 5.18621802e-01 -4.55810428e-01 -1.18446159e+00
-7.21709803e-02 -7.42509246e-01 -8.97991180e-01 4.32037085e-01
-1.74139118e+00 -1.26971972e+00 -2.67646015e-01 2.67224699e-01
-1.94502607e-01 -6.17763810e-02 7.06396461e-01 6.09982073e-01
-4.93361145e-01 7.83368349e-01 4.66149040e-02 4.38183039e-01
7.06520975e-01 -1.53112042e+00 5.70015967e-01 5.23632467e-01
2.39143163e-01 2.93676823e-01 6.15303934e-01 -8.50789845e-01
-1.57717967e+00 -1.34579897e+00 1.21345294e+00 -3.19118530e-01
8.73399734e-01 -2.70345837e-01 -8.56510699e-01 6.85445130e-01
-2.29228318e-01 6.16876841e-01 6.54875934e-01 9.28946078e-01
-5.13065338e-01 -4.75798219e-01 -1.05919611e+00 5.44543028e-01
1.67688668e+00 -3.27678800e-01 8.94800201e-02 5.88211358e-01
7.03287005e-01 -3.40535223e-01 -1.19893956e+00 6.02453411e-01
4.17885274e-01 -9.37703311e-01 9.66232836e-01 -8.06696117e-01
2.84897357e-01 -1.35953784e-01 2.40060732e-01 -1.40422499e+00
-4.91913557e-01 -6.39770210e-01 -3.33671927e-01 1.16011751e+00
8.92347336e-01 -9.08536494e-01 1.35156441e+00 -4.72403280e-02
-2.35617999e-02 -1.25481176e+00 -8.30297589e-01 -9.34240341e-01
-2.89142132e-01 -2.37699091e-01 6.34928524e-01 1.22856843e+00
1.37204692e-01 5.88069260e-01 -2.52648145e-01 1.51138246e-01
1.07243598e+00 7.93915335e-03 8.98873389e-01 -2.05327654e+00
-6.31423071e-02 -5.96373975e-01 -9.41724062e-01 -8.30773532e-01
3.46319914e-01 -1.41634285e+00 -2.76983649e-01 -1.89102399e+00
2.02802792e-01 -8.18592370e-01 -2.93371975e-01 4.09740299e-01
-1.00307092e-01 3.54601175e-01 -2.39268422e-01 -1.18716992e-02
-1.03759289e+00 4.98877704e-01 1.05350912e+00 -2.54930258e-01
1.01471685e-01 9.03183818e-02 -5.52200615e-01 5.17242730e-01
7.11850345e-01 -5.11258900e-01 -3.66356641e-01 -2.91542917e-01
8.84735107e-01 5.95582835e-02 3.57168317e-01 -1.09984577e+00
5.67563474e-01 1.34360760e-01 3.46759737e-01 -6.75303161e-01
2.07957812e-03 -7.23374665e-01 -7.97029771e-03 6.00576818e-01
-3.12681735e-01 2.83389509e-01 -1.17343418e-01 9.84711707e-01
2.50394065e-02 2.29701564e-01 2.80755401e-01 2.71942198e-01
-4.92334336e-01 9.24287021e-01 1.69978425e-01 2.47221202e-01
7.71077871e-01 -2.20608845e-01 -7.77044356e-01 -5.20532429e-01
-4.01592106e-01 5.99206328e-01 2.46687323e-01 1.54366791e-01
5.08439124e-01 -1.54600108e+00 -8.42404544e-01 -1.06439389e-01
3.12174916e-01 -1.15826733e-01 -9.99426022e-02 1.03266823e+00
-7.00711191e-01 2.89831161e-01 -2.81749200e-03 -5.92980266e-01
-1.08175325e+00 4.90245640e-01 2.79116035e-01 -6.93612278e-01
-5.89956284e-01 8.64434242e-01 -3.74512643e-01 -8.53483021e-01
3.45953822e-01 2.18450859e-01 1.53124914e-01 -2.74160147e-01
-2.07740217e-01 5.83115578e-01 3.55023354e-01 -1.70743957e-01
-2.74844438e-01 3.14347208e-01 -1.59897327e-01 5.44614136e-01
1.52842927e+00 5.06501719e-02 -5.20363390e-01 5.80103546e-02
1.20897329e+00 -9.69241858e-02 -7.47988105e-01 -3.74992430e-01
2.82880396e-01 -4.28216249e-01 -3.54399122e-02 -7.76666105e-01
-1.35496747e+00 5.57894289e-01 2.09448427e-01 7.11827159e-01
6.18164420e-01 5.47950231e-02 8.80986571e-01 5.06264389e-01
3.79249662e-01 -1.19127524e+00 3.31943342e-03 4.28198695e-01
4.79614586e-01 -1.29607093e+00 2.59870797e-01 -1.10427761e+00
1.45455837e-01 1.25410795e+00 8.49571645e-01 -5.06567582e-02
7.36744404e-01 -1.92132622e-01 -4.05462980e-01 -4.24758911e-01
-1.00638938e+00 -2.46895254e-01 3.25576663e-01 7.67445505e-01
3.80832523e-01 -1.21736284e-02 -1.77106321e-01 -6.91816583e-02
-2.08547473e-01 -3.80973965e-01 3.36886495e-01 5.03306150e-01
-3.61040384e-01 -1.36361921e+00 7.53844827e-02 1.21189344e+00
-1.24841727e-01 -2.23100349e-01 -4.43114460e-01 9.35129166e-01
-2.92568356e-01 7.64705718e-01 9.03758407e-02 -6.94707930e-01
9.92551371e-02 -3.20758671e-01 4.19154674e-01 -4.74797130e-01
-1.59884751e-01 -6.88495755e-01 7.35446692e-01 -6.97002411e-01
1.93107687e-02 -1.83938876e-01 -1.01474547e+00 -1.12790191e+00
-5.76875210e-01 3.21086019e-01 5.96787155e-01 8.21070731e-01
6.40981436e-01 5.60439408e-01 6.71375275e-01 -4.20919567e-01
-3.70472461e-01 -6.50567830e-01 -5.33228219e-01 2.97055602e-01
4.48544659e-02 -6.19591773e-01 -4.32553291e-01 -7.16785729e-01] | [7.04879093170166, 6.193018436431885] |
61519088-dd04-4a14-b701-9da19a198ed3 | deep-learning-on-implicit-neural-datasets | 2206.01178 | null | https://arxiv.org/abs/2206.01178v3 | https://arxiv.org/pdf/2206.01178v3.pdf | Discretization Invariant Learning on Neural Fields | While neural fields have emerged as powerful representations of continuous data, there is a need for neural networks that can perform inference on such data without being sensitive to how the field is sampled, a property called discretization invariance. We develop DI-Net, a framework for learning discretization invariant operators on neural fields of any type. Whereas current theoretical analyses of discretization invariant networks are restricted to the limit of infinite samples, our analysis does not require infinite samples and establishes upper bounds on the variation in DI-Net outputs given different finite discretizations. Our framework leads to a family of neural networks driven by numerical integration via quasi-Monte Carlo sampling with discretizations of low discrepancy. DI-Nets manifest desirable theoretical properties such as universal approximation of a large class of maps between $L^2$ functions, and gradients that are also discretization invariant. DI-Nets can also be seen as generalizations of many existing network families as they bridge discrete and continuous network classes, such as convolutional neural networks (CNNs) and neural operators respectively. Experimentally, DI-Nets derived from CNNs can learn to classify and segment visual data represented by neural fields under various discretizations, and sometimes even generalize to new types of discretizations at test time. Code: https://github.com/clintonjwang/DI-net. | ['Polina Golland', 'Clinton J. Wang'] | 2022-06-02 | null | null | null | null | ['numerical-integration'] | ['miscellaneous'] | [ 1.78911939e-01 1.38137594e-01 -1.85523391e-01 -6.92853391e-01
-4.24998134e-01 -5.95507801e-01 3.83876741e-01 -1.62861440e-02
-3.05911869e-01 8.14296842e-01 -2.03125954e-01 -3.76660228e-01
-2.95019716e-01 -1.13579416e+00 -1.09549654e+00 -6.06176555e-01
-4.81028289e-01 3.19322884e-01 2.40620658e-01 -1.81484938e-01
-1.60143867e-01 8.05405557e-01 -1.45703065e+00 3.41211587e-01
9.09724116e-01 1.45449066e+00 -6.04480445e-01 7.48755574e-01
1.85394570e-01 6.14890218e-01 -2.23689556e-01 3.35456021e-02
6.74816728e-01 -3.58816743e-01 -8.89030218e-01 -1.10488936e-01
8.33940089e-01 -2.45006546e-01 -4.89003241e-01 1.52119029e+00
2.21290439e-01 3.62168521e-01 1.10922086e+00 -1.30353916e+00
-1.16770220e+00 6.01876974e-01 -5.10196872e-02 1.52043581e-01
-1.43495739e-01 1.06025882e-01 9.06824112e-01 -6.61491573e-01
5.45188546e-01 1.30686271e+00 1.33895135e+00 5.52393079e-01
-1.70214832e+00 -3.98399264e-01 -8.81137326e-02 -3.39221418e-01
-1.24825060e+00 -1.12740174e-01 5.46829998e-01 -7.11257041e-01
6.14755869e-01 2.70562917e-01 6.19416356e-01 7.73234904e-01
4.19811577e-01 6.22028232e-01 1.09965134e+00 -4.21162546e-01
5.76412618e-01 8.17323104e-03 3.22662234e-01 8.55430245e-01
2.41470516e-01 4.63546924e-02 -1.96353048e-02 -1.99268982e-01
1.27139544e+00 2.42956132e-01 -4.29604948e-01 -4.47521001e-01
-1.04804623e+00 1.11610103e+00 7.27440894e-01 2.37874612e-01
-2.52481252e-01 4.41123307e-01 7.10317075e-01 5.87531805e-01
5.79510450e-01 3.76109749e-01 -3.73460829e-01 2.97213346e-01
-8.07877183e-01 4.79444325e-01 7.62524962e-01 1.04462326e+00
8.41028810e-01 2.16187865e-01 -3.48389328e-01 6.11818492e-01
-1.35242820e-01 3.03166062e-01 3.47814769e-01 -1.16873562e+00
6.66615590e-02 5.34882843e-01 -1.16698764e-01 -8.43137801e-01
-3.93774122e-01 -2.35108182e-01 -1.36734223e+00 5.51431298e-01
6.19608581e-01 -2.05131680e-01 -1.08815658e+00 1.89088190e+00
-6.71114251e-02 -3.18745136e-01 -1.36733890e-01 5.68410575e-01
2.54779786e-01 5.96406519e-01 -1.89171642e-01 7.98573997e-03
8.40235353e-01 -4.21150178e-01 -3.95059615e-01 2.93752849e-01
6.95589721e-01 -1.06223553e-01 1.16192818e+00 4.01425004e-01
-1.21778965e+00 -7.52658665e-01 -1.02093291e+00 -1.89312428e-01
-7.60427535e-01 -1.32440209e-01 6.98207259e-01 4.12192523e-01
-1.33593261e+00 1.11513042e+00 -8.94635856e-01 -2.14595437e-01
9.18600619e-01 4.41352427e-01 -1.58731982e-01 1.27012268e-01
-1.30872846e+00 5.60434937e-01 6.19676352e-01 2.27123097e-01
-6.98845565e-01 -8.74671638e-01 -8.49655211e-01 4.44027893e-02
-2.51999944e-01 -3.53993714e-01 1.30055118e+00 -1.15040839e+00
-1.19445038e+00 6.78859711e-01 2.84642398e-01 -9.05026495e-01
6.58009112e-01 2.11226463e-01 -4.10911620e-01 2.75610797e-02
-1.99087784e-02 9.28495944e-01 7.76322603e-01 -7.61012375e-01
-3.99583220e-01 -9.83562917e-02 3.25541347e-01 -3.53498280e-01
-4.05014843e-01 -4.99157935e-01 3.57354403e-01 -6.33717835e-01
7.90612847e-02 -8.50915492e-01 -3.25406104e-01 7.98445642e-01
-4.31178629e-01 -3.35185289e-01 7.69620955e-01 -2.75015146e-01
8.93727243e-01 -2.09396052e+00 -1.37748167e-01 2.27815077e-01
3.02443206e-01 2.72088110e-01 7.66229630e-02 1.55182779e-01
-1.88163504e-01 2.88614601e-01 -6.77707136e-01 2.55789518e-01
3.30316812e-01 3.44349176e-01 -3.66888583e-01 7.50533283e-01
2.89979666e-01 1.01318586e+00 -7.92600989e-01 -3.40235978e-01
1.05714388e-01 4.97703522e-01 -6.90437138e-01 -1.77860111e-01
-5.35475671e-01 1.02410734e-01 -2.86864877e-01 3.83727163e-01
8.41771066e-01 -3.70809287e-01 -1.83119044e-01 -1.10702731e-01
-1.82168372e-02 -7.73694515e-02 -1.17030942e+00 1.40694618e+00
-3.28204662e-01 9.33893681e-01 4.00016941e-02 -1.67289495e+00
9.21438098e-01 3.13459843e-01 2.42969170e-01 -3.71081918e-01
2.60695100e-01 3.14880908e-01 6.55615004e-03 -2.70210415e-01
1.13159835e-01 -3.61292660e-01 -4.04274575e-02 1.14255629e-01
1.81781471e-01 -7.76528642e-02 3.80874515e-01 -1.09681241e-01
8.43645275e-01 -1.88467279e-01 1.66315347e-01 -7.53712237e-01
2.62073755e-01 -8.68424401e-02 4.69510615e-01 9.98069823e-01
-1.57412380e-01 5.20973146e-01 7.39933133e-01 -8.32536817e-01
-1.17464066e+00 -1.37574470e+00 -9.14867401e-01 8.30160677e-01
-8.87046084e-02 3.11133802e-01 -7.45232403e-01 -5.10336876e-01
2.91417897e-01 4.36556607e-01 -1.06836677e+00 -2.58563370e-01
-3.27468932e-01 -4.98251915e-01 9.33780313e-01 1.06122339e+00
8.20518017e-01 -1.02935851e+00 -6.06348991e-01 5.26160151e-02
3.96260411e-01 -8.02697837e-01 -4.35919404e-01 6.32452369e-01
-1.10393620e+00 -1.00670302e+00 -7.78506994e-01 -9.78207409e-01
7.40723968e-01 -4.60176557e-01 1.01250100e+00 -2.05609143e-01
-3.37085873e-01 2.37154543e-01 2.23123416e-01 -3.55600208e-01
-5.20505488e-01 1.12533711e-01 3.29228461e-01 5.50045930e-02
1.03118666e-01 -8.33707929e-01 -5.43546677e-01 2.23517761e-01
-1.29070771e+00 -2.92905360e-01 2.46830866e-01 1.07673609e+00
7.31797636e-01 2.17659950e-01 6.15877867e-01 -9.93877470e-01
7.01049268e-01 -3.96031231e-01 -8.15269470e-01 2.30237290e-01
-3.06028396e-01 4.96786773e-01 1.14706635e+00 -7.19556928e-01
-6.76581979e-01 6.50541931e-02 -3.08570638e-02 -5.91121137e-01
-2.77950943e-01 3.83234352e-01 1.08301878e-01 -3.36873889e-01
1.23155463e+00 -2.63338089e-02 5.44805713e-02 -1.95147529e-01
4.30477113e-01 5.71671188e-01 6.50865138e-01 -7.59168804e-01
5.42369306e-01 7.48894572e-01 3.48865569e-01 -8.59083652e-01
-8.62445712e-01 -6.43012673e-02 -8.33466053e-01 1.86215211e-02
8.61648083e-01 -4.02989447e-01 -6.91263020e-01 5.46369135e-01
-1.06136417e+00 -6.58288479e-01 -8.72247636e-01 3.44053090e-01
-7.44841039e-01 1.36854053e-02 -8.05794895e-01 -6.67991936e-01
-1.09380595e-01 -9.61321235e-01 5.84959805e-01 1.12323023e-01
-9.96424705e-02 -1.58809793e+00 -5.82003109e-02 -5.61809361e-01
5.19021630e-01 7.80744076e-01 1.04232705e+00 -6.25570714e-01
-2.83092380e-01 -4.81849134e-01 -2.62588084e-01 1.03951108e+00
3.86964940e-02 5.10590263e-02 -9.29643333e-01 -2.97819287e-01
-9.51057896e-02 -6.27240539e-01 8.85083795e-01 8.32996190e-01
1.63177025e+00 -5.26214242e-01 -1.95593014e-01 9.48906720e-01
1.53399348e+00 1.86851472e-01 4.91899252e-01 -2.26934850e-01
3.53297919e-01 1.05234183e-01 -2.03341350e-01 4.42529470e-02
-2.64659762e-01 3.17626595e-01 3.53376210e-01 -1.77114949e-01
2.20714465e-01 -1.42525733e-01 9.48816314e-02 4.92695332e-01
-7.38206059e-02 4.25418699e-03 -8.35068524e-01 5.91506064e-01
-1.70992029e+00 -8.65454733e-01 -8.66673514e-02 2.12378359e+00
9.80448425e-01 4.45175052e-01 1.66449741e-01 2.23477051e-01
8.18265557e-01 -7.17869475e-02 -9.38096285e-01 -7.70974278e-01
-8.08015913e-02 5.14497757e-01 7.73259521e-01 4.99751687e-01
-1.24326217e+00 4.72461313e-01 6.93652391e+00 8.31065238e-01
-1.24118328e+00 -1.13834003e-02 7.57311463e-01 3.81375849e-01
-1.59123018e-01 -2.70696640e-01 -5.89104712e-01 2.59367168e-01
7.79719353e-01 -6.90320656e-02 3.07640165e-01 1.07412589e+00
-2.53682464e-01 1.31837666e-01 -1.47690618e+00 6.41475201e-01
-4.22122717e-01 -1.73574710e+00 1.33592591e-01 1.45962700e-01
1.20778263e+00 5.45994472e-03 1.77710697e-01 3.42617720e-01
4.99408096e-01 -1.44940126e+00 5.56789339e-01 6.97565496e-01
1.18393016e+00 -6.42751038e-01 5.83157837e-01 3.42505872e-01
-1.05053926e+00 3.61971036e-02 -7.12681651e-01 -3.33279759e-01
-3.04275930e-01 7.36617386e-01 -3.98394257e-01 1.21419825e-01
6.47246957e-01 7.78302789e-01 -3.20116401e-01 8.70390713e-01
3.42171133e-01 6.73995078e-01 -4.66224134e-01 -1.29925922e-01
3.19801360e-01 -1.12091310e-01 2.52732068e-01 1.15007782e+00
4.99437265e-02 -1.83469281e-02 1.00712173e-01 1.35854781e+00
-1.62512973e-01 -3.54537845e-01 -9.94206429e-01 -3.53086330e-02
3.04454029e-01 9.47444081e-01 -9.00374472e-01 -2.33886689e-01
-2.67907768e-01 7.24620879e-01 4.72766370e-01 6.05398953e-01
-7.60849059e-01 -9.79444861e-01 7.20901191e-01 3.07304919e-01
4.29489762e-01 -2.30973870e-01 -4.06536639e-01 -1.03723168e+00
1.19435690e-01 -4.65691119e-01 3.02288443e-01 -4.94396776e-01
-1.46713316e+00 5.39255381e-01 2.13418871e-01 -1.18463707e+00
-1.27788484e-01 -1.26047719e+00 -6.23807132e-01 7.86752701e-01
-1.01951981e+00 -6.96355522e-01 -1.14636928e-01 6.48929358e-01
4.61291596e-02 9.49746370e-02 7.95700371e-01 8.29175115e-02
-4.40305397e-02 7.73694873e-01 4.77473557e-01 6.95970893e-01
1.10141650e-01 -1.32637072e+00 4.46650982e-01 5.82222939e-01
1.01881728e-01 6.01307750e-01 4.18411613e-01 -2.50855803e-01
-8.99734199e-01 -1.31683183e+00 4.25178438e-01 -1.80298194e-01
5.63427567e-01 -5.10607600e-01 -1.26958561e+00 9.52675164e-01
-1.62280425e-01 8.27004075e-01 5.67802526e-02 -7.89199546e-02
-5.73286176e-01 -1.51953027e-01 -1.42464554e+00 5.22099972e-01
1.18065524e+00 -6.76105559e-01 -2.72126317e-01 4.29363281e-01
7.03826189e-01 -5.37954628e-01 -1.14250374e+00 4.68777746e-01
5.35600781e-01 -1.11379945e+00 9.57854807e-01 -1.01151490e+00
4.87812340e-01 6.35246560e-02 -3.37796003e-01 -1.29871976e+00
-2.93655574e-01 -4.52589780e-01 -1.76448729e-02 7.19931841e-01
2.69565612e-01 -1.02260482e+00 5.15300930e-01 4.85337764e-01
-1.43071800e-01 -1.10893106e+00 -9.86208975e-01 -1.27226484e+00
8.69712055e-01 -5.40799379e-01 4.01393294e-01 9.24421012e-01
-1.69950098e-01 -2.88388908e-01 2.40099058e-01 -1.09451625e-03
6.02715790e-01 -8.70909020e-02 1.53208360e-01 -1.44531727e+00
-1.74211800e-01 -6.53685689e-01 -8.80784690e-01 -1.08982146e+00
2.65841812e-01 -1.34649134e+00 4.09932248e-02 -1.32579720e+00
-2.76405990e-01 -5.91797709e-01 -2.07213357e-01 5.44735610e-01
6.06725991e-01 2.88556635e-01 -3.65872681e-01 4.75480705e-02
-2.71593571e-01 4.41077590e-01 1.34619367e+00 -1.03572868e-01
-1.67247117e-01 1.57129183e-01 -3.44633013e-01 1.12773657e+00
8.52838159e-01 -2.87536263e-01 -4.14382398e-01 -1.65415049e-01
2.53396690e-01 -4.26274911e-03 8.18513215e-01 -1.42342615e+00
2.02024460e-01 -2.36248180e-01 5.46952307e-01 -2.29403153e-01
-6.75362423e-02 -5.62633514e-01 -7.19761401e-02 4.75537896e-01
-9.85594571e-01 -7.64617920e-02 2.28437141e-01 4.71147686e-01
-1.27676696e-01 -2.74270058e-01 1.26002491e+00 -1.89649001e-01
-3.87000382e-01 5.86220145e-01 -3.70159537e-01 8.19467604e-01
6.87760532e-01 -2.76888996e-01 -1.08373575e-01 -3.32844794e-01
-8.52128506e-01 -1.48572743e-01 3.00510198e-01 -1.01845063e-01
2.73620665e-01 -1.69760787e+00 -4.27624941e-01 3.00825298e-01
-1.17241614e-01 4.96265590e-01 -4.45555858e-02 5.90098917e-01
-7.10219443e-01 4.03542310e-01 -4.55436617e-01 -6.90571308e-01
-3.78997803e-01 3.64773244e-01 8.47805560e-01 -3.54765765e-02
-6.89955771e-01 8.48860621e-01 2.34354258e-01 -6.31387472e-01
4.51477528e-01 -1.20429277e+00 5.30895770e-01 -2.21022636e-01
2.04033136e-01 3.97277445e-01 1.42138740e-02 -2.00045601e-01
-1.49819225e-01 3.96108568e-01 2.00015426e-01 3.33532393e-02
1.18312263e+00 5.66475511e-01 -1.06263161e-01 7.71495283e-01
1.72686183e+00 -7.08376944e-01 -1.64198339e+00 -3.26073408e-01
-2.62402683e-01 4.17408906e-03 -1.57526657e-01 -4.02754247e-01
-1.11330950e+00 1.11384368e+00 4.81987804e-01 8.50649059e-01
1.06658721e+00 -1.08418539e-01 6.39044464e-01 6.94657207e-01
7.22611323e-02 -1.16781878e+00 -1.47272255e-02 7.38447309e-01
9.20728385e-01 -1.04558885e+00 -2.30378479e-01 -2.21872758e-02
-1.21844403e-01 1.28914344e+00 4.26928014e-01 -7.27747321e-01
1.23221183e+00 4.46757972e-01 -2.28482649e-01 -2.19049342e-02
-4.45777118e-01 -3.37874307e-03 4.09820884e-01 7.18150437e-01
4.24025536e-01 7.85013437e-02 3.13278921e-02 3.93918753e-01
-1.31596655e-01 3.44583869e-01 3.77138406e-01 8.47002506e-01
-4.12532181e-01 -4.35689598e-01 2.73037460e-02 7.55613148e-01
-1.92388624e-01 -5.47398478e-02 7.38825575e-02 1.05230367e+00
3.35127145e-01 1.50792971e-01 4.42314267e-01 -1.74485803e-01
1.64143264e-01 3.29138070e-01 5.15677392e-01 -3.85641128e-01
-1.93442866e-01 -7.09992945e-01 -3.94188583e-01 -3.00977767e-01
-4.44505632e-01 -6.33027792e-01 -1.40393722e+00 -3.54836881e-01
-1.16825514e-01 -7.17528956e-03 1.80517048e-01 8.07040513e-01
8.67050514e-02 4.67620760e-01 4.99117196e-01 -8.55764508e-01
-1.09316778e+00 -8.48594964e-01 -9.38251317e-01 4.39754874e-01
7.01443493e-01 -5.69325387e-01 -6.36667848e-01 1.86444104e-01] | [7.694057464599609, 3.5835254192352295] |
9f7c205a-f4c7-49b3-9de4-4e2d4d5450fb | convert-efficient-and-accurate-conversational | 1911.03688 | null | https://arxiv.org/abs/1911.03688v2 | https://arxiv.org/pdf/1911.03688v2.pdf | ConveRT: Efficient and Accurate Conversational Representations from Transformers | General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications. | ['Ivan Vulić', 'Tsung-Hsien Wen', 'Pei-Hao Su', 'Nikola Mrkšić', 'Iñigo Casanueva', 'Matthew Henderson'] | 2019-11-09 | null | https://aclanthology.org/2020.findings-emnlp.196 | https://aclanthology.org/2020.findings-emnlp.196.pdf | findings-of-the-association-for-computational | ['conversational-response-selection'] | ['natural-language-processing'] | [ 3.42046529e-01 1.26579776e-01 -3.31650555e-01 -7.32770324e-01
-1.14245808e+00 -5.17303169e-01 7.55223513e-01 4.40470837e-02
-4.94582355e-01 8.44311774e-01 7.64994979e-01 -4.43650931e-01
2.02134758e-01 -7.03438163e-01 -5.37842453e-01 -3.63444477e-01
6.20458648e-02 9.51059937e-01 3.38377245e-02 -7.16398656e-01
1.31746396e-01 -1.09205812e-01 -1.32365358e+00 6.89775109e-01
6.48726642e-01 9.61043358e-01 1.61932945e-01 9.03035820e-01
7.29458258e-02 1.13621068e+00 -5.96793473e-01 -6.24674559e-01
-1.08764254e-01 -5.31332850e-01 -1.42901480e+00 -1.92959428e-01
3.37099046e-01 -8.48000646e-01 -7.49014616e-01 1.40286222e-01
6.68413103e-01 4.74202573e-01 5.20052373e-01 -9.71156657e-01
-1.16564536e+00 7.30738163e-01 -1.34036876e-02 1.72586903e-01
7.13050544e-01 2.49527723e-01 1.49725580e+00 -9.68086481e-01
4.11244839e-01 1.39917696e+00 4.87907887e-01 9.27850664e-01
-1.26919889e+00 -4.44637448e-01 1.51923105e-01 3.79358441e-01
-8.16740155e-01 -9.03580189e-01 5.23170769e-01 2.44289204e-01
1.71577346e+00 3.55987132e-01 3.12523663e-01 1.59637523e+00
1.37389734e-01 1.25413954e+00 6.84997261e-01 -3.03361297e-01
4.83857058e-02 1.01866946e-01 1.46042496e-01 8.23558271e-01
-5.04968584e-01 -3.34648371e-01 -7.79973567e-01 -2.94176221e-01
1.15643889e-01 6.95683658e-02 -4.73507136e-01 9.01011974e-02
-1.02730346e+00 1.16515934e+00 5.82672954e-01 1.43832088e-01
-2.64303595e-01 3.38984787e-01 7.49374092e-01 6.76755488e-01
7.20519125e-01 5.10339141e-01 -4.09616351e-01 -6.22883797e-01
-4.55659240e-01 2.23619640e-01 1.29858112e+00 1.03191590e+00
5.11083901e-01 -2.04214126e-01 -3.93379033e-01 1.22751379e+00
1.98344216e-02 2.36772776e-01 5.79244852e-01 -1.04879355e+00
7.04759002e-01 5.14409542e-01 -1.98648155e-01 -3.83789510e-01
-3.44282061e-01 -1.64763778e-01 -7.61582017e-01 -5.50309777e-01
2.89032096e-03 -2.24236354e-01 -5.33587337e-01 1.89778566e+00
1.02723120e-02 -3.25792171e-02 3.39019835e-01 9.16930079e-01
1.07006276e+00 8.83569002e-01 1.47837475e-01 -1.33166566e-01
1.48994434e+00 -1.42159534e+00 -6.91223800e-01 -5.21025538e-01
7.75595546e-01 -3.92471611e-01 1.38585222e+00 3.71535234e-02
-1.35334063e+00 -3.38237345e-01 -1.11322796e+00 -6.88692331e-01
-3.29313092e-02 6.75147027e-02 1.20111680e+00 3.66751879e-01
-1.20812416e+00 3.88579607e-01 -6.49298072e-01 -3.56795281e-01
7.30659142e-02 4.55200166e-01 -1.93145990e-01 -1.90630585e-01
-1.44391966e+00 1.18620849e+00 -9.61976424e-02 -3.94997783e-02
-9.25293088e-01 -5.12404203e-01 -9.76434469e-01 4.28341687e-01
2.20466748e-01 -9.84408617e-01 1.93093991e+00 -6.85818911e-01
-2.11070132e+00 8.26556265e-01 -3.02638978e-01 -6.83023334e-01
3.36629078e-02 -2.59591281e-01 -1.80497840e-01 2.76401073e-01
-9.54386368e-02 8.38988483e-01 4.66211677e-01 -6.70949996e-01
-4.32907432e-01 -6.35126308e-02 5.51912427e-01 6.93609357e-01
-7.70581484e-01 -1.80366524e-02 -4.04925108e-01 -2.13141337e-01
-4.29675728e-01 -1.11611760e+00 1.18108727e-02 -1.85789272e-01
-2.41971701e-01 -9.20181632e-01 7.22243130e-01 -5.17254591e-01
1.03190136e+00 -1.83948267e+00 4.43942934e-01 -6.16805017e-01
6.17219359e-02 1.23288780e-01 -3.27433467e-01 8.82076979e-01
4.53447908e-01 5.13828211e-02 -2.67704844e-01 -7.66746938e-01
2.12839365e-01 2.94977814e-01 -2.69199967e-01 2.58491546e-01
4.12567049e-01 1.11922896e+00 -8.41709077e-01 -2.38549560e-01
8.71229693e-02 4.48386222e-01 -8.80189478e-01 8.41289759e-01
-3.67491454e-01 1.70720771e-01 -3.82887512e-01 3.58781397e-01
1.75646767e-02 -5.15266120e-01 3.46592784e-01 -5.63097559e-02
3.77280056e-01 1.36123097e+00 -1.78804591e-01 2.12744975e+00
-1.09741187e+00 7.97150493e-01 1.12135202e-01 -9.64049876e-01
7.09288239e-01 5.85083961e-01 1.96182713e-01 -8.95446658e-01
4.45038378e-02 -5.58757829e-03 -1.12004243e-01 -3.79993916e-01
8.90589654e-01 -6.24400340e-02 -6.18832588e-01 1.01258230e+00
5.28428257e-01 -3.97079051e-01 1.03915408e-01 4.73197758e-01
1.30412853e+00 -1.20005727e-01 1.21907130e-01 -6.12550601e-02
4.04124022e-01 -2.49500006e-01 1.99786872e-01 5.54815471e-01
-4.83279042e-02 2.91645318e-01 2.45730981e-01 -4.78715718e-01
-9.04276669e-01 -8.36551130e-01 -7.55235460e-03 1.95197511e+00
-4.32665497e-02 -4.69768047e-01 -6.17563188e-01 -7.40460515e-01
-1.35521472e-01 8.13755453e-01 -4.62108076e-01 -4.31288391e-01
-8.66955280e-01 -6.38796866e-01 6.27474010e-01 6.91201568e-01
6.16487443e-01 -1.14572299e+00 -2.80200422e-01 4.10752505e-01
-6.23557746e-01 -1.29564559e+00 -8.34058285e-01 3.73802453e-01
-6.32858634e-01 -6.96661353e-01 -4.87410009e-01 -9.60520148e-01
1.77332655e-01 3.83204997e-01 1.58859158e+00 1.99622333e-01
6.93138018e-02 4.75227445e-01 -3.71516407e-01 -6.43850863e-02
-6.82487607e-01 5.95176578e-01 -5.80918901e-02 -2.69448608e-01
4.45739955e-01 -5.86496353e-01 -7.64689982e-01 2.55148709e-01
-4.82566535e-01 1.78348795e-01 5.05832374e-01 1.21018529e+00
-1.06926695e-01 -7.56259084e-01 1.06492281e+00 -9.22661245e-01
1.11215556e+00 -5.82494974e-01 7.26722032e-02 2.98828334e-01
-5.50876915e-01 3.42988312e-01 7.11388230e-01 -1.67048812e-01
-1.22177029e+00 -2.67111212e-01 -5.68347991e-01 7.64125437e-02
8.11256096e-02 4.44736451e-01 1.82196304e-01 1.98235437e-01
6.85529530e-01 3.36309135e-01 4.83401760e-04 -2.95285881e-01
5.76672137e-01 1.14924443e+00 5.19607246e-01 -6.61103725e-01
5.79834506e-02 4.01199535e-02 -5.86757898e-01 -6.24468863e-01
-8.97670567e-01 -4.05248344e-01 -2.14990780e-01 6.90168142e-02
9.03625786e-01 -9.97650206e-01 -1.16048467e+00 -2.45283619e-02
-1.26566005e+00 -5.13288915e-01 7.89871207e-04 1.95148319e-01
-7.62580156e-01 2.07860321e-01 -1.35942745e+00 -7.80960202e-01
-1.00062835e+00 -1.18677223e+00 1.28690255e+00 -1.34666665e-02
-3.22745770e-01 -1.10736847e+00 1.20709330e-01 9.20076251e-01
6.71726286e-01 -5.38056731e-01 9.01313484e-01 -8.67704809e-01
-3.76872241e-01 -2.25882530e-02 -7.77828991e-02 3.26313555e-01
-1.13702565e-03 -4.11133736e-01 -1.22705173e+00 -5.06229699e-01
2.79363617e-02 -1.25200963e+00 1.02074301e+00 -1.50798917e-01
1.15155840e+00 -5.62864602e-01 -2.46709839e-01 3.91942412e-01
8.27376127e-01 1.54806927e-01 2.74236023e-01 -3.85390967e-02
3.65815490e-01 4.10944968e-01 1.57178804e-01 4.14378256e-01
9.33611393e-01 8.93512547e-01 1.23984747e-01 1.37149364e-01
-4.23697270e-02 -2.47306824e-01 6.14147544e-01 1.44965219e+00
1.71420604e-01 -8.03360760e-01 -6.18197978e-01 6.16312742e-01
-1.95827222e+00 -9.41534519e-01 3.87879193e-01 1.69824946e+00
1.17707944e+00 4.75572385e-02 -7.03028450e-03 -2.69226253e-01
2.49950677e-01 2.99898654e-01 -5.59140563e-01 -9.67239916e-01
1.63313061e-01 3.24799597e-01 9.29633379e-02 6.26603782e-01
-1.10617542e+00 8.27838838e-01 6.97226667e+00 4.10440832e-01
-9.85611022e-01 4.34927076e-01 8.22227776e-01 -2.87227362e-01
-6.08585417e-01 -2.84568816e-01 -6.68219090e-01 2.31379434e-01
1.61915851e+00 -1.97588101e-01 6.91580176e-01 9.07923579e-01
-2.49553770e-01 2.86321610e-01 -1.61992407e+00 7.44614303e-01
3.11665267e-01 -1.54785717e+00 -1.05441786e-01 -1.04018688e-01
4.38373268e-01 2.79780507e-01 7.82748498e-03 1.03599596e+00
7.30815291e-01 -1.13455319e+00 2.30560467e-01 2.35757325e-02
7.75097132e-01 -6.84693575e-01 7.76591539e-01 3.20406705e-01
-9.97493207e-01 -2.21190825e-01 -4.16594028e-01 -2.84322232e-01
2.79294938e-01 8.87704492e-02 -1.20534372e+00 3.69700432e-01
3.63805503e-01 6.16921663e-01 -1.46700874e-01 2.28392467e-01
-1.95033759e-01 6.87986434e-01 -3.13429236e-01 -4.09934729e-01
4.65814739e-01 5.55762127e-02 1.09812260e-01 1.58398807e+00
-6.25761300e-02 2.17574254e-01 3.81891608e-01 4.98661637e-01
-7.35242963e-01 -5.02651595e-02 -6.75386310e-01 -5.19352220e-02
6.88302815e-01 1.11896086e+00 1.24894604e-01 -4.36632782e-01
-6.62899315e-01 1.30204260e+00 9.09088552e-01 8.50306377e-02
-7.39435434e-01 -2.41342038e-01 8.24710310e-01 -4.87002015e-01
1.23931289e-01 -1.50919974e-01 -4.88323085e-02 -1.27667642e+00
2.71733832e-02 -1.03956413e+00 4.75065589e-01 -4.07098651e-01
-1.57179391e+00 1.02855861e+00 -1.31762981e-01 -7.76052594e-01
-9.78550732e-01 -4.89781827e-01 -6.85222328e-01 6.93872452e-01
-1.39645505e+00 -1.27644908e+00 -1.57758817e-01 4.65785801e-01
1.13419902e+00 -2.02805564e-01 1.43550253e+00 2.95491338e-01
-5.61123550e-01 9.12468016e-01 -1.72513738e-01 2.72050854e-02
7.96397209e-01 -1.32743299e+00 7.39310324e-01 2.70730644e-01
-1.67135976e-03 5.70739746e-01 3.77672285e-01 6.42263517e-02
-1.86151123e+00 -7.77655303e-01 1.07324123e+00 -6.42287195e-01
5.14279366e-01 -8.66353035e-01 -7.32621729e-01 9.07169342e-01
9.04762447e-01 -3.17257613e-01 8.89783025e-01 6.44004881e-01
-2.78000951e-01 -4.93022837e-02 -8.44671071e-01 5.46817780e-01
1.05180013e+00 -1.16283524e+00 -7.99852490e-01 7.34227180e-01
1.15087926e+00 -4.14685935e-01 -1.00261414e+00 1.68486565e-01
5.55194438e-01 -7.68080831e-01 9.76640344e-01 -6.93526924e-01
6.40345573e-01 7.01711714e-01 -9.64535847e-02 -1.52552021e+00
-4.90856856e-01 -8.88551116e-01 -3.95600259e-01 1.09910870e+00
6.65363073e-01 -4.62171316e-01 7.60108292e-01 6.65283859e-01
-6.11971974e-01 -1.04235184e+00 -1.13061249e+00 -2.79969990e-01
2.11893171e-01 -1.91766039e-01 4.76768345e-01 7.64388263e-01
6.51569307e-01 1.29644263e+00 -5.74623227e-01 -4.36279714e-01
1.32255539e-01 3.66309226e-01 7.59341896e-01 -8.37319732e-01
-5.44213176e-01 -3.85976434e-01 8.80436003e-02 -1.78275633e+00
5.60743093e-01 -8.93455267e-01 3.51607740e-01 -1.66824269e+00
2.49083787e-01 -5.35917640e-01 -1.78680763e-01 5.74810028e-01
-3.81697595e-01 1.87526748e-01 6.19878508e-02 5.70803992e-02
-7.72857606e-01 1.12629533e+00 1.18717825e+00 -4.67536896e-01
7.04152882e-02 -4.93685566e-02 -7.50628531e-01 1.59886032e-01
5.98132193e-01 -1.67022333e-01 -7.57596970e-01 -6.92497134e-01
-7.29825795e-02 5.03502846e-01 -1.34730533e-01 -6.89020872e-01
4.28688049e-01 1.30483564e-02 -9.85348970e-02 -2.03866616e-01
1.11302924e+00 -4.10243720e-01 -5.76144278e-01 1.63994044e-01
-9.56107557e-01 1.53241813e-01 1.31556615e-01 4.92910743e-01
-2.32149854e-01 -6.28052950e-02 4.61448967e-01 -1.95061743e-01
-5.52414775e-01 2.69406259e-01 -4.91893113e-01 2.49677867e-01
6.55730069e-01 3.59967977e-01 -5.40466607e-01 -9.94608879e-01
-2.12274343e-01 5.07904589e-01 -3.13077085e-02 7.43912518e-01
6.48029506e-01 -1.13673389e+00 -9.53025997e-01 8.47473741e-03
2.51962006e-01 -2.95589924e-01 2.08595753e-01 5.17871022e-01
-2.49961197e-01 7.45307863e-01 -3.36981863e-02 -4.77205276e-01
-1.16568470e+00 4.50398415e-01 3.49716723e-01 -5.11060596e-01
-6.44437253e-01 1.13122475e+00 2.87296414e-01 -7.97764122e-01
4.16863173e-01 -2.57538795e-01 4.09928001e-02 -1.10638291e-01
5.95348179e-01 -8.25993940e-02 2.96914071e-01 -2.18847618e-01
-4.66979921e-01 -2.36748517e-01 -3.89686406e-01 -1.75048962e-01
1.47759044e+00 -1.37802839e-01 4.37539108e-02 2.92507470e-01
1.44844294e+00 -4.19572800e-01 -1.14079237e+00 -4.41169262e-01
-2.66753554e-01 -1.16706848e-01 9.97541100e-02 -7.72381306e-01
-6.86429501e-01 9.77896988e-01 1.13168970e-01 2.01940715e-01
9.32141125e-01 4.39884402e-02 1.32379043e+00 1.01576364e+00
4.42364573e-01 -1.00253260e+00 4.17308986e-01 7.50558853e-01
1.14358461e+00 -1.33037472e+00 -1.82300180e-01 -2.13727221e-01
-9.60086644e-01 1.03545702e+00 7.67008603e-01 -4.65207621e-02
2.22665131e-01 3.08253527e-01 -7.87823498e-02 -1.76244840e-01
-1.78488946e+00 3.91436443e-02 1.93206087e-01 3.22252005e-01
9.22657490e-01 5.60435280e-02 -3.54994275e-02 4.31904316e-01
-2.51036018e-01 -2.10380763e-01 3.77862185e-01 8.49166691e-01
-2.46720552e-01 -1.13072276e+00 4.68729407e-01 4.39419746e-01
-3.41892302e-01 -3.12913150e-01 -5.52539289e-01 4.04069632e-01
-6.08660579e-01 1.33321941e+00 2.41833150e-01 -6.90533340e-01
2.94526398e-01 3.54724109e-01 3.56784135e-01 -7.81238675e-01
-1.17854524e+00 -5.14312565e-01 1.04847395e+00 -5.33109486e-01
-3.09074432e-01 -2.94696838e-01 -1.00132859e+00 -7.35448480e-01
-3.80453438e-01 4.57902551e-01 6.04345322e-01 1.00764132e+00
7.99501598e-01 6.07339680e-01 8.32890809e-01 -8.75807166e-01
-1.03329563e+00 -1.36807179e+00 1.93521589e-01 3.55614930e-01
4.16217119e-01 -4.98257726e-01 -1.54256091e-01 -3.54739994e-01] | [12.304620742797852, 7.805327892303467] |
09f8570c-6300-4835-9db0-4493f5724fa7 | named-entity-recognition-for-social-media | 2010.15458 | null | https://arxiv.org/abs/2010.15458v1 | https://arxiv.org/pdf/2010.15458v1.pdf | Named Entity Recognition for Social Media Texts with Semantic Augmentation | Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets. | ['Bo Dai', 'Yan Song', 'Xiang Wan', 'Yuanhe Tian', 'Yuyang Nie'] | 2020-10-29 | null | https://aclanthology.org/2020.emnlp-main.107 | https://aclanthology.org/2020.emnlp-main.107.pdf | emnlp-2020-11 | ['chinese-named-entity-recognition'] | ['natural-language-processing'] | [ 2.39992663e-01 2.58945227e-01 -3.71680379e-01 -5.58814526e-01
-4.34317440e-01 -2.79384941e-01 6.66979313e-01 5.25823116e-01
-1.12296748e+00 7.58487761e-01 9.78982270e-01 9.91526097e-02
3.21632922e-01 -9.01074350e-01 -3.49804252e-01 -1.85498714e-01
2.36190110e-01 2.26557910e-01 3.17164436e-02 -5.39433897e-01
1.25636697e-01 1.54905561e-02 -1.15555632e+00 2.70870924e-02
1.19351578e+00 7.25053668e-01 2.32534811e-01 2.00697690e-01
-9.47894573e-01 7.47421980e-01 -5.00668883e-01 -5.36499739e-01
-3.95710394e-02 -1.45804003e-01 -9.81636941e-01 4.08490486e-02
-1.64217204e-01 -2.31384374e-02 -3.56195807e-01 1.24360275e+00
6.10792041e-01 4.96584713e-01 2.11299449e-01 -1.02032125e+00
-9.73298013e-01 1.15788972e+00 -2.36966655e-01 1.00030310e-01
2.35072568e-01 -3.39199781e-01 1.25407314e+00 -1.09046972e+00
6.15037322e-01 1.07659388e+00 6.77814186e-01 7.00648546e-01
-8.04576993e-01 -5.61804891e-01 3.60405207e-01 -2.91812308e-02
-1.37178433e+00 -4.25926149e-01 7.24196136e-01 5.83542790e-03
1.07756662e+00 -4.91726510e-02 3.75862271e-01 1.15566468e+00
-5.82688272e-01 1.02116334e+00 7.90489912e-01 -4.72588122e-01
2.37404183e-01 1.51618481e-01 3.76769394e-01 4.72367525e-01
3.66244018e-01 -5.43048799e-01 -5.43653369e-01 -3.09917986e-01
4.18541968e-01 2.48560041e-01 -9.48611870e-02 7.45122954e-02
-1.12806940e+00 9.01185513e-01 4.16732788e-01 5.77411532e-01
-5.28157949e-01 -6.49171025e-02 6.39684558e-01 2.63674557e-03
1.05922377e+00 6.85163081e-01 -8.24327171e-01 -1.99525520e-01
-5.73594570e-01 -6.60996065e-02 8.30320835e-01 9.29444075e-01
8.54148209e-01 -5.80533855e-02 -1.89195558e-01 1.26899242e+00
2.11448535e-01 3.45558673e-01 1.03392768e+00 -3.00580919e-01
7.59566844e-01 1.01635122e+00 -5.82983391e-03 -9.92578804e-01
-5.34046650e-01 -3.78269553e-01 -8.58403623e-01 -7.89654851e-01
4.80725579e-02 -4.36049610e-01 -9.70180988e-01 1.86709046e+00
4.61993277e-01 6.02590561e-01 5.06978393e-01 6.59942508e-01
1.20221364e+00 6.77923679e-01 7.77275920e-01 5.53469248e-02
1.54126573e+00 -1.09066832e+00 -1.11029053e+00 -5.97350419e-01
1.12396073e+00 -4.62674916e-01 1.28629172e+00 -4.05045778e-01
-7.27677464e-01 -2.82982290e-01 -9.30595934e-01 -2.04753473e-01
-8.59323800e-01 1.51197210e-01 6.43062830e-01 5.09556115e-01
-7.07268596e-01 4.21628773e-01 -8.44288766e-01 -6.06684446e-01
6.51563704e-01 1.51816040e-01 -3.73332471e-01 -3.59412730e-02
-1.73375356e+00 6.12730324e-01 7.96753407e-01 1.26489857e-02
-1.96773082e-01 -6.65788651e-01 -1.28464115e+00 3.14971954e-01
4.30286169e-01 -4.42706436e-01 1.11636388e+00 -8.54317784e-01
-1.23905432e+00 8.44169617e-01 -2.49540105e-01 -3.52956414e-01
1.88540563e-03 -4.11426187e-01 -7.34084070e-01 -5.23422770e-02
2.64173269e-01 6.14944339e-01 3.57757509e-01 -9.87758338e-01
-4.82739985e-01 -3.87745410e-01 2.10344762e-01 4.57206815e-01
-1.41919255e+00 3.95039141e-01 -4.96484071e-01 -1.05124700e+00
4.05026600e-02 -6.12366915e-01 -7.73964286e-01 -4.96039242e-01
-6.31155193e-01 -4.56056863e-01 6.89838827e-01 -8.16054642e-01
1.45769942e+00 -2.00876856e+00 -2.60496765e-01 -4.03084941e-02
2.08629012e-01 5.48055112e-01 -4.30927426e-01 4.70503390e-01
5.26333638e-02 5.34248531e-01 -3.15852076e-01 -6.14159167e-01
7.68460035e-02 2.64237583e-01 -1.06268704e-01 -6.43303543e-02
4.37531143e-01 1.16040313e+00 -1.07797694e+00 -4.75771368e-01
-1.30492583e-01 4.90289778e-01 -4.85544473e-01 2.68342674e-01
-1.69563219e-01 3.54066432e-01 -9.74738955e-01 3.74153137e-01
6.55616820e-01 -4.10614520e-01 2.32350171e-01 -5.38233966e-02
1.48141593e-01 6.84682608e-01 -9.15078461e-01 1.96868861e+00
-5.85688293e-01 1.20215572e-01 -1.90968156e-01 -1.02341568e+00
9.10371482e-01 4.69784886e-01 4.04915899e-01 -6.95433438e-01
3.51486623e-01 1.19711123e-01 -5.27400613e-01 -4.67458367e-01
1.01247346e+00 -2.49533519e-01 -3.79939407e-01 5.65861404e-01
3.34291369e-01 2.04772398e-01 3.33189100e-01 4.43041712e-01
1.11627793e+00 -1.80752724e-01 4.87256944e-01 -2.10131288e-01
6.44678831e-01 -1.85566861e-02 8.00419390e-01 5.21093190e-01
-1.19790919e-01 4.90813851e-01 2.56984144e-01 -1.38048649e-01
-9.99199450e-01 -4.87688243e-01 1.29921347e-01 1.41308808e+00
2.24905282e-01 -6.92031324e-01 -8.37813079e-01 -1.19455516e+00
-2.20111281e-01 6.51663363e-01 -5.34974873e-01 -1.54581383e-01
-6.68589830e-01 -9.84009326e-01 6.83039546e-01 1.00011516e+00
6.12346828e-01 -1.28511465e+00 3.55493098e-01 4.18788582e-01
-4.16665226e-01 -1.68240643e+00 -5.74379444e-01 -8.49870145e-02
-9.06457901e-01 -8.22459817e-01 -4.88597244e-01 -9.66432691e-01
8.30927193e-01 3.82240564e-01 9.04568970e-01 2.41536915e-01
7.58371800e-02 1.60553962e-01 -8.09666753e-01 -5.94253302e-01
-1.68638021e-01 5.19625783e-01 -5.85280024e-02 9.47539210e-02
8.41337502e-01 -3.95501733e-01 -3.26873243e-01 1.52140036e-02
-1.21938765e+00 7.68886879e-02 3.55677456e-01 9.96890724e-01
2.73282051e-01 -1.54383823e-01 1.02861917e+00 -1.33578205e+00
7.72589207e-01 -7.89352238e-01 -1.34521171e-01 1.20846011e-01
-5.62554300e-01 -1.91074749e-03 8.03077221e-01 -2.99441695e-01
-1.46688819e+00 -1.00829989e-01 -4.31782573e-01 1.63511917e-01
-1.74307048e-01 1.00517678e+00 -4.00602192e-01 3.24379236e-01
5.31269908e-01 1.04337372e-01 -2.58917540e-01 -7.55563259e-01
5.21080434e-01 9.69572604e-01 1.83616385e-01 -5.21675646e-01
8.01027834e-01 4.93349880e-01 -6.57623172e-01 -9.37921882e-01
-1.40808690e+00 -8.39682996e-01 -5.11847019e-01 3.74475420e-01
8.80129874e-01 -1.13698745e+00 -8.88910890e-02 4.45796072e-01
-1.14990294e+00 4.31074128e-02 -5.94587207e-01 5.40785909e-01
-4.18888731e-03 4.53799099e-01 -7.79259026e-01 -4.87145573e-01
-5.82018852e-01 -6.66123867e-01 8.50261807e-01 4.42262471e-01
-1.21435225e-01 -1.52152061e+00 1.14182485e-02 5.21025181e-01
4.78173494e-01 -8.00073743e-02 6.55903757e-01 -1.55049789e+00
6.80466071e-02 -4.55962032e-01 -4.92719203e-01 6.06781662e-01
2.86815494e-01 -5.75272322e-01 -9.54180956e-01 -1.52650714e-01
-1.81436762e-01 -4.66677219e-01 8.73768926e-01 -1.81541055e-01
1.23683929e+00 -3.92372191e-01 -2.52658248e-01 3.52902740e-01
1.33182204e+00 -2.85065085e-01 4.20725882e-01 5.09999514e-01
1.04651964e+00 5.15116632e-01 6.24119163e-01 6.04067624e-01
7.30059147e-01 2.50616819e-01 1.96477011e-01 -3.38003516e-01
5.76926544e-02 -5.22678494e-01 2.03613356e-01 1.40096676e+00
1.51262134e-01 -5.15751898e-01 -8.88407946e-01 7.73199737e-01
-1.76176286e+00 -6.71052575e-01 -4.41206060e-02 1.79636240e+00
1.04327643e+00 -6.88200146e-02 -2.18182787e-01 -8.66614729e-02
1.03358114e+00 5.16698658e-01 -4.00507510e-01 2.35084351e-02
-4.36098188e-01 6.25546753e-01 5.12575626e-01 1.04907557e-01
-1.31728768e+00 1.38007593e+00 5.82079220e+00 8.19874823e-01
-8.04032207e-01 5.23049474e-01 3.96473020e-01 2.69277245e-01
-4.49850947e-01 2.48118192e-02 -9.98970926e-01 5.08844197e-01
1.04458952e+00 -4.69963700e-01 -6.68257400e-02 8.23072553e-01
1.32539019e-01 4.29217517e-01 -5.28369248e-01 5.82344890e-01
1.23433314e-01 -1.30618870e+00 1.36601090e-01 -2.35038161e-01
9.49365139e-01 2.95913607e-01 -3.13118607e-01 5.84342301e-01
5.38279653e-01 -7.95451105e-01 3.35302502e-01 1.29910588e-01
6.19461715e-01 -6.66465461e-01 1.15123785e+00 3.06782782e-01
-1.34707594e+00 3.36995833e-02 -2.88205296e-01 -8.19491148e-02
3.80271494e-01 5.76918304e-01 -7.67369568e-01 6.07085824e-01
4.22176629e-01 9.72185016e-01 -5.45991659e-01 6.55175626e-01
-6.37121677e-01 7.91368604e-01 -2.51810789e-01 -3.72311503e-01
4.07004595e-01 2.80508138e-02 3.08864802e-01 1.36995411e+00
1.13684930e-01 2.68891752e-01 2.45199606e-01 6.07149839e-01
-7.11968958e-01 7.49444366e-01 -2.89160281e-01 -7.63442516e-01
5.89045405e-01 1.45140111e+00 -6.60292327e-01 -6.63815856e-01
-9.07663047e-01 9.96030629e-01 5.90448380e-01 4.35785472e-01
-5.26005745e-01 -7.07160354e-01 7.65705645e-01 -1.52092144e-01
4.47958596e-02 -1.87889323e-01 -2.30240822e-01 -1.77775979e+00
1.01282232e-01 -5.49392521e-01 6.74520910e-01 -4.70741004e-01
-1.57702780e+00 4.95472491e-01 -5.20587921e-01 -9.14110065e-01
1.72487140e-01 -4.77666050e-01 -6.07250094e-01 6.33903623e-01
-1.77755010e+00 -1.26912689e+00 -3.01550150e-01 3.96573782e-01
6.35842562e-01 -2.17059344e-01 9.46807146e-01 6.17051899e-01
-6.82750404e-01 6.94841146e-01 8.26430172e-02 6.46183491e-01
6.27671480e-01 -1.16135824e+00 7.44206131e-01 8.39441657e-01
1.63372070e-01 7.69101977e-01 3.00613672e-01 -8.44507337e-01
-1.15435183e+00 -1.41440690e+00 1.34221780e+00 -3.84753048e-01
9.97793674e-01 -3.55465174e-01 -1.17288148e+00 7.56475925e-01
2.07779527e-01 1.24648832e-01 1.16170394e+00 3.60197753e-01
-1.80167779e-01 4.44310606e-01 -9.68236029e-01 5.86854398e-01
1.22325802e+00 -6.54011965e-01 -9.86167014e-01 3.37769777e-01
1.24408758e+00 -2.14237764e-01 -8.28358233e-01 3.75655264e-01
-2.22574174e-03 -2.10620522e-01 8.37705970e-01 -1.05362833e+00
4.57563341e-01 -5.93149439e-02 -4.24126312e-02 -1.46899986e+00
4.18546125e-02 -4.76128757e-01 -3.15094292e-02 1.65078831e+00
5.73729098e-01 -7.11783707e-01 9.80975211e-01 5.23225784e-01
-3.90827715e-01 -4.80530888e-01 -4.87729132e-01 -7.47202992e-01
5.97979128e-02 -4.96940792e-01 8.55675757e-01 1.62816966e+00
2.36878648e-01 5.57491004e-01 -2.09599316e-01 1.06800376e-02
2.96452194e-01 -4.36791569e-01 5.20823359e-01 -1.20686591e+00
2.96946436e-01 -9.93273407e-02 -4.27200586e-01 -1.08389413e+00
7.45572627e-01 -1.19142663e+00 -7.84560325e-05 -1.61497748e+00
4.73059028e-01 -6.05072498e-01 -6.36770070e-01 6.31774724e-01
-7.74327874e-01 2.07099468e-01 -9.35110003e-02 -2.84514464e-02
-8.60537410e-01 1.08442605e+00 9.84062374e-01 4.38058330e-03
-2.00690344e-01 -4.33828354e-01 -1.07703424e+00 8.97277117e-01
7.32455373e-01 -6.63128614e-01 -2.95715928e-01 -7.36315668e-01
4.12073493e-01 -4.34591562e-01 4.93788384e-02 -6.22860670e-01
2.68927127e-01 -2.35875696e-01 -1.21144712e-01 -1.69930145e-01
1.56142324e-01 -5.67600906e-01 -6.73392177e-01 7.15170056e-02
-6.38586581e-01 -1.89981863e-01 5.42123728e-02 6.49807811e-01
-5.92293620e-01 -3.25897932e-01 5.80617607e-01 -7.16366619e-02
-1.00306034e+00 6.37686133e-01 -1.21138275e-01 5.45676470e-01
5.91325700e-01 1.33762047e-01 -2.87627906e-01 -2.42682546e-01
-9.05825734e-01 4.50355977e-01 2.88858265e-01 7.78889239e-01
4.41044539e-01 -1.59426785e+00 -6.80439711e-01 6.41025156e-02
5.61942041e-01 -8.78378078e-02 4.15279925e-01 4.47312891e-01
-1.60067201e-01 2.34500527e-01 1.72793046e-01 8.21869522e-02
-8.77310634e-01 2.62695372e-01 -1.87698439e-01 -4.01330441e-01
-4.62365687e-01 9.23887968e-01 -4.39027846e-02 -9.74840045e-01
-9.75556821e-02 -1.54574290e-01 -6.55388832e-01 1.79556429e-01
6.67524159e-01 1.69479325e-01 1.29377708e-01 -8.59245658e-01
-1.76570460e-01 1.35475382e-01 -1.44055173e-01 5.89145608e-02
1.63281631e+00 -3.95810187e-01 -1.69189930e-01 1.77981913e-01
1.31633580e+00 1.45931587e-01 -6.26904309e-01 -9.86638010e-01
4.79852498e-01 -2.11298808e-01 8.20414573e-02 -3.52435052e-01
-1.06109703e+00 7.48574913e-01 6.48595393e-02 2.25053489e-01
9.31692004e-01 7.83492178e-02 1.40661645e+00 6.41218662e-01
3.05213369e-02 -1.54700434e+00 1.83166385e-01 9.64037657e-01
3.68649989e-01 -1.37730932e+00 -2.82114446e-01 -6.80823743e-01
-7.14392006e-01 8.52167964e-01 8.01303864e-01 -2.77101770e-02
7.18855679e-01 1.22423217e-01 -1.76465162e-03 -1.25552729e-01
-3.91135275e-01 -4.63545740e-01 1.40828297e-01 2.82016814e-01
6.65430546e-01 -6.33053631e-02 -5.92891932e-01 1.25714314e+00
-2.87296996e-02 -9.61559638e-02 3.68017256e-01 1.22842181e+00
-4.66200680e-01 -1.31026590e+00 1.83543697e-01 5.07395983e-01
-8.40208173e-01 -5.54951847e-01 -2.79917121e-01 4.45433766e-01
-1.02617741e-01 9.48585868e-01 -3.24460715e-02 -2.23768055e-01
3.80585283e-01 3.07752252e-01 -2.69559234e-01 -1.17367387e+00
-5.68141878e-01 -3.93695474e-01 4.39920336e-01 -4.78080481e-01
-4.99303192e-01 -4.54771131e-01 -1.74454951e+00 1.36186613e-03
-5.09840012e-01 4.80863065e-01 8.86321306e-01 1.28406489e+00
5.99968791e-01 4.20264661e-01 6.52661979e-01 -4.14811075e-01
-4.65852886e-01 -1.19226885e+00 -5.96238554e-01 9.14497018e-01
-1.66915342e-01 -4.63603884e-01 -4.72680509e-01 -2.83186659e-02] | [9.77266788482666, 9.464421272277832] |
c68a62b7-2b49-4e65-9475-eef01684bf65 | gshard-scaling-giant-models-with-conditional | 2006.16668 | null | https://arxiv.org/abs/2006.16668v1 | https://arxiv.org/pdf/2006.16668v1.pdf | GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding | Neural network scaling has been critical for improving the model quality in many real-world machine learning applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire approach for better model quality, there are challenges on the path such as the computation cost, ease of programming, and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far superior quality for translation from 100 languages to English compared to the prior art. | ['Maxim Krikun', 'HyoukJoong Lee', 'Noam Shazeer', 'Dehao Chen', 'Yuanzhong Xu', 'Orhan Firat', 'Zhifeng Chen', 'Yanping Huang', 'Dmitry Lepikhin'] | 2020-06-30 | null | https://openreview.net/forum?id=qrwe7XHTmYb | https://openreview.net/pdf?id=qrwe7XHTmYb | iclr-2021-1 | ['2048'] | ['playing-games'] | [ 1.69259440e-02 -1.96778178e-02 -5.28417528e-01 -6.40313327e-01
-1.09249496e+00 -4.15366411e-01 6.01287901e-01 -2.89397955e-01
-5.88363171e-01 5.68621933e-01 4.02590409e-02 -1.03410971e+00
4.94822115e-01 -5.78613579e-01 -9.79783535e-01 -5.68949044e-01
3.94889146e-01 1.18600214e+00 -3.91587242e-03 -3.76648188e-01
-3.82436514e-01 4.67863709e-01 -1.24040139e+00 4.19726163e-01
6.07487261e-01 9.43004072e-01 2.29965493e-01 4.78473932e-01
-1.70088112e-01 5.99852502e-01 -2.22836629e-01 -6.87161446e-01
2.97170132e-01 -1.35980144e-01 -7.61577606e-01 -7.78906167e-01
5.19519448e-01 -3.09454203e-01 -1.63493857e-01 9.06035423e-01
8.10680330e-01 -3.82728696e-01 3.81491095e-01 -9.79978144e-01
-3.76000762e-01 9.73236561e-01 -3.83728743e-01 2.76310205e-01
-5.45090973e-01 2.14519426e-01 7.10532010e-01 -7.76446640e-01
5.05694389e-01 1.00346398e+00 9.47069168e-01 6.53939784e-01
-1.11857045e+00 -9.66681540e-01 -4.35878247e-01 -3.54856588e-02
-9.68501270e-01 -9.16189849e-01 8.09101388e-02 -2.07386449e-01
1.83451021e+00 2.54419088e-01 6.03690565e-01 1.29799390e+00
4.69026238e-01 4.17561054e-01 9.85778868e-01 -6.50095463e-01
7.68917799e-02 3.75905484e-01 2.44561478e-01 8.84055853e-01
5.28791994e-02 8.65282491e-02 -6.49447083e-01 -2.08897591e-01
4.99240786e-01 -4.23856348e-01 1.88106194e-01 7.44018927e-02
-1.27642679e+00 6.62264049e-01 2.82848537e-01 2.50231624e-01
-2.94750128e-02 4.24652189e-01 9.03953850e-01 2.01558515e-01
5.60387909e-01 3.88327926e-01 -8.37857723e-01 -4.64723796e-01
-1.00801146e+00 5.89142442e-02 7.33479202e-01 1.02335703e+00
4.97718722e-01 4.30216551e-01 2.14672253e-01 8.37474346e-01
4.79712673e-02 7.58347094e-01 6.76442623e-01 -8.69897366e-01
5.32055318e-01 2.58409113e-01 -4.38984782e-01 -2.29643628e-01
-5.21839142e-01 -8.65110815e-01 -8.17729235e-01 1.69998482e-01
2.66752750e-01 -1.72619224e-01 -8.55037034e-01 1.75948584e+00
3.26848447e-01 -3.19324106e-01 1.00909816e-02 7.03396320e-01
5.51062644e-01 8.25733960e-01 1.41790554e-01 2.40391478e-01
1.41142082e+00 -1.32161713e+00 -2.25167572e-01 -5.28381765e-01
1.07488728e+00 -1.01557112e+00 1.32992756e+00 3.53298455e-01
-1.28085566e+00 -5.22832692e-01 -1.24790943e+00 -5.69669485e-01
-2.90947407e-01 3.62801582e-01 1.21314716e+00 9.89753962e-01
-1.33428860e+00 7.22783864e-01 -1.24759054e+00 -4.58822012e-01
3.55607599e-01 8.18831742e-01 -3.69426280e-01 -1.22047096e-01
-9.38893080e-01 1.10084856e+00 4.15095001e-01 -1.55680805e-01
-5.53426623e-01 -1.09819221e+00 -4.91991371e-01 1.35421813e-01
-2.46505484e-01 -1.01247418e+00 1.59834421e+00 -9.26490784e-01
-1.71927702e+00 9.93965864e-01 -1.09175466e-01 -6.98134124e-01
2.12884143e-01 -6.29222766e-02 -4.51468945e-01 -4.49702531e-01
-1.18283980e-01 9.07972395e-01 4.76505756e-01 -3.09777856e-01
-5.59624970e-01 -3.52109671e-01 -5.53519070e-01 1.97277352e-01
-6.78142011e-01 5.97075641e-01 -5.03624141e-01 -3.33525568e-01
-8.99683833e-02 -1.10172522e+00 -1.45431012e-01 -8.65500271e-02
1.34353682e-01 5.74611463e-02 6.70701504e-01 -8.50608766e-01
5.56045234e-01 -1.87239897e+00 -3.40770781e-02 -1.58912838e-01
-1.04709258e-02 3.25608492e-01 -1.26939630e-02 1.39269292e-01
-9.73561630e-02 -2.37643316e-01 7.36311311e-03 -4.65469837e-01
1.75965607e-01 1.33759961e-01 -5.86643159e-01 3.61603886e-01
-1.42739071e-02 1.01516676e+00 -4.32358414e-01 -2.43768498e-01
-1.29258111e-01 8.47347260e-01 -7.86183655e-01 -7.04550073e-02
-2.77802885e-01 1.87034562e-01 -1.93212572e-02 5.92297494e-01
6.07176065e-01 -4.37316746e-01 3.62735152e-01 -1.84985101e-01
-4.41057384e-02 8.41359913e-01 -5.27601480e-01 1.98954391e+00
-6.85889781e-01 5.47411799e-01 2.92407215e-01 -7.80734718e-01
5.91864884e-01 2.64436394e-01 2.57478058e-01 -9.92614925e-01
3.39024544e-01 6.83633804e-01 1.20006204e-01 5.62984543e-03
6.44936621e-01 -3.66783619e-01 -1.00185871e-01 5.65409184e-01
5.12293100e-01 -1.75976351e-01 -1.13631010e-01 -1.98414922e-02
9.66827095e-01 3.60606760e-01 -9.36046839e-02 -6.62289619e-01
-1.45090744e-01 4.49974686e-01 5.96001625e-01 4.33931112e-01
1.83734689e-02 1.45677119e-01 8.45849440e-02 -8.10766995e-01
-1.65639722e+00 -7.62476146e-01 -1.95475593e-01 1.32185161e+00
-7.17216671e-01 -5.90521276e-01 -1.14295828e+00 -2.19286799e-01
-5.54329693e-01 5.47133565e-01 3.08597386e-02 -1.03763968e-01
-8.25147450e-01 -1.47884810e+00 9.64170218e-01 6.82557106e-01
4.47256565e-01 -6.64558828e-01 -5.20320356e-01 1.65691093e-01
7.04577491e-02 -1.27288020e+00 -5.66122472e-01 7.58089006e-01
-1.01230204e+00 -3.06665331e-01 -4.25041109e-01 -9.34828818e-01
3.81708950e-01 -9.09879431e-02 1.52930605e+00 -1.72929764e-01
-2.92051941e-01 -4.06315178e-01 3.05269629e-01 -3.57749969e-01
-8.88187706e-01 5.60110867e-01 4.80079979e-01 -8.11564028e-01
3.75968546e-01 -6.15930855e-01 -3.66605967e-01 1.36325195e-01
-3.39546770e-01 6.72789574e-01 5.86470604e-01 9.35667694e-01
4.94607002e-01 -2.40888596e-01 2.50955582e-01 -9.87402618e-01
2.76698321e-01 -2.32329503e-01 -9.28676188e-01 2.72839278e-01
-1.01700246e+00 2.43728444e-01 9.94433105e-01 -3.16518515e-01
-9.15147841e-01 1.67116806e-01 -6.11791134e-01 -1.09052151e-01
2.67995685e-01 3.20529014e-01 -7.29319081e-02 -1.84225872e-01
7.75538683e-01 1.70378968e-01 9.79038179e-02 -3.96940798e-01
4.09188390e-01 6.51542187e-01 6.25526190e-01 -9.87788200e-01
1.64968491e-01 1.26255140e-01 -3.46819237e-02 -5.51286340e-01
-4.19995397e-01 2.71421280e-02 -3.47341686e-01 2.02635124e-01
7.75733292e-01 -1.35796118e+00 -5.47538340e-01 5.57240665e-01
-1.11350453e+00 -7.22756207e-01 -7.03972727e-02 5.97853899e-01
-3.61980319e-01 -9.41339508e-02 -1.14269507e+00 -1.70404866e-01
-1.08580816e+00 -1.58257496e+00 1.08245385e+00 4.01741304e-02
-1.82602629e-01 -7.65027702e-01 -1.67100448e-02 5.89560926e-01
8.84087324e-01 -4.63976234e-01 1.29146540e+00 -4.90785122e-01
-4.50513840e-01 -1.05272375e-01 -2.97337055e-01 3.55271012e-01
-4.82038110e-01 -1.21019930e-01 -1.15644753e+00 -4.40919489e-01
2.16929421e-01 -5.87917566e-01 5.97956002e-01 2.33357146e-01
8.64400446e-01 -2.12407634e-01 -4.56602901e-01 1.09376323e+00
1.22393286e+00 3.58846635e-02 3.81937116e-01 2.49311477e-02
7.35470057e-01 8.88612866e-02 1.02904672e-02 -2.42195562e-01
2.44794562e-01 9.27753210e-01 -8.29216465e-02 -3.84067863e-01
-2.32723162e-01 -1.43279865e-01 5.07315159e-01 1.75174296e+00
9.77985263e-02 1.08923376e-01 -1.30137587e+00 2.57441471e-03
-1.40769255e+00 -6.60817444e-01 -1.84726879e-01 2.13264871e+00
9.15012062e-01 2.88245797e-01 5.83791621e-02 -2.82507300e-01
3.74531031e-01 -2.83771485e-01 -4.91619557e-01 -7.18501329e-01
-1.07905962e-01 6.71893418e-01 8.19700420e-01 4.61579233e-01
-5.77591360e-01 1.22744572e+00 7.26780367e+00 1.19088280e+00
-1.58087683e+00 8.70662749e-01 1.04925656e+00 -4.28381801e-01
-1.21203892e-01 -3.62550169e-02 -1.34018934e+00 2.88671017e-01
1.79478204e+00 1.42028168e-01 6.25002623e-01 1.11312294e+00
-1.90432727e-01 3.24208260e-01 -1.07054508e+00 9.00519371e-01
1.07127219e-01 -1.77086127e+00 -1.61907062e-01 1.22484885e-01
6.06498063e-01 1.08011734e+00 1.07232705e-02 6.73208237e-01
4.95196790e-01 -1.06467307e+00 8.20963860e-01 1.20821840e-03
1.15950859e+00 -8.28681171e-01 4.23637956e-01 4.65388566e-01
-7.14597523e-01 1.77350536e-01 -6.64537013e-01 4.57764324e-03
-9.19162109e-03 5.71102381e-01 -8.60701323e-01 1.47423238e-01
9.13671196e-01 9.77714583e-02 -4.78170961e-01 3.48589033e-01
3.69022220e-01 8.08946073e-01 -6.51729524e-01 1.41251960e-03
2.25882694e-01 -2.15390250e-01 -1.56075493e-01 1.18952405e+00
5.48083425e-01 -2.80542940e-01 -2.49946669e-01 5.52895367e-01
-3.30170304e-01 9.09660235e-02 -3.06018531e-01 -1.64841097e-02
2.83792794e-01 1.41331232e+00 -8.27299297e-01 -4.46551353e-01
-4.26441282e-01 1.01868379e+00 6.60884798e-01 -2.68035680e-01
-1.15684712e+00 8.40598270e-02 6.28376007e-01 1.41216591e-01
-1.85912475e-01 -3.80936712e-01 -4.36542869e-01 -1.10176361e+00
2.96117063e-03 -1.36563265e+00 1.40744403e-01 -8.08335483e-01
-7.52831757e-01 9.99629200e-01 -4.78928447e-01 -6.81314766e-01
-1.89703882e-01 -1.04611361e+00 -3.46790314e-01 1.08298123e+00
-1.13064766e+00 -1.51950777e+00 1.98925156e-02 2.07500026e-01
3.78801435e-01 -6.29997432e-01 1.30817330e+00 8.42194855e-01
-5.78420937e-01 8.86890948e-01 3.58370304e-01 -1.67694569e-01
6.87902212e-01 -8.17346096e-01 1.13535511e+00 7.32053101e-01
3.57033849e-01 6.43166780e-01 5.64190924e-01 -4.04403925e-01
-1.80128634e+00 -9.97747421e-01 1.02140296e+00 -5.29340923e-01
6.87713325e-01 -8.19890320e-01 -5.81816316e-01 8.91019821e-01
4.63262796e-01 1.55549496e-02 7.78680325e-01 3.74083281e-01
-5.45548439e-01 -2.60210931e-01 -7.32002795e-01 6.25490069e-01
1.02727497e+00 -6.18284583e-01 2.64235842e-03 8.59308064e-01
8.90253723e-01 -7.73761451e-01 -8.86510909e-01 3.64152521e-01
6.53939962e-01 -6.68071091e-01 8.77950370e-01 -5.86659014e-01
4.40065295e-01 4.27769981e-02 -3.15046698e-01 -1.08855498e+00
-1.59157813e-01 -8.25682163e-01 5.18081486e-02 9.43345606e-01
8.80693972e-01 -6.34137630e-01 1.00193000e+00 6.72434509e-01
-4.58232164e-01 -9.04651344e-01 -1.15017855e+00 -7.17632771e-01
5.95552862e-01 -7.11736023e-01 8.01742315e-01 8.52093041e-01
5.65142743e-02 9.25005436e-01 -4.17823106e-01 -1.21116497e-01
3.81124496e-01 -9.29746851e-02 6.33845627e-01 -7.53993809e-01
-9.46727753e-01 -5.93962550e-01 -9.95601937e-02 -8.78750026e-01
1.71516716e-01 -1.58192635e+00 -2.90666193e-01 -1.16231298e+00
4.39325571e-01 -7.98085511e-01 2.48849392e-04 6.02649868e-01
2.50257522e-01 4.34357405e-01 4.77900868e-03 3.02700728e-01
-2.16291681e-01 3.63213807e-01 6.94548845e-01 -1.56043276e-01
2.95565575e-01 -2.97263354e-01 -6.79165065e-01 4.61844355e-01
7.28271067e-01 -6.82198524e-01 -2.90791661e-01 -1.17128074e+00
5.75821221e-01 -5.93944490e-02 4.02062796e-02 -1.28339815e+00
3.41520786e-01 3.85150760e-01 4.32233423e-01 -2.71148801e-01
5.20958483e-01 -6.86643600e-01 5.37990868e-01 5.43837428e-01
-1.80089340e-01 6.72983348e-01 5.58322430e-01 -2.05481246e-01
1.11583136e-01 -7.33083412e-02 9.28984463e-01 -4.27536480e-03
-2.10227847e-01 2.24344358e-01 -1.73649430e-01 -3.05056423e-02
6.03794754e-01 4.02323276e-01 -5.80204427e-01 1.09025031e-01
-2.42480680e-01 -1.44255519e-01 5.29443622e-01 3.19941103e-01
-1.40065715e-01 -1.20422518e+00 -5.63483834e-01 4.27017778e-01
-1.39225364e-01 -2.57235199e-01 8.78631175e-02 7.28729069e-01
-9.23271954e-01 7.63369560e-01 -3.21959406e-01 -6.21393681e-01
-1.16032135e+00 4.20315474e-01 5.58877885e-01 -5.60526907e-01
-8.06347370e-01 9.61515248e-01 -2.22807810e-01 -9.34264362e-01
1.58468653e-02 -3.79250497e-01 6.59578741e-01 -4.07761723e-01
5.87440550e-01 -2.69288626e-02 8.87955427e-01 -4.61182505e-01
-2.70060807e-01 2.74443865e-01 -2.57072181e-01 -3.46120715e-01
1.41623247e+00 4.53612804e-01 -2.37554237e-01 2.92769223e-01
1.20834303e+00 -1.29050046e-01 -9.23545063e-01 -4.79018725e-02
-1.71657920e-01 2.83410251e-01 3.52770567e-01 -1.02659094e+00
-1.07778597e+00 1.07235920e+00 8.42519045e-01 -7.16434181e-01
8.61866295e-01 -1.70734286e-01 1.12084854e+00 6.51939154e-01
7.51794994e-01 -1.12434375e+00 -5.23274541e-01 5.99312961e-01
3.16068947e-01 -1.18223000e+00 -3.21390145e-02 -1.04799598e-01
-4.17062402e-01 9.51957524e-01 5.12686372e-01 2.79104978e-01
5.69921255e-01 1.23468983e+00 1.86533734e-01 -3.00125033e-02
-1.02540624e+00 5.61260462e-01 -1.36895001e-01 3.08212548e-01
7.20531166e-01 2.81240255e-01 -3.83412354e-02 6.21720016e-01
-7.46811867e-01 3.27521972e-02 2.49216110e-02 5.00421703e-01
-2.23620627e-02 -1.40251601e+00 -6.37817904e-02 5.22174954e-01
-6.49457872e-01 -5.49506247e-01 2.40294933e-01 6.22691453e-01
-4.40636724e-02 4.12857324e-01 2.06906855e-01 -3.78619045e-01
1.85672063e-02 4.71288890e-01 8.14469159e-01 -4.66982454e-01
-1.16858089e+00 -3.89556997e-02 3.36534947e-01 -4.34479475e-01
3.55360389e-01 -4.89069015e-01 -1.12205160e+00 -8.26953113e-01
-2.07716763e-01 1.94249470e-02 1.39980710e+00 8.40755701e-01
6.97282493e-01 4.75716144e-01 1.90038886e-02 -8.78159702e-01
-8.24966431e-01 -7.38130629e-01 -1.00732304e-01 -3.18544060e-01
-2.49996185e-01 -9.79776382e-02 1.42428651e-01 -1.40737325e-01] | [8.664346694946289, 3.5126850605010986] |
10238f4f-5cf3-4e4f-93d6-128c24a13286 | uncertainty-aware-distillation-for-semi | 2301.09964 | null | https://arxiv.org/abs/2301.09964v1 | https://arxiv.org/pdf/2301.09964v1.pdf | Uncertainty-Aware Distillation for Semi-Supervised Few-Shot Class-Incremental Learning | Given a model well-trained with a large-scale base dataset, Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning novel classes from a few labeled samples by avoiding overfitting, without catastrophically forgetting all encountered classes previously. Currently, semi-supervised learning technique that harnesses freely-available unlabeled data to compensate for limited labeled data can boost the performance in numerous vision tasks, which heuristically can be applied to tackle issues in FSCIL, i.e., the Semi-supervised FSCIL (Semi-FSCIL). So far, very limited work focuses on the Semi-FSCIL task, leaving the adaptability issue of semi-supervised learning to the FSCIL task unresolved. In this paper, we focus on this adaptability issue and present a simple yet efficient Semi-FSCIL framework named Uncertainty-aware Distillation with Class-Equilibrium (UaD-CE), encompassing two modules UaD and CE. Specifically, when incorporating unlabeled data into each incremental session, we introduce the CE module that employs a class-balanced self-training to avoid the gradual dominance of easy-to-classified classes on pseudo-label generation. To distill reliable knowledge from the reference model, we further implement the UaD module that combines uncertainty-guided knowledge refinement with adaptive distillation. Comprehensive experiments on three benchmark datasets demonstrate that our method can boost the adaptability of unlabeled data with the semi-supervised learning technique in FSCIL tasks. | ['Li Liu', 'Haoyu Chen', 'Wanxia Deng', 'Yawen Cui'] | 2023-01-24 | null | null | null | null | ['class-incremental-learning', 'few-shot-class-incremental-learning'] | ['computer-vision', 'methodology'] | [ 4.16115493e-01 4.65440214e-01 -3.84941101e-01 -3.68218541e-01
-7.13628292e-01 -4.15375680e-01 6.96013331e-01 5.10933772e-02
-4.26136345e-01 1.04929769e+00 -2.51523107e-01 -1.35826478e-02
-7.42759481e-02 -6.66114807e-01 -6.69748545e-01 -7.74146736e-01
3.21632922e-01 6.98179245e-01 5.76569855e-01 5.95951788e-02
-1.30323190e-02 2.81387568e-01 -2.10297227e+00 1.20528117e-01
1.24767351e+00 9.26533699e-01 2.67153502e-01 2.79321611e-01
-3.14770728e-01 8.68732512e-01 -3.05912197e-01 -2.75294602e-01
2.32837796e-01 -4.73139137e-01 -7.65402794e-01 2.39115670e-01
2.91518211e-01 -1.54361516e-01 1.73036791e-02 9.73067284e-01
4.46080416e-01 3.64086181e-01 7.66255021e-01 -1.37124538e+00
-4.69554842e-01 6.49663866e-01 -4.44080323e-01 -8.12767372e-02
-6.64470121e-02 1.43837661e-01 5.24098814e-01 -1.30614173e+00
9.09907877e-01 1.09281480e+00 7.27311671e-01 9.51976895e-01
-1.21990085e+00 -6.13001287e-01 3.57156038e-01 4.55304891e-01
-1.42217255e+00 -4.06818330e-01 8.94766629e-01 -3.30404162e-01
5.83844125e-01 6.25362396e-02 5.64192057e-01 1.02461922e+00
-1.33563623e-01 1.14346564e+00 1.31669152e+00 -6.57363415e-01
8.83766830e-01 5.68864167e-01 4.34917092e-01 6.14978731e-01
3.01740378e-01 3.33546311e-01 -5.07299244e-01 -9.85705703e-02
1.62253484e-01 1.32455021e-01 -1.29884005e-01 -7.23503709e-01
-8.55658412e-01 6.21397138e-01 2.94295400e-01 1.51097119e-01
-1.98173955e-01 -3.97712916e-01 3.68995994e-01 2.60085464e-01
5.47720253e-01 3.47568691e-01 -6.95980489e-01 1.20201565e-01
-1.15710735e+00 8.47269818e-02 5.20686805e-01 1.18642855e+00
1.12952423e+00 9.13552865e-02 -4.61145997e-01 1.03473222e+00
5.27138216e-03 4.16049898e-01 8.55672181e-01 -8.65483761e-01
-1.40552938e-01 7.54421353e-01 -5.43801039e-02 -9.33888033e-02
-2.28710562e-01 -5.51989138e-01 -7.08283484e-01 4.56994236e-01
6.88001439e-02 -1.49334878e-01 -1.44989479e+00 1.69916475e+00
7.01148093e-01 4.57245171e-01 1.88233837e-01 4.25629079e-01
8.23894739e-01 4.49296951e-01 2.13726833e-01 -7.46681929e-01
7.23617017e-01 -1.25539088e+00 -4.57609981e-01 -2.42539704e-01
5.02884865e-01 -1.79599240e-01 9.92633283e-01 3.14222574e-01
-5.61052680e-01 -7.89232135e-01 -1.17799687e+00 3.36626321e-01
-6.07488453e-01 -1.94933519e-01 3.48741055e-01 5.68360806e-01
-6.91920042e-01 7.68191278e-01 -7.25602031e-01 -2.37190977e-01
7.25569189e-01 1.01067245e-01 -2.51356006e-01 -3.44009459e-01
-1.22368252e+00 7.67638981e-01 1.03349817e+00 -2.11713359e-01
-1.17900944e+00 -9.23610389e-01 -8.17573547e-01 -1.68465242e-01
9.29673791e-01 -3.66604656e-01 1.27151000e+00 -9.81370807e-01
-1.51375854e+00 6.48322761e-01 -8.96605179e-02 -5.35154343e-01
5.30159950e-01 5.24352565e-02 -3.14277977e-01 -3.52110639e-02
1.56380400e-01 1.01866543e+00 1.13066959e+00 -1.63932800e+00
-7.66640723e-01 -2.57940710e-01 -1.45935819e-01 3.05344880e-01
-2.30290934e-01 -6.87307715e-01 -3.59528154e-01 -5.56593955e-01
1.42175153e-01 -1.00447810e+00 -3.01927388e-01 1.28179099e-02
-2.21548006e-01 -3.96268964e-01 1.07315612e+00 -3.71438116e-02
1.20169365e+00 -1.88412142e+00 -3.38674411e-02 -9.60198939e-02
9.26978737e-02 8.46883416e-01 -1.78760082e-01 2.60068662e-02
-4.33858633e-02 -1.28195554e-01 -5.44741213e-01 -4.46280211e-01
-3.23240310e-01 5.52482605e-01 -2.45928451e-01 2.46844813e-02
4.43147272e-01 1.12779129e+00 -1.45738339e+00 -6.51430845e-01
4.27411079e-01 1.36144131e-01 -3.95121247e-01 1.71565771e-01
-5.85674524e-01 4.15019244e-01 -1.59888208e-01 1.01729858e+00
7.77274668e-01 -1.22826003e-01 -1.06032319e-01 -1.75497252e-02
4.97245863e-02 -6.30642951e-01 -1.18208945e+00 1.77388144e+00
-4.03993756e-01 1.02434866e-01 -5.57977736e-01 -8.96864057e-01
8.54717195e-01 8.13525468e-02 2.68520504e-01 -4.32392120e-01
4.25184034e-02 2.36533180e-01 -2.24671766e-01 -2.82770753e-01
6.60503507e-02 -3.98440331e-01 1.84110075e-01 3.42589110e-01
7.21403182e-01 -1.44632012e-01 3.61157507e-01 3.01594645e-01
8.60998392e-01 5.87950945e-01 6.24606311e-01 -6.16177283e-02
6.06138945e-01 1.23060696e-01 8.28720570e-01 1.10756481e+00
-6.36272490e-01 6.54002964e-01 -5.33967800e-02 -4.02828693e-01
-6.64704263e-01 -1.30706561e+00 -2.94151366e-01 1.11757612e+00
2.04091489e-01 -2.88167208e-01 -7.08777189e-01 -1.40788078e+00
-6.02015182e-02 1.15742707e+00 -7.56013691e-01 -6.31538570e-01
6.45889714e-02 -7.57284224e-01 8.02454650e-02 3.99363607e-01
6.33535266e-01 -1.21642399e+00 -5.97670615e-01 3.79678816e-01
1.06354967e-01 -7.54674733e-01 -1.80321604e-01 5.61975181e-01
-9.49761629e-01 -1.15714526e+00 -7.52789557e-01 -7.05119848e-01
8.06607068e-01 3.64247799e-01 9.21341598e-01 -3.73410523e-01
-4.98361111e-01 5.12148499e-01 -7.03721941e-01 -5.93074858e-01
-4.19254273e-01 1.83222108e-02 2.30657548e-01 1.44849762e-01
5.82358003e-01 -4.44908023e-01 -3.57755929e-01 3.30823988e-01
-9.45408463e-01 2.67400086e-01 5.15284359e-01 1.17252588e+00
1.02592659e+00 9.40809324e-02 1.00409520e+00 -1.35024655e+00
1.50471762e-01 -5.31922281e-01 -3.11635792e-01 6.58570826e-01
-1.20238233e+00 3.06727707e-01 7.20450580e-01 -8.29881966e-01
-1.50400400e+00 4.10708487e-01 1.66391611e-01 -8.63627911e-01
-1.94174170e-01 3.87588084e-01 -2.31958747e-01 -1.08336143e-01
9.64578688e-01 4.18877721e-01 -1.71351701e-01 -3.27552229e-01
7.92109311e-01 7.63041377e-01 6.47787273e-01 -5.16679704e-01
7.99527824e-01 4.83057499e-01 -2.05239519e-01 -6.12463236e-01
-1.40958619e+00 -5.03609478e-01 -9.02072191e-01 -5.62828422e-01
3.86139482e-01 -9.09827888e-01 6.54863343e-02 7.04786718e-01
-5.67804337e-01 -3.82570535e-01 -1.09957957e+00 2.03081235e-01
-5.93707979e-01 3.26122940e-01 -6.67138696e-02 -9.41888690e-01
-3.84035170e-01 -8.82030308e-01 8.31361413e-01 6.15788579e-01
2.32692230e-02 -8.67614329e-01 3.99761379e-01 2.46619493e-01
3.22006792e-01 1.33845344e-01 6.34042382e-01 -9.50665474e-01
-3.06670636e-01 -2.43846685e-01 -8.40421766e-02 6.56341851e-01
1.48904890e-01 -3.39004427e-01 -1.46731973e+00 -4.33658957e-01
-1.00862077e-02 -1.06610990e+00 1.19878709e+00 1.32955730e-01
1.11005139e+00 1.06197540e-02 -3.40619683e-01 4.01947826e-01
1.39848983e+00 2.89781719e-01 3.84271353e-01 2.09752545e-01
5.72807610e-01 4.64310348e-01 1.05878639e+00 5.14921784e-01
2.41809353e-01 2.38867030e-01 3.00150543e-01 2.22316146e-01
-5.73733985e-01 -4.49878544e-01 8.15647244e-02 7.59392560e-01
6.47997716e-03 3.72918658e-02 -6.85287237e-01 5.24835646e-01
-2.08827186e+00 -8.69957745e-01 4.32857513e-01 2.37357211e+00
1.06595337e+00 3.31944317e-01 -2.96551615e-01 1.39362901e-01
8.13774586e-01 -6.93066269e-02 -1.23727250e+00 8.14809799e-02
-8.56270641e-02 2.57568568e-01 2.19763875e-01 5.16660094e-01
-1.23030663e+00 1.15509391e+00 5.39143515e+00 1.31396019e+00
-8.91063333e-01 3.87438029e-01 7.18849003e-01 -1.51925802e-01
-2.62679726e-01 1.37716174e-01 -9.74996746e-01 3.31270814e-01
7.79463768e-01 -3.77757519e-01 3.54378939e-01 1.21744144e+00
-2.08576277e-01 -3.26566547e-01 -1.03908300e+00 8.99880469e-01
2.95667171e-01 -1.18569255e+00 1.71420991e-01 -4.74666268e-01
1.22606158e+00 1.16044590e-02 -7.42114633e-02 9.56972659e-01
3.58687818e-01 -3.96329582e-01 6.08077288e-01 5.67992330e-01
1.20579362e+00 -6.69523478e-01 6.11932755e-01 7.40016520e-01
-1.02102363e+00 -2.55621225e-01 -4.96794432e-01 2.20278621e-01
2.55226791e-02 7.13855803e-01 -7.94995785e-01 5.98903894e-01
6.01383090e-01 7.43636608e-01 -7.83350587e-01 1.06720173e+00
-2.85991281e-01 6.10483706e-01 -2.55280137e-01 3.23005438e-01
1.00985445e-01 5.61306207e-03 4.29574698e-01 8.70348454e-01
1.29868940e-01 1.68095961e-01 2.52514273e-01 6.84460521e-01
6.41649738e-02 -7.28943720e-02 -5.15438557e-01 1.88697249e-01
5.89925051e-01 1.16297328e+00 -8.45173359e-01 -6.68118536e-01
-2.06486806e-01 1.06681454e+00 5.03184319e-01 2.80867368e-01
-6.14258707e-01 -3.36414695e-01 -2.93992856e-03 -1.07699491e-01
2.89600044e-01 3.89311582e-01 -4.71136384e-02 -1.31459820e+00
-2.10319325e-01 -5.39985657e-01 5.63051581e-01 -8.21888208e-01
-1.45324218e+00 7.05329835e-01 2.00856194e-01 -1.27237189e+00
-3.66159081e-01 -1.68110833e-01 -5.79134643e-01 4.06736314e-01
-1.68116140e+00 -1.24231827e+00 -4.41359520e-01 6.18723333e-01
1.03035116e+00 -3.29576373e-01 7.58227229e-01 -5.97932190e-02
-5.82452834e-01 6.15358651e-01 2.88692713e-01 -5.15344381e-01
9.07364428e-01 -1.26069164e+00 4.28535230e-02 8.37734878e-01
1.19361073e-01 3.50030690e-01 5.58469474e-01 -9.54322040e-01
-7.61198163e-01 -1.69847786e+00 6.93369448e-01 -3.70998710e-01
3.81348580e-01 -2.80281186e-01 -1.12607932e+00 4.82102841e-01
-2.70653516e-01 4.91476625e-01 5.95672607e-01 -2.28438646e-01
-3.55044156e-01 -1.50394067e-01 -1.40825951e+00 5.06669939e-01
1.17338681e+00 -3.20437104e-01 -7.98330903e-01 3.19880635e-01
8.90687525e-01 -1.25231087e-01 -4.51726526e-01 7.14444578e-01
2.99186081e-01 -8.64174724e-01 8.54127586e-01 -5.05244672e-01
9.34702381e-02 -4.58490342e-01 3.49334478e-02 -1.47214949e+00
-4.05954510e-01 -3.50539714e-01 -6.53443456e-01 1.42255664e+00
2.45509431e-01 -4.18708175e-01 9.67104554e-01 5.22070229e-01
-1.05476134e-01 -8.06256115e-01 -9.77307618e-01 -1.08655965e+00
-1.50088165e-02 -3.87608945e-01 2.80815154e-01 8.95175219e-01
-1.33844569e-01 2.67088056e-01 -4.45378780e-01 -1.77891612e-01
1.04446483e+00 1.02157205e-01 5.14517009e-01 -1.46007097e+00
-2.85311610e-01 -6.07479140e-02 -2.29668349e-01 -5.40703952e-01
1.20386407e-01 -1.00246477e+00 3.69569242e-01 -1.24149895e+00
4.68786269e-01 -5.44757485e-01 -6.01216912e-01 8.12915802e-01
-5.82432985e-01 1.69289157e-01 2.74203449e-01 3.34248573e-01
-1.07811332e+00 9.38425601e-01 1.10481989e+00 -2.61148989e-01
-4.92414474e-01 8.64092261e-02 -5.65889895e-01 6.96493208e-01
6.69339418e-01 -6.63690269e-01 -9.86039698e-01 2.60301828e-01
-3.09712440e-01 -4.02509272e-01 -1.40207699e-02 -1.27185988e+00
3.36410522e-01 -2.46758029e-01 3.04863930e-01 -6.01054668e-01
4.82016206e-02 -7.83717394e-01 9.48824137e-02 4.52885985e-01
-3.62755060e-01 -9.03883338e-01 1.42655864e-01 9.66055214e-01
-6.14146627e-02 -6.01971745e-01 9.99383807e-01 -2.69371152e-01
-1.23781037e+00 4.93578613e-01 -2.61445969e-01 2.07220539e-01
1.52635336e+00 -2.18006045e-01 -1.50643200e-01 1.17461957e-01
-1.04396367e+00 3.56759131e-01 4.39462692e-01 4.54630822e-01
6.56727850e-01 -1.36883402e+00 -4.65692997e-01 3.85740221e-01
6.72894776e-01 3.51632655e-01 5.01779675e-01 3.38223308e-01
6.95197901e-04 1.24706760e-01 -1.59435987e-01 -6.10878289e-01
-9.39680219e-01 1.09439099e+00 1.99301675e-01 -3.32010865e-01
-4.47490722e-01 8.42498958e-01 8.23080391e-02 -7.46138036e-01
4.96057808e-01 4.78168689e-02 -2.55692333e-01 2.20701769e-01
7.18904376e-01 4.91015345e-01 9.65063423e-02 -1.82225943e-01
-1.58576533e-01 2.90711343e-01 -5.25480092e-01 1.67137504e-01
1.11910880e+00 -3.17534804e-01 3.10704470e-01 8.70112062e-01
7.99008369e-01 -6.13441765e-01 -1.81475413e+00 -6.82427227e-01
5.49539104e-02 -1.42955944e-01 1.15343541e-01 -1.24401557e+00
-7.58054852e-01 7.25088477e-01 8.99075627e-01 -4.01627302e-01
1.10669339e+00 -6.17785379e-02 5.27846277e-01 6.07092738e-01
7.56307781e-01 -1.37507391e+00 1.81478843e-01 4.83886003e-01
5.46484709e-01 -1.64067852e+00 -8.91238302e-02 -2.65941411e-01
-9.36040699e-01 9.30194914e-01 1.02395654e+00 2.68436849e-01
9.18297291e-01 -1.29106371e-02 -1.73822569e-03 1.08243510e-01
-8.64141703e-01 -5.22066236e-01 1.52276531e-01 8.69330168e-01
-2.58935124e-01 -6.30314946e-02 -1.13373019e-01 7.08435774e-01
4.78719085e-01 5.35816848e-01 3.16078454e-01 1.20875216e+00
-8.72081161e-01 -1.05849540e+00 -1.31294280e-01 6.12957239e-01
3.71657789e-01 -7.13912724e-03 -2.75360078e-01 5.80426097e-01
6.86108589e-01 7.59645045e-01 -2.09840804e-01 -4.80946451e-01
1.84040502e-01 5.15770972e-01 3.80145222e-01 -8.74954462e-01
-1.25359088e-01 -1.44081950e-01 -3.61606836e-01 -3.40281457e-01
-4.57219690e-01 -5.90432942e-01 -1.09958065e+00 2.82944441e-01
-5.21938205e-01 1.09195195e-01 2.99095452e-01 1.11392415e+00
3.89347434e-01 4.68788773e-01 6.95532858e-01 -9.32838559e-01
-6.59334362e-01 -8.37923586e-01 -6.19540036e-01 3.64007086e-01
1.15236789e-01 -1.00448251e+00 -4.12284434e-01 1.12739868e-01] | [9.899123191833496, 3.2209882736206055] |
f0f65a90-19c1-4e3b-b41f-891cd30bb8bf | stylecarigan-caricature-generation-via | 2107.04331 | null | https://arxiv.org/abs/2107.04331v1 | https://arxiv.org/pdf/2107.04331v1.pdf | StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation | We present a caricature generation framework based on shape and style manipulation using StyleGAN. Our framework, dubbed StyleCariGAN, automatically creates a realistic and detailed caricature from an input photo with optional controls on shape exaggeration degree and color stylization type. The key component of our method is shape exaggeration blocks that are used for modulating coarse layer feature maps of StyleGAN to produce desirable caricature shape exaggerations. We first build a layer-mixed StyleGAN for photo-to-caricature style conversion by swapping fine layers of the StyleGAN for photos to the corresponding layers of the StyleGAN trained to generate caricatures. Given an input photo, the layer-mixed model produces detailed color stylization for a caricature but without shape exaggerations. We then append shape exaggeration blocks to the coarse layers of the layer-mixed model and train the blocks to create shape exaggerations while preserving the characteristic appearances of the input. Experimental results show that our StyleCariGAN generates realistic and detailed caricatures compared to the current state-of-the-art methods. We demonstrate StyleCariGAN also supports other StyleGAN-based image manipulations, such as facial expression control. | ['Seungyong Lee', 'Xin Tong', 'Jiaolong Yang', 'Yucheol Jung', 'Gwangjin Ju', 'Wonjong Jang'] | 2021-07-09 | null | null | null | null | ['caricature'] | ['computer-vision'] | [ 5.95193624e-01 4.67036843e-01 4.02613491e-01 -4.21456099e-01
-1.78364128e-01 -8.50684762e-01 6.13898158e-01 -8.96332622e-01
1.60179198e-01 6.22343719e-01 -6.80474862e-02 -6.20387271e-02
6.21405125e-01 -1.02524316e+00 -9.51370060e-01 -6.16660953e-01
5.57034254e-01 1.30629152e-01 -2.72367388e-01 -4.24015909e-01
3.57848480e-02 8.78244579e-01 -1.26699567e+00 5.30946672e-01
7.17954397e-01 9.29231286e-01 -1.52612329e-01 9.65838969e-01
-2.23583132e-01 4.53291923e-01 -7.35892475e-01 -6.60165489e-01
5.56026697e-01 -8.05220544e-01 -3.56330782e-01 4.33578253e-01
7.96292126e-01 -4.84372437e-01 -3.70895788e-02 1.05701780e+00
3.16850901e-01 -3.57274830e-01 7.18614340e-01 -1.34297001e+00
-1.22925401e+00 4.48324531e-01 -1.05208409e+00 -8.29638422e-01
1.26846939e-01 3.46125543e-01 5.09146631e-01 -8.02166879e-01
8.36660326e-01 1.94796586e+00 4.69628334e-01 1.21103501e+00
-1.52928638e+00 -1.09026706e+00 -4.18644175e-02 -5.24140835e-01
-1.23915386e+00 -3.20893645e-01 1.12156260e+00 -1.21380828e-01
1.16479412e-01 4.91015255e-01 8.42736304e-01 9.83324945e-01
2.87456363e-01 8.22400033e-01 1.33370137e+00 -4.07954246e-01
4.18542437e-02 7.47875944e-02 -6.92753613e-01 8.75274420e-01
9.16118249e-02 3.08193713e-01 6.89488128e-02 -3.09580099e-02
1.45238161e+00 -1.52929410e-01 -8.48158225e-02 -2.42221013e-01
-1.08075678e+00 5.86704075e-01 6.96584880e-01 -1.50245264e-01
-2.67911196e-01 6.90403044e-01 -8.58170614e-02 3.49226981e-01
3.11009020e-01 7.19467819e-01 -8.61465111e-02 2.86740363e-01
-7.67358541e-01 5.05334079e-01 4.04505402e-01 1.35365415e+00
9.91431653e-01 6.29539669e-01 -4.60544139e-01 8.34032893e-01
1.84666753e-01 9.35842693e-01 1.18763838e-02 -1.13812482e+00
1.04637153e-01 7.46569455e-01 -4.81714727e-03 -7.23928750e-01
1.38338298e-01 1.19783133e-02 -9.04156983e-01 1.11373568e+00
3.62346508e-02 -6.81580901e-01 -1.25656593e+00 1.61396611e+00
3.78170550e-01 -2.27904394e-01 -4.13471907e-02 8.02770138e-01
8.09754252e-01 7.83815861e-01 8.97554681e-03 4.53946620e-01
1.29346776e+00 -1.03604317e+00 -7.58459806e-01 -2.02317372e-01
3.08925837e-01 -1.08733666e+00 1.45065415e+00 1.89949468e-01
-1.50142348e+00 -7.13571608e-01 -1.10268486e+00 -2.88448066e-01
-2.48252705e-01 5.70351124e-01 3.49287271e-01 7.91185677e-01
-1.19038582e+00 4.95192081e-01 -2.53185302e-01 3.18114161e-02
5.79150617e-01 1.64696008e-01 -2.98496544e-01 2.19638616e-01
-8.54754746e-01 6.10187888e-01 8.78764838e-02 -7.66993687e-02
-7.65422463e-01 -9.49069798e-01 -1.12897766e+00 -1.16744183e-01
-3.20068151e-02 -8.69739294e-01 1.17099857e+00 -1.74824560e+00
-2.11456823e+00 9.95632648e-01 1.73276946e-01 2.55342685e-02
8.32518101e-01 9.63501781e-02 -3.51773471e-01 -1.01519205e-01
-3.45354736e-01 1.39442182e+00 1.44647813e+00 -1.69113171e+00
-5.38816035e-01 2.27813393e-01 1.03832342e-01 1.06775917e-01
1.10565826e-01 -7.99666047e-02 -7.47319937e-01 -1.13100970e+00
-3.29241157e-01 -1.14715946e+00 -1.01593904e-01 6.70765877e-01
-7.28393435e-01 5.52727044e-01 1.50652599e+00 -4.96590078e-01
8.93453538e-01 -2.15533423e+00 1.23163626e-01 3.00276220e-01
8.29581544e-02 3.31308424e-01 -7.46906638e-01 1.89312249e-01
-3.18371207e-01 3.71111304e-01 -3.57888520e-01 -5.77004731e-01
-6.07823431e-02 1.57850921e-01 -4.15015489e-01 1.65812746e-01
6.70874596e-01 1.29408634e+00 -6.70653045e-01 -2.85965860e-01
3.16916645e-01 8.08738947e-01 -7.77477920e-01 3.74220371e-01
-5.49916923e-01 5.65662980e-01 -2.18506202e-01 6.22302592e-01
1.08280957e+00 3.50275457e-01 -1.60713785e-03 -4.47824717e-01
-1.14896856e-02 -3.83552641e-01 -8.58806193e-01 1.37562621e+00
-6.37934268e-01 7.61931241e-01 2.10276052e-01 1.22252092e-01
1.16204000e+00 -5.03157228e-02 -1.45496666e-01 -4.23429638e-01
3.82506132e-01 -2.91356966e-02 -7.59073347e-02 -1.46603897e-01
6.21640205e-01 -3.68464828e-01 -3.43312174e-01 4.59643543e-01
-3.58892143e-01 -1.00912261e+00 -1.21526465e-01 -3.54702584e-02
3.45467389e-01 6.55296385e-01 -1.28392488e-01 -1.14084646e-01
6.67940736e-01 -3.10949057e-01 1.78005561e-01 2.47058704e-01
3.86056602e-01 1.06586814e+00 7.23270118e-01 -5.13596117e-01
-1.73180556e+00 -8.44282866e-01 4.24439371e-01 7.22628057e-01
-1.29584998e-01 -5.82486689e-02 -1.51834190e+00 -7.08164334e-01
2.48676464e-02 7.40413487e-01 -9.92276430e-01 -2.03256786e-01
-7.03173578e-01 -1.31091326e-01 8.02449822e-01 3.99567515e-01
9.10949588e-01 -1.37286901e+00 -2.93745756e-01 -1.33253977e-01
4.37232882e-01 -9.63776767e-01 -1.13394845e+00 -6.89341843e-01
-5.21011055e-01 -8.02565932e-01 -8.98968518e-01 -7.97352076e-01
1.20295131e+00 -5.38359582e-02 9.11219299e-01 2.52903372e-01
-2.72219598e-01 9.64034274e-02 -9.81795117e-02 -6.47553980e-01
-9.82820094e-01 -1.64400890e-01 -3.40613604e-01 4.38745439e-01
-3.67053479e-01 -5.08120954e-01 -7.88254857e-01 2.62080491e-01
-1.41131985e+00 7.06821322e-01 7.27959573e-01 5.78749955e-01
6.38806403e-01 -2.72751957e-01 1.11021146e-01 -1.36451888e+00
6.45927489e-01 3.27745646e-01 -8.65298271e-01 2.00664908e-01
-2.46704906e-01 3.75715971e-01 8.10727715e-01 -7.21847475e-01
-1.26278496e+00 1.21856287e-01 -1.13572530e-01 -7.39211202e-01
-6.75916374e-02 -2.53226697e-01 -5.04447460e-01 -4.01208818e-01
4.78837162e-01 6.46870509e-02 3.80107373e-01 -3.15418363e-01
9.02162611e-01 4.88769084e-01 6.74380541e-01 -5.44013143e-01
1.40473580e+00 7.08508670e-01 3.70686012e-03 -7.07918644e-01
-3.38486642e-01 6.72022462e-01 -4.64536697e-01 -1.26484722e-01
9.27933633e-01 -6.70586646e-01 -5.75794578e-01 9.10172939e-01
-1.21522069e+00 -7.08672822e-01 -5.65304637e-01 -4.03773904e-01
-6.38431549e-01 -3.20722465e-03 -3.93228084e-01 -5.50011098e-01
-6.93324625e-01 -1.06673789e+00 1.43245173e+00 4.21152681e-01
-2.43495390e-01 -7.27197587e-01 -1.06631167e-01 -6.97146505e-02
6.21243119e-01 9.19112563e-01 1.06425858e+00 5.56127548e-01
-4.93245840e-01 -1.28870517e-01 -3.65998805e-01 4.42370653e-01
4.91873592e-01 5.39520264e-01 -1.02293873e+00 -1.33958593e-01
-6.26600206e-01 -6.28141388e-02 5.30439973e-01 2.21282110e-01
1.30703795e+00 -5.87502718e-01 -5.37430756e-02 1.09653056e+00
1.36155915e+00 3.43689531e-01 1.12863100e+00 4.87751851e-04
1.09205222e+00 3.86783868e-01 2.48392627e-01 1.56000465e-01
-2.22539133e-03 6.49689913e-01 3.63060772e-01 -9.21924293e-01
-6.81580245e-01 -8.06926370e-01 4.94999528e-01 5.28726839e-02
4.02182676e-02 -8.67107287e-02 -6.85502216e-02 2.15524554e-01
-1.22538590e+00 -8.47291410e-01 8.29835907e-02 1.67130530e+00
1.10699368e+00 -1.77037448e-01 1.05891481e-01 -9.22207534e-02
8.14722896e-01 1.93921462e-01 -6.32054687e-01 -1.07043731e+00
-1.93452418e-01 3.86640817e-01 5.80174088e-01 6.61108136e-01
-7.73795247e-01 1.46408665e+00 6.02472782e+00 7.33698070e-01
-1.55181253e+00 -3.14076275e-01 8.99455309e-01 -1.05807766e-01
-8.88613224e-01 -1.44219473e-01 -5.23113072e-01 3.56053501e-01
1.17431581e-01 7.17616826e-02 6.84149563e-01 8.25516284e-01
3.98262858e-01 2.59469181e-01 -9.37965870e-01 9.88190711e-01
8.20523594e-03 -1.56065965e+00 6.67545974e-01 -1.78551767e-03
1.30230069e+00 -7.28399158e-01 5.28960824e-01 5.83600737e-02
6.55295372e-01 -1.14599633e+00 1.07973206e+00 5.43384492e-01
1.70981514e+00 -9.63076770e-01 1.73874736e-01 -3.03457856e-01
-9.21665132e-01 2.96224564e-01 -1.70748770e-01 2.17905357e-01
1.83256254e-01 2.42286563e-01 -6.86385810e-01 3.31736505e-02
3.37484062e-01 3.23834777e-01 -4.32133138e-01 5.13590455e-01
-7.18483806e-01 1.65219396e-01 9.55209881e-03 1.40707374e-01
2.85279483e-01 -4.32717264e-01 3.39863390e-01 1.18726909e+00
3.79771262e-01 -4.51708511e-02 -4.09808546e-01 1.46046162e+00
-4.18836623e-01 -2.28596792e-01 -7.59714484e-01 -1.37051612e-01
4.93099958e-01 1.46393251e+00 -1.89521760e-01 -4.85376477e-01
3.04540824e-02 1.47355318e+00 -6.14957558e-03 4.92874056e-01
-9.29310679e-01 -6.48256123e-01 9.96664703e-01 2.62124956e-01
3.41494679e-01 -7.67867416e-02 -6.03779018e-01 -8.60303879e-01
-4.75186259e-01 -1.18310177e+00 -1.74843326e-01 -1.25862014e+00
-9.68508363e-01 8.34813356e-01 -2.06136644e-01 -1.13282025e+00
-1.26916334e-01 -5.53310215e-01 -1.16525507e+00 1.22559679e+00
-1.51162004e+00 -1.86656797e+00 -5.23402691e-01 4.65008587e-01
4.52298522e-01 -1.39429763e-01 7.24305630e-01 -2.21856415e-01
-2.95966536e-01 9.42849100e-01 -3.44237477e-01 2.43417382e-01
7.58956730e-01 -1.19589806e+00 1.06574082e+00 7.34292269e-01
-3.26323092e-01 4.03086632e-01 7.52244413e-01 -7.45095909e-01
-1.47618365e+00 -1.59393859e+00 3.23287100e-01 -4.00116920e-01
8.07745978e-02 -6.19885027e-01 -5.02597749e-01 7.23634183e-01
5.18410742e-01 -8.49306583e-02 2.42838025e-01 -8.77466619e-01
-3.52226913e-01 -1.42586067e-01 -1.53087354e+00 1.13810980e+00
9.35636461e-01 -3.33611131e-01 -1.53620347e-01 -2.55751491e-01
6.27652287e-01 -6.60529435e-01 -4.66827422e-01 1.29492819e-01
9.45665419e-01 -7.15005398e-01 8.27800274e-01 -4.77790803e-01
7.47156680e-01 -6.46001458e-01 2.63585657e-01 -1.63774121e+00
-4.00692075e-01 -1.20254779e+00 3.63216639e-01 1.30903137e+00
4.87077415e-01 -2.95120925e-01 7.57062614e-01 6.14757299e-01
-7.44933682e-03 -4.38348621e-01 -1.06922321e-01 -4.78682786e-01
3.48132700e-01 8.99025239e-03 1.32370186e+00 7.55796492e-01
-5.57558656e-01 6.16787039e-02 -6.77430570e-01 -8.79209712e-02
5.90550244e-01 1.48668781e-01 1.31683362e+00 -6.15934551e-01
-1.44932643e-01 -4.77293372e-01 -2.96287928e-02 -5.85714161e-01
-5.75766973e-02 -4.93477345e-01 -2.03092426e-01 -1.19759071e+00
-1.48226649e-01 -4.29744929e-01 5.04703641e-01 6.35586262e-01
-2.25871906e-01 8.39647949e-01 6.72690928e-01 -2.28753135e-01
2.94482291e-01 5.05258322e-01 2.18468881e+00 -2.74345845e-01
-3.26074213e-01 -2.58270532e-01 -1.10536253e+00 7.84190536e-01
7.31954157e-01 -1.25304639e-01 -5.42400420e-01 -5.55358052e-01
6.64988980e-02 -2.01919556e-01 3.38754952e-01 -8.20360959e-01
-5.07672489e-01 -3.56254101e-01 8.11140418e-01 -2.79662400e-01
3.17955554e-01 -7.41395533e-01 6.53946519e-01 5.12530744e-01
-4.98387605e-01 1.36366546e-01 4.61737752e-01 5.34714721e-02
1.90574870e-01 2.42108777e-01 1.25087941e+00 -1.31457567e-01
-4.29856032e-01 4.26203251e-01 -1.05215758e-01 -2.82855719e-01
9.87061024e-01 -2.78564572e-01 -2.11920232e-01 -6.35596991e-01
-4.50118124e-01 -1.51182458e-01 1.12766409e+00 6.19115353e-01
7.95549035e-01 -1.87671936e+00 -8.24500084e-01 8.24483991e-01
5.21379523e-02 4.30578254e-02 1.10846661e-01 4.01750132e-02
-9.32929099e-01 -6.50655925e-02 -6.09826922e-01 -2.17760816e-01
-1.34214544e+00 5.44344783e-01 4.93255556e-01 1.43939435e-01
-4.77053344e-01 7.07075059e-01 9.13979292e-01 -4.34167981e-01
-2.00071871e-01 -7.02495158e-01 9.37342457e-03 -4.60505098e-01
6.15880609e-01 -6.69079646e-02 -3.30092609e-01 -5.01606286e-01
1.16297834e-01 9.60838020e-01 1.21908307e-01 -3.19317758e-01
1.11139464e+00 -5.04119247e-02 -6.17072731e-02 -2.24321887e-01
1.24530005e+00 3.51250321e-01 -1.89779603e+00 1.47198901e-01
-9.19049621e-01 -4.95663464e-01 -2.33820342e-02 -9.99534369e-01
-1.50734472e+00 8.09259176e-01 5.09442031e-01 -3.66855115e-01
1.17929399e+00 -4.35675859e-01 9.00867820e-01 -1.63093060e-01
4.50830050e-02 -9.27768826e-01 8.87074247e-02 1.85758218e-01
1.49246824e+00 -6.76672339e-01 -2.86435843e-01 -4.84941393e-01
-9.97844756e-01 1.08648300e+00 7.57840753e-01 -5.06363332e-01
2.57750094e-01 6.69921994e-01 4.61099803e-01 -1.35876149e-01
-4.54675287e-01 2.40529209e-01 5.79273939e-01 8.34078431e-01
3.22742879e-01 1.68596566e-01 -1.11749895e-01 1.95953906e-01
-5.34218311e-01 -2.86352839e-02 5.61678648e-01 6.73657000e-01
-9.48745981e-02 -1.39026451e+00 -6.99812472e-01 -6.16830252e-02
-1.91712886e-01 -1.02005370e-01 -8.69648099e-01 8.78748059e-01
3.23212177e-01 4.63629365e-01 2.48258755e-01 -5.14257431e-01
4.70399737e-01 -2.71257669e-01 6.59764111e-01 -4.29791123e-01
-7.13682294e-01 1.38272345e-01 4.79839630e-02 -5.50589263e-01
-1.06164580e-02 -1.82423994e-01 -1.12080538e+00 -6.78708613e-01
1.34617388e-01 -3.47128689e-01 6.65153265e-01 5.19155025e-01
5.20866156e-01 5.88587940e-01 8.30020308e-01 -1.25504255e+00
-7.86310211e-02 -7.85211682e-01 -5.15555561e-01 6.58403933e-01
3.48041952e-01 -2.14694813e-01 -2.59738863e-02 4.60868299e-01] | [11.976268768310547, -0.4398401975631714] |
79f202da-3e4d-48a6-a0e1-2b441e5a3dd5 | dash-semi-supervised-learning-with-dynamic | 2109.0065 | null | https://arxiv.org/abs/2109.00650v1 | https://arxiv.org/pdf/2109.00650v1.pdf | Dash: Semi-Supervised Learning with Dynamic Thresholding | While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-confidence prediction during the training progress. However, it is possible that too many correct/wrong pseudo labeled examples are eliminated/selected. In this work we develop a simple yet powerful framework, whose key idea is to select a subset of training examples from the unlabeled data when performing existing SSL methods so that only the unlabeled examples with pseudo labels related to the labeled data will be used to train models. The selection is performed at each updating iteration by only keeping the examples whose losses are smaller than a given threshold that is dynamically adjusted through the iteration. Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection and its theoretical guarantee. Specifically, we theoretically establish the convergence rate of Dash from the view of non-convex optimization. Finally, we empirically demonstrate the effectiveness of the proposed method in comparison with state-of-the-art over benchmarks. | ['Rong Jin', 'Hao Li', 'Baigui Sun', 'Yu-Feng Li', 'Qi Qian', 'Jinxing Ye', 'Lei Shang', 'Yi Xu'] | 2021-09-01 | null | null | null | null | ['semi-supervised-image-classification'] | ['computer-vision'] | [ 2.30678588e-01 9.85750556e-02 -5.30590773e-01 -6.57380939e-01
-8.05898309e-01 -3.88435453e-01 2.53843904e-01 3.69704992e-01
-6.76863194e-01 9.67401028e-01 -2.38734320e-01 -1.03371657e-01
-1.41284734e-01 -5.28544128e-01 -6.16691232e-01 -8.80773902e-01
2.49825493e-01 6.48840606e-01 2.51520157e-01 2.09547117e-01
7.81025887e-02 2.57096469e-01 -1.34623611e+00 -2.43865937e-01
1.17685306e+00 1.04483044e+00 7.25901872e-02 -2.60078143e-02
-5.95243908e-02 6.90287530e-01 -2.17540413e-01 -2.54314721e-01
5.07064342e-01 -4.43885624e-01 -4.93253410e-01 4.54138696e-01
2.56517202e-01 -7.14674518e-02 1.13824308e-01 1.19907999e+00
2.17054725e-01 3.42834264e-01 5.34604430e-01 -1.15949285e+00
-3.08551967e-01 5.25524497e-01 -7.57180870e-01 -3.22951153e-02
-1.88454613e-01 -1.25136554e-01 1.18731833e+00 -1.26669061e+00
4.15539742e-01 8.60245705e-01 4.68674511e-01 6.55905962e-01
-1.15246582e+00 -7.01085985e-01 4.67787743e-01 8.65837038e-02
-1.44523370e+00 -3.25659543e-01 6.92776084e-01 -2.21934840e-01
2.30792746e-01 2.11609334e-01 3.61414969e-01 4.48022902e-01
-3.49577516e-01 1.06400180e+00 1.00068593e+00 -6.44838572e-01
5.10546386e-01 4.78674561e-01 5.46444654e-01 6.98501170e-01
3.41628283e-01 1.14758499e-02 -4.70753998e-01 -2.58158058e-01
3.58056188e-01 1.08153246e-01 -3.06984663e-01 -6.46805823e-01
-1.00974476e+00 8.55695784e-01 2.80001223e-01 -5.75982220e-02
-4.20516551e-01 -2.36237869e-01 3.17639887e-01 2.79112756e-01
6.70113742e-01 1.94297865e-01 -5.44593751e-01 1.39954641e-01
-9.82395828e-01 -1.01461433e-01 6.03385985e-01 8.38362753e-01
9.25212860e-01 -1.55599013e-01 -2.30454773e-01 1.08631277e+00
3.52388024e-01 2.48239502e-01 4.94160593e-01 -6.59252763e-01
5.04988790e-01 8.80011737e-01 3.21039051e-01 -5.54667652e-01
-5.87859452e-02 -6.55169666e-01 -6.75763667e-01 1.67515472e-01
4.22216356e-01 -2.38546252e-01 -7.71785259e-01 1.76178944e+00
6.23297870e-01 3.55656147e-01 6.05311356e-02 1.07498682e+00
1.92109138e-01 5.73290110e-01 9.58849713e-02 -8.36826384e-01
6.80402160e-01 -1.15276408e+00 -4.37211394e-01 -2.57233560e-01
6.40957355e-01 -5.28734088e-01 1.09850562e+00 4.49096411e-01
-8.45491290e-01 -4.06806439e-01 -9.99977291e-01 3.88151139e-01
1.43903375e-01 6.41028643e-01 3.76128554e-01 7.07301676e-01
-4.59521890e-01 5.93961477e-01 -8.58047903e-01 -2.06579998e-01
4.89504039e-01 4.32287127e-01 -1.97352096e-01 -8.74047577e-02
-8.48675787e-01 5.19155860e-01 5.22632420e-01 2.73225576e-01
-8.09483588e-01 -4.53872770e-01 -7.17624426e-01 1.16336256e-01
7.78413773e-01 -1.72429651e-01 1.33473527e+00 -1.23915088e+00
-1.39656579e+00 7.98624396e-01 -2.22674355e-01 -6.40816391e-01
7.88688183e-01 -4.12231445e-01 -1.36741236e-01 6.14187855e-04
1.16811849e-01 3.34538788e-01 8.77118170e-01 -1.24583530e+00
-9.77098823e-01 -3.54207426e-01 -1.02158472e-01 4.48526412e-01
-6.69533849e-01 -2.19834894e-01 -6.58146262e-01 -5.42953551e-01
2.98494369e-01 -1.05421245e+00 -4.54986811e-01 9.30509418e-02
-4.30595160e-01 -3.65724981e-01 7.82834709e-01 -4.35225964e-02
1.26474035e+00 -2.21073294e+00 -6.80270493e-02 3.79478544e-01
1.31255582e-01 6.14658952e-01 6.90570176e-02 2.08801299e-01
9.74444896e-02 -4.05709185e-02 -4.23633844e-01 -5.93831539e-01
-1.96116343e-01 5.96698672e-02 -3.12115133e-01 6.83195829e-01
1.28422245e-01 4.55983609e-01 -1.12475514e+00 -6.23465896e-01
3.48148465e-01 -2.30723005e-02 -4.52688158e-01 2.83729613e-01
-2.70307690e-01 4.52394307e-01 -8.19754362e-01 4.16059434e-01
6.43392980e-01 -5.19889593e-01 3.57470423e-01 -2.32453719e-02
1.80948898e-02 1.65585309e-01 -1.50499964e+00 1.10859442e+00
-3.59931558e-01 1.72054753e-01 -1.15296409e-01 -1.23996127e+00
9.21635151e-01 3.25830162e-01 4.92852539e-01 -2.04105407e-01
-3.21871862e-02 3.65835756e-01 -1.82534710e-01 -2.50242531e-01
1.21476308e-01 -2.57584810e-01 2.74621516e-01 5.94502509e-01
-1.85070440e-01 3.28128397e-01 3.66047025e-01 1.42711774e-01
6.51529193e-01 7.82580376e-02 5.20780325e-01 -1.40057862e-01
7.96373606e-01 1.15253568e-01 9.44472671e-01 6.63255930e-01
-2.18094319e-01 4.18435276e-01 2.51818359e-01 -2.91249812e-01
-8.67230952e-01 -9.35381591e-01 -2.21414551e-01 9.78815556e-01
2.43445694e-01 -2.24541605e-01 -6.17197514e-01 -1.18340600e+00
-2.06223521e-02 6.30133152e-01 -5.03772378e-01 -1.57002896e-01
-4.46787983e-01 -7.43576825e-01 -9.27181318e-02 3.02191108e-01
4.60286021e-01 -9.85940695e-01 -4.67173249e-01 2.71179199e-01
1.73566580e-01 -7.50656724e-01 -5.78629792e-01 3.10450315e-01
-1.08054125e+00 -1.24437177e+00 -6.60422087e-01 -8.44355941e-01
1.23089087e+00 5.13875127e-01 7.59977996e-01 8.42807814e-02
1.13390066e-01 1.77019387e-02 -4.71395433e-01 -2.02347025e-01
-4.64999318e-01 1.37592763e-01 1.92076564e-01 4.73449469e-01
4.03611600e-01 -1.67750224e-01 -5.16068816e-01 5.46438158e-01
-7.69342363e-01 1.28539000e-02 5.86604178e-01 1.07951546e+00
1.02463114e+00 1.30358055e-01 9.15774941e-01 -1.35711610e+00
3.18615884e-01 -5.54093242e-01 -7.83442497e-01 5.19736230e-01
-9.09700930e-01 4.35435660e-02 1.05986786e+00 -4.84725326e-01
-9.67704535e-01 3.15972030e-01 1.68412805e-01 -6.25051558e-01
5.65984361e-02 5.93753040e-01 -1.20921090e-01 3.97071205e-02
5.13198853e-01 2.02952787e-01 -9.12547410e-02 -6.14188313e-01
1.42682493e-01 6.80879474e-01 1.90070763e-01 -4.74915057e-01
7.84647822e-01 4.75083977e-01 -1.95457250e-01 -5.40628135e-01
-1.43228185e+00 -6.70951366e-01 -5.36801934e-01 -1.89512819e-01
1.28512219e-01 -7.21137702e-01 -5.64621091e-01 2.32699603e-01
-4.41399544e-01 -9.98785421e-02 -4.45256829e-01 7.38536000e-01
-2.11648554e-01 5.27228951e-01 -3.11984062e-01 -1.20571697e+00
-4.05735314e-01 -9.88376200e-01 6.69839978e-01 2.70320684e-01
-5.82511202e-02 -8.51974010e-01 -4.42926064e-02 2.17594013e-01
-8.02976489e-02 2.36753956e-03 7.94462979e-01 -1.13832939e+00
-3.39405596e-01 -5.25544226e-01 -3.06135453e-02 7.56183743e-01
4.05783117e-01 -1.52405620e-01 -6.76622510e-01 -5.78441501e-01
9.70544070e-02 -7.13259161e-01 8.57610703e-01 2.93981642e-01
1.15550566e+00 -1.78758144e-01 -4.46508706e-01 2.72192091e-01
1.46594095e+00 1.91345617e-01 6.87075630e-02 1.34860843e-01
5.21272540e-01 4.90487009e-01 1.21620488e+00 5.67172945e-01
-3.37674804e-02 4.21655566e-01 4.57687020e-01 4.06062976e-02
4.53880042e-01 -2.88444668e-01 1.36332378e-01 7.36186981e-01
2.20877841e-01 -2.92059153e-01 -6.31909966e-01 5.00061333e-01
-2.11199641e+00 -6.92437232e-01 -7.39130452e-02 2.98760009e+00
9.24847364e-01 3.82686496e-01 1.37336804e-02 3.79190356e-01
9.37595129e-01 -9.55079645e-02 -8.57588530e-01 6.57995567e-02
9.26567167e-02 7.57323131e-02 5.19018710e-01 3.95287603e-01
-1.26143873e+00 7.42659926e-01 5.44590044e+00 9.53034222e-01
-1.00767112e+00 -3.63080613e-02 1.00729370e+00 -2.35079944e-01
-7.29191974e-02 -8.26524943e-02 -9.71963167e-01 4.02100861e-01
5.34001470e-01 -2.44758978e-01 2.68024057e-01 1.14733851e+00
4.77790684e-01 -2.26914257e-01 -1.13269031e+00 7.36709893e-01
-7.32647106e-02 -1.06785095e+00 -1.19822919e-01 -2.71285743e-01
1.00994015e+00 -9.11931321e-02 -2.83654071e-02 3.39262962e-01
2.23226145e-01 -6.19834602e-01 6.69523060e-01 5.32719754e-02
6.95057869e-01 -8.65525723e-01 7.03164756e-01 7.72220135e-01
-1.00745404e+00 -1.85180008e-01 -3.95910144e-01 1.12338901e-01
-1.01948455e-01 8.86841357e-01 -9.07441020e-01 4.21037227e-01
2.46937439e-01 9.07029986e-01 -3.20823848e-01 1.25453281e+00
-3.20250213e-01 1.13557363e+00 -3.89513046e-01 -1.49477854e-01
3.70374918e-01 -4.06539649e-01 3.28315914e-01 8.25680971e-01
1.91031471e-01 5.24716340e-02 6.34231091e-01 5.20704448e-01
-2.25969851e-01 5.78381002e-01 -2.08414212e-01 1.44135147e-01
6.36994243e-01 1.14403343e+00 -6.39875174e-01 -3.89089495e-01
-5.41093111e-01 6.45936191e-01 5.38521290e-01 2.46202558e-01
-6.59545779e-01 -3.94729003e-02 1.46079764e-01 -9.46194679e-03
2.40814760e-01 1.44793570e-01 -2.08958521e-01 -1.06084132e+00
3.12508225e-01 -5.33823967e-01 6.13570809e-01 -2.39041656e-01
-1.48038399e+00 4.61128742e-01 -2.57274061e-01 -1.64728045e+00
-1.13572270e-01 -2.77415544e-01 -5.43039262e-01 7.53601015e-01
-1.51402426e+00 -6.65171087e-01 -1.66978121e-01 3.45891118e-01
7.11565197e-01 -4.97693457e-02 5.98418355e-01 1.94910035e-01
-7.56596923e-01 5.86283267e-01 5.17289042e-01 5.34930602e-02
7.33350515e-01 -1.28619826e+00 -2.89878901e-02 8.52465928e-01
7.27771074e-02 5.07160544e-01 5.72881937e-01 -5.22555113e-01
-9.40414906e-01 -1.19419646e+00 8.83010685e-01 1.54279530e-01
4.38712776e-01 -1.26804397e-01 -1.02530134e+00 5.80256581e-01
-3.44485044e-01 3.43673974e-01 6.21545851e-01 -8.60496089e-02
-8.00213516e-02 -3.38010699e-01 -1.20523417e+00 5.94889939e-01
6.20224953e-01 -6.05134219e-02 -3.82645905e-01 4.92708474e-01
4.24369574e-01 -2.43421957e-01 -4.98168051e-01 6.05716527e-01
3.48552883e-01 -8.32380772e-01 5.90023637e-01 -5.44973671e-01
2.58048117e-01 -4.47960377e-01 7.69472495e-02 -1.29190779e+00
4.39454950e-02 -5.26541948e-01 -1.56403646e-01 1.11921716e+00
6.11032128e-01 -6.26514971e-01 1.17792904e+00 6.71139002e-01
1.14187233e-01 -1.09232414e+00 -8.97852302e-01 -7.84155846e-01
-2.14102075e-01 -2.53798485e-01 1.25344262e-01 8.60805273e-01
4.58005406e-02 3.42295051e-01 -5.51402032e-01 1.93945169e-01
8.11169922e-01 3.42168957e-01 5.86815596e-01 -1.32220614e+00
-4.24355775e-01 3.46901007e-02 -6.01247139e-02 -1.15096247e+00
1.47304013e-01 -7.36649036e-01 2.57400215e-01 -1.25575554e+00
3.97959739e-01 -9.91141498e-01 -7.36708581e-01 5.65689325e-01
-5.62385619e-01 1.29695684e-01 1.08700663e-01 5.01283884e-01
-8.83475482e-01 6.04121447e-01 1.23477805e+00 1.04587898e-01
-4.62976754e-01 5.69931626e-01 -4.44222182e-01 7.39163756e-01
7.44572699e-01 -6.14241540e-01 -6.79403663e-01 -1.20310426e-01
-8.23455751e-02 2.77205929e-02 -6.23004623e-02 -7.28349388e-01
7.64358835e-03 -3.07117850e-01 6.62722513e-02 -5.22727668e-01
8.87907445e-02 -9.51301336e-01 -1.77590102e-01 5.24891615e-01
-7.25351334e-01 -4.93161649e-01 -1.28981382e-01 7.96219647e-01
-2.02769354e-01 -5.47547817e-01 1.10652745e+00 1.37536988e-01
-4.87907618e-01 4.18466777e-01 -2.53742728e-02 1.59190625e-01
1.30517995e+00 -9.53575224e-02 1.20303303e-01 -2.85331726e-01
-7.68851101e-01 4.93183076e-01 5.02230704e-01 1.14975534e-01
5.14918685e-01 -1.16756225e+00 -6.66608572e-01 1.14811316e-01
2.72404224e-01 1.13150828e-01 -6.91993013e-02 8.30972254e-01
-1.48159355e-01 3.36061329e-01 3.37388307e-01 -5.25460124e-01
-1.25137758e+00 7.57979810e-01 1.68129861e-01 -4.25715238e-01
-5.44012070e-01 7.58894086e-01 1.75731882e-01 -3.38118464e-01
4.76559520e-01 -6.48819804e-02 -1.12897769e-01 -2.79827982e-01
4.37350243e-01 3.08680326e-01 5.68665117e-02 -3.53580415e-01
-2.35211372e-01 3.34338337e-01 -3.28209817e-01 8.92009214e-02
1.20389247e+00 -1.42891943e-01 1.19595356e-01 7.04693854e-01
1.17425287e+00 9.38690156e-02 -1.40504587e+00 -6.89619780e-01
1.60194680e-01 -5.59253693e-01 -1.11251501e-02 -7.04265177e-01
-1.18918085e+00 6.04944229e-01 4.64254051e-01 1.26151234e-01
1.25746632e+00 -1.30163833e-01 6.32306755e-01 5.42154253e-01
5.16914845e-01 -1.21873605e+00 -8.89752135e-02 1.15986750e-01
2.92240828e-01 -1.57219613e+00 7.47704506e-02 -6.41683698e-01
-8.18098307e-01 8.82804275e-01 6.62692666e-01 -1.72920406e-01
4.99903142e-01 -8.26062858e-02 -6.01928495e-02 2.52631456e-01
-7.86513925e-01 -9.80778970e-03 1.93499878e-01 9.62400362e-02
3.51468056e-01 -3.51364613e-02 -6.21584058e-01 4.17164922e-01
3.65811586e-01 2.14652836e-01 2.53044337e-01 9.33345735e-01
-6.17745161e-01 -1.17390776e+00 -2.60656536e-01 7.01996267e-01
-5.06697416e-01 6.32535741e-02 -1.42027035e-01 5.73166668e-01
-4.13721092e-02 9.57109869e-01 -2.13683784e-01 -5.07583693e-02
1.84644774e-01 6.32518232e-02 1.31566092e-01 -9.20042753e-01
-4.47676778e-01 2.07725421e-01 -3.03594396e-02 -1.48650184e-01
-5.27351499e-01 -6.87541068e-01 -1.39493501e+00 5.62655926e-02
-7.55278826e-01 6.12548769e-01 3.79612714e-01 1.08516848e+00
1.03723891e-01 1.13105386e-01 1.23287344e+00 -4.16267782e-01
-1.01379299e+00 -8.32651317e-01 -7.36428380e-01 4.14900690e-01
2.18180418e-01 -6.22543633e-01 -5.23552775e-01 1.04063720e-01] | [9.296937942504883, 3.9765195846557617] |
5d10c330-484a-4ada-b69e-0a701ad5484f | leveraging-text-data-for-causal-inference | 2307.03687 | null | https://arxiv.org/abs/2307.03687v1 | https://arxiv.org/pdf/2307.03687v1.pdf | Leveraging text data for causal inference using electronic health records | Text is a ubiquitous component of medical data, containing valuable information about patient characteristics and care that are often missing from structured chart data. Despite this richness, it is rarely used in clinical research, owing partly to its complexity. Using a large database of patient records and treatment histories accompanied by extensive notes by attendant physicians and nurses, we show how text data can be used to support causal inference with electronic health data in all stages, from conception and design to analysis and interpretation, with minimal additional effort. We focus on studies using matching for causal inference. We augment a classic matching analysis by incorporating text in three ways: by using text to supplement a multiple imputation procedure, we improve the fidelity of imputed values to handle missing data; by incorporating text in the matching stage, we strengthen the plausibility of the matching procedure; and by conditioning on text, we can estimate easily interpretable text-based heterogeneous treatment effects that may be stronger than those found across categories of structured covariates. Using these techniques, we hope to expand the scope of secondary analysis of clinical data to domains where quantitative data is of poor quality or nonexistent, but where text is available, such as in developing countries. | ['Luke Miratrix', 'Leo A. Celi', 'Aaron R. Kaufman', 'Reagan Mozer'] | 2023-06-09 | null | null | null | null | ['imputation', 'causal-inference', 'imputation', 'causal-inference', 'imputation'] | ['computer-vision', 'knowledge-base', 'miscellaneous', 'miscellaneous', 'time-series'] | [ 5.64653218e-01 2.12909237e-01 -8.84407938e-01 -5.46452582e-01
-7.29170620e-01 -5.09084642e-01 9.58299264e-02 1.00017035e+00
-4.26909447e-01 1.01447856e+00 1.13121200e+00 -7.79714465e-01
-5.16647518e-01 -8.26232851e-01 -6.66106522e-01 -2.24631041e-01
-4.90247719e-02 4.14610147e-01 -4.26711977e-01 2.90700078e-01
8.50716010e-02 1.25630617e-01 -8.92651141e-01 4.10671502e-01
9.92033243e-01 1.29336879e-01 -1.96265399e-01 1.88133463e-01
6.34680986e-02 9.85707343e-01 5.78242214e-03 -4.49668646e-01
3.69278304e-02 -5.08866489e-01 -5.29154181e-01 -2.37401232e-01
1.44584468e-02 -5.97210705e-01 -1.24229498e-01 4.87352520e-01
6.19331479e-01 -2.28283644e-01 6.52768075e-01 -9.40523148e-01
-4.85634089e-01 8.14827561e-01 -4.72160608e-01 -9.94399935e-02
6.74743533e-01 1.68230683e-01 7.45143473e-01 -4.14487630e-01
8.92748296e-01 1.07689333e+00 1.04449689e+00 2.59007275e-01
-1.67888069e+00 -7.57950366e-01 -1.47828877e-01 -2.59737641e-01
-9.83517051e-01 -7.24778712e-01 2.29290262e-01 -7.66434193e-01
5.55510342e-01 4.46019620e-01 5.21966577e-01 1.03008604e+00
3.59277129e-01 2.17380762e-01 1.00486624e+00 -4.26687628e-01
1.88852400e-01 -1.80948988e-01 9.20230821e-02 4.18094307e-01
5.77052653e-01 4.32289034e-01 -3.48395884e-01 -1.02117383e+00
5.98075747e-01 5.76587796e-01 -3.77077281e-01 -1.73263803e-01
-1.55893528e+00 9.08505321e-01 1.83322594e-01 -1.06402583e-01
-5.59915304e-01 -6.03008345e-02 4.53133762e-01 2.32672423e-01
3.20872664e-01 2.33107522e-01 -5.62220752e-01 -1.37772322e-01
-9.93794203e-01 2.07018122e-01 8.37002635e-01 8.35231245e-01
2.06261918e-01 -5.20910740e-01 -3.58858764e-01 6.74397349e-01
2.87510276e-01 5.41138232e-01 1.76251441e-01 -1.00062978e+00
5.90915620e-01 7.39884198e-01 3.66472453e-01 -5.82128763e-01
-6.56980097e-01 6.68204874e-02 -1.01334357e+00 -9.53551605e-02
6.21386647e-01 -6.67531252e-01 -8.83195221e-01 1.84059966e+00
4.33045268e-01 -1.89985737e-01 -6.88879415e-02 4.95378464e-01
6.40718997e-01 -1.35072276e-01 6.04085803e-01 -5.71259141e-01
1.65220380e+00 -9.87352133e-02 -9.47797179e-01 1.64445117e-02
1.04232121e+00 -7.09288776e-01 6.56629086e-01 1.05656490e-01
-1.23493218e+00 1.94496796e-01 -5.02155781e-01 -2.01620013e-01
-1.20342359e-01 -3.69032055e-01 6.12531006e-01 7.43432939e-01
-5.75544000e-01 6.72481000e-01 -9.68681276e-01 -5.47871888e-01
7.93178320e-01 2.57558078e-01 -5.72003841e-01 -3.42499346e-01
-1.05363262e+00 8.61621976e-01 6.73617376e-03 -5.51654696e-02
-1.98264107e-01 -1.32545769e+00 -1.01793325e+00 1.20275877e-01
5.38099408e-01 -1.41482496e+00 9.51234221e-01 -3.78702790e-01
-6.14282429e-01 4.59893733e-01 -5.08921921e-01 -2.41817441e-02
6.53788030e-01 2.91034043e-01 -2.05326319e-01 -3.54532823e-02
3.58706117e-01 1.89097911e-01 1.20714761e-01 -8.29003453e-01
-3.58603060e-01 -8.64532590e-01 -5.78052938e-01 1.42646626e-01
9.41296816e-02 2.82609642e-01 3.70427556e-02 -9.01111603e-01
-4.66041127e-03 -6.19194925e-01 -7.38086700e-01 1.83543533e-01
-3.36024314e-01 3.38680863e-01 1.24039985e-01 -8.31493914e-01
1.34631145e+00 -2.04876447e+00 -1.17132276e-01 1.27322480e-01
4.34356272e-01 -1.74966112e-01 1.63653359e-01 7.71240175e-01
-1.50424913e-01 4.41101074e-01 -5.11505425e-01 -1.61832690e-01
-3.22099298e-01 1.25441074e-01 -5.18576354e-02 5.45142233e-01
1.09775312e-01 1.29308057e+00 -6.84069693e-01 -6.91983521e-01
3.11159104e-01 2.73001045e-01 -9.20038164e-01 -1.41827270e-01
1.96469471e-01 5.68562567e-01 -4.53326166e-01 6.40172660e-01
4.98946577e-01 -3.53928000e-01 4.76476520e-01 2.03652695e-01
-1.91852495e-01 4.40078110e-01 -1.17718458e+00 1.48133767e+00
-1.58849373e-01 1.91737413e-01 3.83862406e-01 -7.07414329e-01
2.79389322e-01 5.97001195e-01 7.32833505e-01 -2.47438490e-01
1.43513260e-02 -1.27689108e-01 6.79454952e-02 -7.09124446e-01
6.21829778e-02 -7.51764297e-01 9.07339435e-03 6.87321007e-01
-5.26497364e-01 1.87573016e-01 -1.75513953e-01 3.33225168e-02
1.44542825e+00 -3.36790562e-01 6.10669911e-01 -1.85674191e-01
-2.54548728e-01 3.35277885e-01 8.57655108e-01 8.85408163e-01
1.08101875e-01 6.40112042e-01 6.17925823e-01 -1.42757729e-01
-1.03329825e+00 -1.11320400e+00 -9.44519103e-01 4.30282593e-01
-6.32280171e-01 -3.93224180e-01 -6.32826164e-02 -3.30225825e-01
4.17658448e-01 5.64008653e-01 -8.59733224e-01 -2.74581388e-02
-1.71390936e-01 -1.19434500e+00 4.98116642e-01 7.32728660e-01
-1.24509618e-01 -8.27284276e-01 -6.42355621e-01 5.36426723e-01
-2.18944982e-01 -6.26750588e-01 -3.74505162e-01 2.05534860e-01
-1.21666169e+00 -1.38302422e+00 -6.28959715e-01 -3.85705769e-01
7.49457657e-01 -2.21431911e-01 1.01961744e+00 1.92542806e-01
-3.68556082e-01 1.31799608e-01 -2.91011631e-01 -6.78823888e-01
-4.93682086e-01 -3.76045108e-01 -1.40732706e-01 -5.15120208e-01
4.21150714e-01 -4.83718216e-01 -7.12871194e-01 -5.96535206e-02
-1.12469268e+00 1.25811398e-01 5.99585831e-01 1.02829397e+00
1.36527658e-01 -2.37704337e-01 7.41450548e-01 -1.48583508e+00
4.38894808e-01 -8.89075756e-01 -3.20728719e-01 1.50152311e-01
-9.39052403e-01 -2.09050607e-02 2.09675714e-01 -3.77346814e-01
-9.88906145e-01 -1.77629456e-01 9.84313618e-03 1.09853879e-01
-3.56830835e-01 1.04542005e+00 3.44295017e-02 3.30132604e-01
6.43338859e-01 -4.41705048e-01 4.55483854e-01 -4.69403416e-01
8.74440074e-02 8.08955312e-01 1.56173304e-01 -4.26543206e-01
3.25052500e-01 5.19234657e-01 5.46706170e-02 -3.17748189e-01
-3.54630828e-01 -4.21918839e-01 -3.89391094e-01 4.30116981e-01
8.29013824e-01 -1.03855693e+00 -1.18558729e+00 -1.00433923e-01
-5.70076883e-01 -4.54895675e-01 -3.23942333e-01 1.07532036e+00
-3.10025841e-01 9.64098349e-02 -6.44328952e-01 -6.51591122e-01
-2.32140601e-01 -9.54956174e-01 8.34652305e-01 -2.68343270e-01
-6.81925416e-01 -1.33079875e+00 1.70109883e-01 3.71652156e-01
2.97410607e-01 6.73339963e-01 1.47468507e+00 -6.72985196e-01
-1.57538205e-01 -3.77647489e-01 -1.86663792e-01 -4.76396263e-01
6.69313848e-01 -1.26063854e-01 -5.07210255e-01 -1.54481784e-01
-1.26475450e-02 -1.27235934e-01 6.31513357e-01 1.04750526e+00
9.88233745e-01 -5.56666613e-01 -5.97764492e-01 4.28352267e-01
1.24663472e+00 1.52959347e-01 4.29041803e-01 -4.64415236e-04
5.84415555e-01 8.28214645e-01 1.60678595e-01 6.63671732e-01
7.59129524e-01 5.96596122e-01 -1.44113094e-01 -4.93016779e-01
2.26364926e-01 -3.90138894e-01 -2.39587069e-01 2.26720065e-01
1.35877430e-01 -2.74526700e-02 -9.89771187e-01 6.85307086e-01
-2.07787156e+00 -9.35932696e-01 -4.84093636e-01 2.62918997e+00
1.25839579e+00 -1.45375896e-02 1.94059163e-01 -1.55204758e-02
6.43130660e-01 -4.29689616e-01 -4.28719074e-01 -3.43339950e-01
1.39964521e-01 1.55303165e-01 7.72860229e-01 4.11648065e-01
-5.41722298e-01 8.65176320e-02 7.57220221e+00 2.73132771e-02
-5.36045849e-01 -1.25203487e-02 5.71585357e-01 -2.96048284e-01
-7.27901280e-01 3.75517964e-01 -1.37938291e-01 4.47414696e-01
9.53773439e-01 -3.02715063e-01 2.29913220e-01 1.31510973e-01
9.56326783e-01 -3.51976216e-01 -1.43470263e+00 3.93068731e-01
-4.09446865e-01 -1.41327274e+00 -3.83352578e-01 4.44935769e-01
6.43171668e-01 -1.77495778e-01 -2.51544118e-01 -1.37515560e-01
8.25181961e-01 -1.29373705e+00 3.18990380e-01 4.89078701e-01
1.00198913e+00 -3.81791830e-01 8.88756216e-01 2.55857140e-01
-5.32686710e-01 -1.53616637e-01 -7.03322813e-02 -2.94539064e-01
5.11592150e-01 9.65593874e-01 -9.88253117e-01 7.32586503e-01
4.71615434e-01 7.20081568e-01 -2.24571273e-01 1.13346839e+00
1.29341841e-01 8.20166588e-01 -1.80185273e-01 4.72062200e-01
-3.61143023e-01 -1.73176471e-02 1.49548113e-01 9.36474264e-01
2.72530526e-01 5.66790402e-01 -1.48124278e-01 9.02706742e-01
-1.19516045e-01 1.43205196e-01 -9.73175168e-01 -1.99267156e-02
5.84982157e-01 8.54270399e-01 -4.50556874e-01 -2.77817219e-01
-7.91453421e-01 3.05223018e-01 5.47328405e-02 3.47870350e-01
-2.30762601e-01 7.58543387e-02 4.63571280e-01 5.26329637e-01
-2.47077003e-01 1.96223885e-01 -7.56972492e-01 -1.13077700e+00
-1.36519358e-01 -1.05128300e+00 9.28336263e-01 -6.04655981e-01
-1.36613059e+00 -2.70692706e-01 2.09952921e-01 -7.77543068e-01
-4.67567980e-01 -5.51561117e-02 -1.94036230e-01 1.18688655e+00
-9.84363496e-01 -9.20068800e-01 1.25632927e-01 6.12810969e-01
-9.39481035e-02 3.78189802e-01 9.76445138e-01 3.30284506e-01
-6.14287794e-01 4.85084772e-01 2.67784089e-01 2.17244938e-01
1.11757874e+00 -1.02008593e+00 1.41344488e-01 3.42317462e-01
-3.59930426e-01 1.03035975e+00 4.65628058e-01 -1.36390984e+00
-1.34498739e+00 -9.00900304e-01 1.26203465e+00 -7.71012723e-01
5.49551487e-01 -1.73596710e-01 -8.97456765e-01 1.06310034e+00
-1.61463067e-01 -3.19420129e-01 1.14578199e+00 7.30756223e-01
-7.08623603e-02 2.29538292e-01 -1.49550247e+00 7.18418896e-01
8.58040333e-01 -2.58192003e-01 -7.34872937e-01 1.09878711e-01
6.76676035e-01 -3.69562089e-01 -1.45923424e+00 6.69180095e-01
7.51363695e-01 -4.71093982e-01 8.18197906e-01 -1.01623166e+00
6.54671311e-01 -1.10356295e-02 -2.66223978e-02 -9.90797997e-01
-4.66518253e-01 -4.17527020e-01 4.09933507e-01 1.16611993e+00
6.83486462e-01 -6.90939844e-01 6.75904632e-01 1.43973613e+00
2.53289063e-02 -3.58069181e-01 -8.64902854e-01 -3.60581428e-02
2.28714883e-01 -3.56112033e-01 6.33948326e-01 1.29315495e+00
4.66771513e-01 -4.81657833e-02 -2.65871257e-01 9.19060186e-02
6.67446733e-01 1.82457417e-01 4.40655410e-01 -1.31097388e+00
-2.36471921e-01 3.40975225e-02 -1.15061346e-02 -1.29543751e-01
-1.40439153e-01 -7.35300422e-01 -2.87264645e-01 -1.83523750e+00
9.27408099e-01 -7.25526214e-01 -2.42827716e-03 9.68278229e-01
-4.47150230e-01 -8.04802477e-02 -8.52267295e-02 1.78439513e-01
1.19896784e-01 1.37251452e-01 1.16255522e+00 5.32784350e-02
-5.00135243e-01 1.26484945e-01 -1.19159782e+00 5.27408719e-01
4.80276942e-01 -8.64755154e-01 -3.28303635e-01 -3.29847753e-01
2.63406932e-01 8.69661391e-01 5.56201279e-01 -1.80145711e-01
2.00545579e-01 -4.97218549e-01 6.64181054e-01 -2.31738657e-01
-2.16305062e-01 -1.07751524e+00 7.52275825e-01 6.62313700e-01
-7.35977113e-01 1.20965794e-01 4.04290825e-01 5.93712866e-01
7.48901293e-02 -1.45031393e-01 1.66844398e-01 -1.18620761e-01
2.51269877e-01 1.27597839e-01 -4.71042484e-01 2.13213056e-01
6.99296117e-01 -5.35236187e-02 -4.30433214e-01 -3.34277958e-01
-9.33412910e-01 4.74736154e-01 7.14552462e-01 1.25481814e-01
3.33242089e-01 -1.30642724e+00 -1.02980649e+00 1.77640811e-01
1.89061537e-01 -1.63461100e-02 3.75105560e-01 1.22721243e+00
-8.55539888e-02 4.16501075e-01 6.18028417e-02 -2.31186002e-01
-1.16955101e+00 8.20636451e-01 -1.90522105e-01 9.58952121e-03
-9.76798296e-01 -2.24824458e-01 1.42483935e-01 -2.55742043e-01
1.40371367e-01 -3.48070204e-01 1.48138613e-01 1.15842678e-01
5.05642295e-01 2.28026062e-01 1.09299749e-01 -2.15162128e-01
-4.66272026e-01 1.22773200e-01 5.53181581e-02 -3.00243944e-01
1.61306298e+00 -3.80117178e-01 -1.76167324e-01 4.81104970e-01
8.30278933e-01 3.46382558e-01 -9.67860043e-01 2.94027440e-02
-5.89570329e-02 -3.93919915e-01 -7.90725499e-02 -9.64496732e-01
-4.65296805e-01 3.11216950e-01 1.78814858e-01 -6.66768774e-02
1.17908740e+00 -7.15012848e-02 1.86520398e-01 -2.63992339e-01
8.73454511e-02 -4.56039131e-01 -7.32738137e-01 -2.74961680e-01
5.04718304e-01 -1.32571292e+00 2.69508243e-01 -2.48132840e-01
-4.88884419e-01 5.43168843e-01 -1.58997238e-01 5.32598913e-01
6.72198474e-01 5.73697209e-01 -6.15072362e-02 -2.76242137e-01
-1.11360347e+00 1.46428391e-01 1.22011058e-01 6.16219819e-01
7.43214428e-01 1.61536783e-01 -8.63951981e-01 8.14920187e-01
-3.58553417e-02 4.92891699e-01 8.39376211e-01 1.05745864e+00
2.16192797e-01 -1.40723968e+00 -6.10782921e-01 1.25513232e+00
-9.75820124e-01 -4.94962096e-01 -2.39487737e-01 8.28910708e-01
-7.52183124e-02 1.31174445e+00 1.27250418e-01 1.50658637e-01
4.37849164e-01 1.28687963e-01 2.06213623e-01 -6.25772119e-01
-6.13620043e-01 1.43149942e-01 4.48003590e-01 -4.02995884e-01
-5.18245280e-01 -1.14447284e+00 -1.06481838e+00 -6.89407051e-01
-2.89198071e-01 1.81081042e-01 3.80850583e-01 1.07048166e+00
4.85798180e-01 5.48849821e-01 3.31030250e-01 -1.76110744e-01
-3.78640473e-01 -6.54789507e-01 -3.78448784e-01 4.31650013e-01
6.08718753e-01 -3.89498413e-01 -1.24205768e-01 1.63991809e-01] | [7.975508689880371, 5.528327465057373] |
64a76bf7-0170-493c-8391-3ada58f0c0a3 | brain-structure-ages-a-new-biomarker-for | 2304.06591 | null | https://arxiv.org/abs/2304.06591v1 | https://arxiv.org/pdf/2304.06591v1.pdf | Brain Structure Ages -- A new biomarker for multi-disease classification | Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (\ie the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (\ie voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts. | ['Pierrick Coupé', 'Boris Mansencal', 'Michaël Clément', 'Huy-Dung Nguyen'] | 2023-04-13 | null | null | null | null | ['age-estimation', 'anatomy', 'age-estimation'] | ['computer-vision', 'miscellaneous', 'miscellaneous'] | [-6.00848682e-02 6.82344735e-02 9.80818719e-02 -5.51208854e-01
-3.30089748e-01 -6.81700855e-02 3.55733961e-01 6.34916902e-01
-6.27447307e-01 7.34421194e-01 -6.81549534e-02 -1.91815242e-01
6.88230433e-03 -8.37106466e-01 -3.21134210e-01 -8.95038962e-01
-3.12487394e-01 6.63462758e-01 1.55610949e-01 1.23640083e-01
2.99965262e-01 5.53330243e-01 -1.50373435e+00 -2.90185779e-01
1.52920449e+00 1.11265469e+00 2.64728278e-01 2.22237378e-01
-2.55408555e-01 8.19322001e-03 -4.28113580e-01 -2.06064284e-01
-6.33622259e-02 -3.85114253e-01 -5.77960789e-01 -1.79118812e-01
4.23334122e-01 -3.19174439e-01 2.69966066e-01 1.22835743e+00
4.50561851e-01 -1.71741337e-01 9.37267840e-01 -1.02986228e+00
-9.13182572e-02 5.59765339e-01 -7.44841397e-01 4.59973484e-01
1.65571690e-01 8.02191198e-02 5.61525464e-01 -5.26630998e-01
4.11266714e-01 1.08172226e+00 5.02351642e-01 6.37002409e-01
-9.50454652e-01 -7.62485743e-01 1.07294336e-01 5.49142122e-01
-1.11087441e+00 -9.85214114e-02 6.00159883e-01 -8.99687588e-01
7.14968070e-02 4.87438552e-02 1.06967545e+00 7.69422412e-01
5.72684705e-01 4.09281313e-01 1.49867535e+00 -3.26214870e-03
2.79442847e-01 -5.92191160e-01 4.16916490e-01 8.04500818e-01
5.37849665e-01 -1.30606189e-01 -2.73870617e-01 3.72685790e-02
4.61101353e-01 -7.30215982e-02 -3.10009837e-01 -2.47406829e-02
-1.26866210e+00 3.96965206e-01 5.91900766e-01 5.27402222e-01
-5.64853251e-01 1.65262353e-02 3.65766138e-01 9.37135294e-02
9.12915230e-01 2.72553086e-01 -4.55583662e-01 6.92017004e-02
-1.13470197e+00 4.91366178e-01 1.42110407e-01 -1.99170277e-01
5.94737172e-01 9.48250964e-02 -7.51127228e-02 7.58669436e-01
3.54481488e-01 3.88349116e-01 7.59420931e-01 -8.14712226e-01
1.50913939e-01 6.24645531e-01 -2.35931948e-01 -5.08916080e-01
-9.22786117e-01 -5.72110415e-01 -1.01589978e+00 4.89210427e-01
1.09620857e+00 1.61281265e-02 -8.69249463e-01 1.77938163e+00
5.55136383e-01 6.13486767e-02 -3.74286890e-01 8.54976118e-01
4.29063469e-01 2.39659429e-01 2.28691325e-01 -2.86439717e-01
1.86518312e+00 -3.03348184e-01 -2.89261192e-01 -3.95656973e-01
5.92000782e-01 -1.15740776e-01 7.10163474e-01 4.15838003e-01
-1.00625527e+00 -4.16962117e-01 -9.57048237e-01 2.52009332e-01
-3.55431974e-01 -8.99678189e-03 3.59172016e-01 6.31036639e-01
-9.46342230e-01 8.03724945e-01 -1.28201556e+00 -4.02653694e-01
5.96782565e-01 9.96227339e-02 -3.75779986e-01 -8.12454149e-02
-1.12341976e+00 1.17673802e+00 5.51159799e-01 4.75236103e-02
-5.46957314e-01 -1.15790415e+00 -7.56919563e-01 -5.16766012e-02
-5.70080839e-02 -8.39905500e-01 6.42548025e-01 -7.16544151e-01
-8.48311186e-01 1.12310874e+00 -2.32392982e-01 -5.76089740e-01
7.20701575e-01 -2.73751885e-01 -2.84248978e-01 2.34938264e-01
2.14596123e-01 5.99987924e-01 8.53526831e-01 -8.22464287e-01
-2.93876618e-01 -1.19688034e+00 -4.20398355e-01 9.23685078e-03
-1.34540066e-01 2.16800179e-02 1.82863533e-01 -6.20279968e-01
4.62367624e-01 -6.40584469e-01 -3.22107822e-01 4.88145202e-01
-2.95658469e-01 -2.51397699e-01 5.46651721e-01 -1.47140813e+00
9.66009855e-01 -1.78804171e+00 2.26122782e-01 2.35234812e-01
8.14976692e-01 -1.52225330e-01 2.57354170e-01 -2.92392790e-01
-1.56805933e-01 3.96127440e-02 -5.72410285e-01 -2.50352174e-01
-4.45472062e-01 -4.51612651e-01 3.13173205e-01 6.68727338e-01
-4.93791653e-03 6.48908496e-01 -6.98514521e-01 -6.51309729e-01
-1.89941108e-01 3.64160210e-01 -2.37458557e-01 6.16975836e-02
6.91946000e-02 9.94774044e-01 -3.64380419e-01 5.50694764e-01
5.73664546e-01 2.96138316e-01 -1.27583623e-01 -9.91846919e-02
-1.52084365e-01 -1.98394150e-01 -4.71395701e-01 1.47237885e+00
-3.19388777e-01 4.15008992e-01 5.94859049e-02 -1.35208607e+00
1.16154718e+00 9.26818326e-02 8.12010169e-01 -6.24858260e-01
1.97349906e-01 4.93024915e-01 6.42446637e-01 -2.38376379e-01
-2.86792874e-01 -1.52905792e-01 1.42286003e-01 6.93716943e-01
-2.13865370e-01 1.59577001e-02 2.79330164e-01 -3.04007232e-01
8.40467751e-01 -1.94374830e-01 2.89502800e-01 -6.23069346e-01
8.59717667e-01 -5.48407972e-01 7.98651397e-01 1.02756456e-01
-3.98416817e-01 3.96876514e-01 7.64054418e-01 -5.43101370e-01
-1.14499509e+00 -1.30603111e+00 -3.24987531e-01 5.19432306e-01
-2.07037851e-01 7.96291381e-02 -1.15353787e+00 -5.93849003e-01
2.67231967e-02 4.79708076e-01 -5.84233403e-01 -3.92479300e-01
-6.35616124e-01 -1.04034138e+00 3.49517167e-01 6.04357660e-01
7.52766311e-01 -7.46343434e-01 -7.46023953e-01 9.06307902e-03
-2.29841977e-01 -8.70782673e-01 -2.75086731e-01 -2.41318494e-01
-1.33045745e+00 -1.15032911e+00 -1.23245513e+00 -3.33761811e-01
9.09903705e-01 -3.85615081e-01 7.61413634e-01 3.61008674e-01
-4.76330847e-01 1.33973882e-01 -1.17465489e-01 -4.46089953e-01
-5.12494922e-01 1.65468514e-01 4.34928685e-01 4.51036692e-02
3.63043509e-02 -9.02197301e-01 -1.01109219e+00 1.08694330e-01
-5.44063628e-01 -2.31526885e-02 4.98729795e-01 4.38255221e-01
4.04045254e-01 -1.52358040e-01 8.29365134e-01 -4.77927804e-01
4.53300267e-01 -4.19178337e-01 -4.58084553e-01 2.57890344e-01
-1.05057323e+00 3.08599740e-01 5.18563449e-01 -3.90656352e-01
-9.27240133e-01 -3.09649259e-01 -3.70339692e-01 5.68724275e-02
-2.06268281e-01 5.67626417e-01 -3.50090742e-01 3.47178787e-01
3.42437476e-01 2.03447357e-01 5.11673391e-01 -6.21383965e-01
6.26204088e-02 3.92362386e-01 6.17726624e-01 -6.97557151e-01
4.21555042e-01 3.56533259e-01 4.25893396e-01 -7.65713453e-01
-5.90849519e-01 -1.11315072e-01 -1.08983600e+00 -6.62922025e-01
9.55648720e-01 -5.11040628e-01 -5.60071886e-01 9.96033072e-01
-9.70780611e-01 -4.23492193e-01 8.92793015e-02 5.41140079e-01
-4.83298331e-01 5.69915414e-01 -4.23132658e-01 -6.59164131e-01
-8.00139070e-01 -1.08756912e+00 7.81510651e-01 2.73814321e-01
-2.70673275e-01 -1.16684949e+00 -1.21971481e-01 3.16253960e-01
2.95081079e-01 5.83998561e-01 1.22922897e+00 -5.95002353e-01
2.59421580e-02 -2.57801503e-01 -2.41236076e-01 2.82846242e-01
-1.02120519e-01 -9.64142978e-02 -5.30965209e-01 -1.15805075e-01
3.64033435e-03 1.91500828e-01 9.71222699e-01 8.04079711e-01
1.32088959e+00 1.82775557e-01 -3.33935291e-01 3.99542063e-01
1.06286907e+00 2.11566597e-01 5.99031210e-01 2.35866591e-01
6.15459561e-01 9.93496776e-01 5.92360795e-01 4.28464800e-01
3.98332566e-01 4.84849453e-01 3.71170372e-01 2.05176666e-01
-4.21276204e-02 2.96857476e-01 3.59478772e-01 5.25192082e-01
-4.01596278e-01 4.28392321e-01 -1.39813411e+00 4.08848703e-01
-1.40677583e+00 -7.53539681e-01 -4.42384899e-01 2.46887612e+00
6.75297379e-01 2.97829509e-01 4.01270539e-01 1.70560792e-01
1.07241964e+00 2.44902056e-02 -8.74418795e-01 -2.06694677e-01
1.24954887e-01 1.78526744e-01 2.99553514e-01 1.33164719e-01
-6.63493514e-01 3.61817181e-01 5.89376879e+00 4.29818332e-01
-1.23292375e+00 3.09719861e-01 9.38713729e-01 1.72250584e-01
-5.99753074e-02 -1.10902391e-01 -6.31874740e-01 6.55159891e-01
8.95135403e-01 -4.13390070e-01 1.60102069e-01 5.57117462e-01
3.68165821e-01 -4.95251119e-01 -9.94367898e-01 9.08914447e-01
-8.42584223e-02 -6.61191881e-01 -2.59246707e-01 2.70931125e-01
-2.00195145e-02 -2.05012575e-01 -2.33295616e-02 -1.11375097e-02
-3.27444583e-01 -7.91923225e-01 7.16917396e-01 1.12454903e+00
1.04528868e+00 -6.82603300e-01 6.24706566e-01 4.32159394e-01
-1.27339005e+00 -2.09707260e-01 1.05807371e-02 2.78544594e-02
4.60633129e-01 1.27776456e+00 -6.19617641e-01 3.91772985e-01
7.10345566e-01 5.31917214e-01 -9.21785891e-01 1.27393627e+00
-1.15962394e-01 3.14939499e-01 -2.00631380e-01 4.46337014e-01
-2.81524658e-01 -4.79060739e-01 5.76612413e-01 6.16846919e-01
8.35597157e-01 -1.73426315e-01 -1.34153053e-01 1.04973733e+00
1.74878761e-01 1.42903402e-01 -2.31140390e-01 7.18443766e-02
2.81197011e-01 1.31255519e+00 -1.15899706e+00 -2.87504226e-01
9.20149870e-03 7.56745279e-01 2.71409690e-01 1.38240047e-02
-5.48652172e-01 -1.57654598e-01 8.28869104e-01 4.73504871e-01
-3.72445226e-01 -4.49693173e-01 -4.26159382e-01 -1.06676984e+00
5.86710423e-02 -3.96873266e-01 2.79369771e-01 -6.21150494e-01
-1.05104554e+00 4.94729549e-01 1.99166864e-01 -8.41741264e-01
-2.47498587e-01 -6.33623183e-01 -1.09682095e+00 8.55880558e-01
-9.84769404e-01 -7.96479821e-01 -4.84494865e-01 7.70692825e-02
3.49493921e-01 -4.78393473e-02 4.38432842e-01 2.79138088e-01
-7.58404791e-01 3.07531983e-01 -1.67397857e-01 1.13297105e-01
6.25511289e-01 -1.50250471e+00 2.62321383e-01 1.01122522e+00
-5.15094519e-01 2.74538517e-01 7.90884793e-01 -9.55245674e-01
-4.86731470e-01 -9.08410728e-01 7.02901602e-01 -1.88278139e-01
6.49436533e-01 2.20427944e-04 -1.20800447e+00 1.93997890e-01
-3.33246201e-01 3.34648117e-02 5.68509400e-01 2.16396432e-02
-2.02679083e-01 -4.33482230e-01 -1.27386117e+00 5.26626885e-01
9.61435080e-01 -1.33711934e-01 -4.45687443e-01 -2.19264627e-01
3.37797761e-01 -5.26136234e-02 -1.27613115e+00 4.06327337e-01
1.00131965e+00 -9.66520548e-01 9.36601102e-01 -2.57669747e-01
3.47997844e-01 6.46508783e-02 4.53606218e-01 -1.44608414e+00
9.88769680e-02 2.14849025e-01 -2.73136556e-01 1.35332143e+00
6.57200739e-02 -8.46770823e-01 6.90546989e-01 7.67341077e-01
-1.18146613e-01 -1.05991399e+00 -1.04207444e+00 -7.86763191e-01
4.63272691e-01 -3.43213946e-01 7.72751153e-01 5.40197194e-01
-4.67074186e-01 -1.58283457e-01 2.81443268e-01 2.60619745e-02
9.42035794e-01 -2.71407962e-01 1.77911103e-01 -1.98308837e+00
3.30015689e-01 -8.76015604e-01 -6.07847333e-01 -3.17286611e-01
4.73670870e-01 -8.57918620e-01 -2.36016840e-01 -1.67551744e+00
1.37195438e-01 -4.46088642e-01 -3.39902133e-01 3.24807651e-02
-3.68894309e-01 -4.15899083e-02 5.75621575e-02 4.75103632e-02
1.64895073e-01 4.84327406e-01 1.16081655e+00 -1.54249460e-01
-9.38992575e-02 2.08647162e-01 -4.13442373e-01 8.85805190e-01
1.22152126e+00 -2.88850218e-01 -1.51873678e-01 1.34989381e-01
1.79178957e-02 -1.61787689e-01 4.99552459e-01 -1.35875607e+00
-1.71082214e-01 1.40027642e-01 5.63319445e-01 -6.50691807e-01
6.43905178e-02 -4.61341918e-01 -5.02215046e-03 1.03729582e+00
1.18265547e-01 1.89191505e-01 -2.53353000e-01 3.32735360e-01
5.21291532e-02 -3.92129570e-01 1.03367031e+00 -1.44088060e-01
-3.03487837e-01 6.43931210e-01 -5.30931532e-01 -1.06671616e-01
1.02575421e+00 -2.95397460e-01 -1.55093610e-01 6.71702623e-03
-8.30312252e-01 2.66307592e-01 4.89458382e-01 1.65482417e-01
5.60364187e-01 -1.16357040e+00 -7.76797593e-01 -1.45198286e-01
8.91372114e-02 -5.50072752e-02 5.00974894e-01 1.58778536e+00
-7.69831181e-01 -1.22049674e-01 -6.57761097e-01 -6.91084206e-01
-1.37193024e+00 4.58458155e-01 5.65647721e-01 -4.61385041e-01
-5.52323341e-01 3.96166563e-01 1.78172052e-01 -3.35259438e-02
-1.35144576e-01 -3.59609753e-01 -5.40239394e-01 6.43547535e-01
7.38898814e-01 5.85429192e-01 -1.16475888e-01 -7.10201085e-01
-3.15728366e-01 7.71943450e-01 -5.72608821e-02 -1.20882496e-01
1.28861213e+00 -4.05505091e-01 -5.41857600e-01 7.31636643e-01
8.85710835e-01 -3.56144190e-01 -1.12619185e+00 4.07077335e-02
3.31911951e-01 6.20881841e-03 6.39047250e-02 -4.71358359e-01
-1.37752509e+00 1.19740665e+00 1.07169437e+00 6.71711043e-02
1.22199702e+00 2.00709999e-01 9.17817235e-01 -8.97654966e-02
4.12225068e-01 -9.41463828e-01 -2.11029440e-01 -3.40485722e-02
8.22111428e-01 -1.07628918e+00 1.26008287e-01 -1.63614184e-01
-3.37133110e-01 1.34744847e+00 7.52463698e-01 1.19380131e-01
8.11418831e-01 -9.75393057e-02 -1.19375266e-01 -1.61988199e-01
-8.62543434e-02 -2.84653127e-01 4.41507727e-01 6.71308875e-01
4.77767169e-01 1.27998993e-01 -9.78406847e-01 7.59260774e-01
-3.59347790e-01 -3.75479817e-01 2.00438365e-01 2.78997570e-01
-7.16473699e-01 -1.20241475e+00 -5.81746161e-01 9.77587461e-01
-6.39559805e-01 1.67340040e-01 -1.50286332e-01 4.71426904e-01
3.58723015e-01 2.66173929e-01 2.68059939e-01 8.23540427e-03
-9.01917145e-02 4.87042248e-01 6.49617434e-01 -4.42588270e-01
-1.22097544e-01 -3.53462309e-01 -1.68741256e-01 -4.02843744e-01
-4.11647052e-01 -9.66402233e-01 -1.24298608e+00 -9.28194672e-02
2.94469367e-03 -1.30380228e-01 7.73722053e-01 1.17054403e+00
-1.58004351e-02 5.07097125e-01 4.16347891e-01 -8.17384422e-01
-5.20282052e-03 -9.17785347e-01 -8.44565630e-01 2.89831817e-01
9.54428911e-02 -1.06485713e+00 -2.60666400e-01 -7.48148814e-05] | [14.079485893249512, -1.572855830192566] |
d36ca94a-eae7-4c80-af5e-5e4b554443fc | generative-prompt-tuning-for-relation-1 | 2210.12435 | null | https://arxiv.org/abs/2210.12435v1 | https://arxiv.org/pdf/2210.12435v1.pdf | Generative Prompt Tuning for Relation Classification | Using prompts to explore the knowledge contained within pre-trained language models for downstream tasks has now become an active topic. Current prompt tuning methods mostly convert the downstream tasks to masked language modeling problems by adding cloze-style phrases and mapping all labels to verbalizations with fixed length, which has proven effective for tasks with simple label spaces. However, when applied to relation classification exhibiting complex label spaces, vanilla prompt tuning methods may struggle with label verbalizations with arbitrary lengths due to rigid prompt restrictions. Inspired by the text infilling task for pre-training generative models that can flexibly predict missing spans, we propose a novel generative prompt tuning method to reformulate relation classification as an infilling problem, which frees our approach from limitations of current prompt based approaches and thus fully exploits rich semantics of entity and relation types. In addition, we design entity-guided decoding and discriminative relation scoring to generate and align relations effectively and efficiently during inference. Extensive experiments under fully supervised settings and low-resource settings demonstrate the effectiveness of our approach. | ['Wei Lu', 'Shengkun Ma', 'Bo Cheng', 'Shuai Zhao', 'Jiale Han'] | 2022-10-22 | null | null | null | null | ['relation-classification', 'text-infilling'] | ['natural-language-processing', 'natural-language-processing'] | [ 4.75784123e-01 6.19872451e-01 -6.09974384e-01 -6.24595284e-01
-9.23913121e-01 -7.71497786e-01 7.05575049e-01 2.13115692e-01
-2.56356984e-01 8.54563534e-01 5.71288407e-01 -6.95073366e-01
-5.93346842e-02 -7.84788430e-01 -4.61880535e-01 -2.45650679e-01
1.70567572e-01 8.57758284e-01 -9.47915167e-02 -1.52503937e-01
-1.15362480e-01 6.39155358e-02 -1.19458747e+00 3.80618334e-01
9.93015110e-01 5.47610641e-01 3.95541638e-02 4.77394134e-01
-4.05382335e-01 7.82013535e-01 -4.23219919e-01 -6.31925881e-01
5.52600734e-02 -3.25571179e-01 -1.20277262e+00 1.81963407e-02
2.94289440e-01 -2.73043215e-01 -2.69985646e-01 6.80352986e-01
3.23233187e-01 2.64600337e-01 8.07709038e-01 -1.13793254e+00
-8.91416490e-01 1.33630610e+00 -2.76809514e-01 4.91928570e-02
4.58078682e-01 -2.39639491e-01 1.57272673e+00 -9.94495630e-01
6.79790616e-01 1.29933834e+00 7.21492887e-01 6.80185139e-01
-1.67152238e+00 -6.53276682e-01 7.09720194e-01 1.12759948e-01
-1.46665657e+00 -5.80605149e-01 5.55824339e-01 -4.69893008e-01
1.35122228e+00 3.10842723e-01 2.51416057e-01 1.38128090e+00
-5.22916496e-01 7.64103532e-01 8.66180718e-01 -5.65576911e-01
-6.98197484e-02 -1.01756193e-02 2.56189167e-01 6.10361278e-01
1.15018547e-01 -2.03264922e-01 -5.85441887e-01 -2.14827165e-01
6.51959360e-01 -2.04842910e-01 -2.41705596e-01 -5.86518310e-02
-1.38043094e+00 8.45562041e-01 2.72745281e-01 8.89496580e-02
-1.89050868e-01 1.38853878e-01 2.75023967e-01 1.92035198e-01
7.35083044e-01 7.73579776e-01 -6.85942888e-01 -1.50182948e-01
-9.09075081e-01 3.28766793e-01 1.03350389e+00 1.48758733e+00
7.73387432e-01 -3.72034550e-01 -7.16336846e-01 1.01133871e+00
3.57224166e-01 1.76790282e-01 1.85746193e-01 -8.64164174e-01
7.94563770e-01 7.55895078e-01 -3.75785977e-02 -4.83937383e-01
-4.99277383e-01 -6.18824840e-01 -6.43192291e-01 -6.07255876e-01
4.95810091e-01 -2.07065433e-01 -8.60902667e-01 2.16797733e+00
3.88045818e-01 1.59882545e-01 1.40613183e-01 6.33391023e-01
8.44852626e-01 5.08698404e-01 4.67554778e-01 -1.97350070e-01
1.67040312e+00 -1.10751331e+00 -7.02692807e-01 -5.17331481e-01
1.22014904e+00 -6.27988935e-01 1.46014214e+00 -8.11762065e-02
-7.84005940e-01 -3.43534023e-01 -8.12552691e-01 -5.74199498e-01
-1.57315239e-01 4.32107747e-02 1.05942786e+00 4.21975404e-01
-9.22651887e-01 4.49594945e-01 -8.32205296e-01 -3.20122898e-01
3.42082292e-01 2.60131478e-01 -1.41854659e-01 -1.71453655e-01
-1.46679938e+00 9.03447151e-01 4.94270146e-01 9.33009535e-02
-5.02650917e-01 -8.76019478e-01 -1.00576878e+00 2.91518033e-01
7.34149158e-01 -1.01383841e+00 1.44318891e+00 -2.22026825e-01
-1.46811032e+00 8.64109576e-01 -4.85820711e-01 -2.61571556e-01
2.38726899e-01 -3.72084290e-01 -1.74339741e-01 -3.58456641e-01
1.76267207e-01 7.72085726e-01 3.26990098e-01 -1.07661998e+00
-3.82335156e-01 4.79766242e-02 3.07905614e-01 5.11752009e-01
-3.91230971e-01 6.31457791e-02 -3.84502858e-01 -7.37006962e-01
2.72298187e-01 -8.75648379e-01 -3.16094279e-01 -4.43242967e-01
-8.21824372e-01 -6.72017813e-01 3.47348630e-01 -4.10038829e-01
1.54812622e+00 -1.75529861e+00 2.37057716e-01 1.15461379e-01
3.64455432e-01 3.53039764e-02 -1.91911444e-01 5.57833672e-01
7.99789280e-02 3.12618613e-01 -2.66044289e-01 -6.22932017e-01
3.34473759e-01 4.18178350e-01 -5.96331537e-01 -2.30345428e-01
3.64739805e-01 1.28071606e+00 -1.07359350e+00 -6.46275938e-01
-2.94382155e-01 2.25001723e-01 -7.11779654e-01 4.10551786e-01
-5.18369019e-01 3.98924440e-01 -4.06959325e-01 6.44111216e-01
1.60787016e-01 -6.42913103e-01 4.05297071e-01 -9.09135267e-02
2.46913910e-01 1.09461665e+00 -8.45051646e-01 1.96786022e+00
-6.44451261e-01 2.52743661e-01 -1.91956162e-01 -7.93501854e-01
8.82272899e-01 4.54072297e-01 1.62542909e-02 -1.50927812e-01
-1.56161875e-01 2.25125283e-01 -2.55213697e-02 -6.02769911e-01
6.06824100e-01 -3.03422898e-01 -2.99212694e-01 6.70676291e-01
1.53405458e-01 -8.62944573e-02 2.62286901e-01 3.90812993e-01
1.31087303e+00 5.04362941e-01 3.53196293e-01 5.14401607e-02
1.11417942e-01 -3.95678170e-02 6.55291557e-01 7.16840088e-01
2.33121052e-01 4.03292745e-01 5.65855682e-01 -7.50765055e-02
-7.76229799e-01 -1.03586459e+00 7.08562974e-03 1.54170942e+00
-6.73880577e-02 -8.50830376e-01 -4.94366914e-01 -8.93796325e-01
-2.14427952e-02 8.49804103e-01 -3.55678678e-01 -1.44101262e-01
-7.51712978e-01 -7.97435820e-01 6.66822672e-01 8.09789658e-01
5.40087372e-02 -1.04540741e+00 2.83523258e-02 4.43136245e-01
-5.22811532e-01 -1.49209678e+00 -4.05058831e-01 4.91014540e-01
-7.33470559e-01 -7.20862508e-01 -3.11076313e-01 -9.36383545e-01
7.36543357e-01 -1.44362658e-01 1.43613100e+00 1.92857943e-02
3.86305079e-02 -9.52080786e-02 -3.75582069e-01 2.41137650e-02
-3.99424195e-01 7.62037814e-01 -1.52569219e-01 -3.96610498e-01
6.10262156e-01 -7.99879730e-01 -3.75403166e-01 7.78046325e-02
-5.63383520e-01 5.26914835e-01 5.94638705e-01 9.20917332e-01
3.25928241e-01 -4.89251733e-01 7.50378072e-01 -1.51641762e+00
7.89874315e-01 -5.88891149e-01 -2.28958726e-01 5.05743802e-01
-8.15935791e-01 4.87991333e-01 4.78366435e-01 -5.71936190e-01
-1.08633292e+00 -1.72462001e-01 -7.40799531e-02 -7.85994902e-02
-2.70735085e-01 6.46116078e-01 -3.36362094e-01 5.28294981e-01
6.66333020e-01 -1.91727564e-01 -3.36557329e-01 -5.80996037e-01
9.62546527e-01 6.63231015e-01 6.08261526e-01 -1.09688485e+00
8.22370827e-01 7.51357451e-02 -4.99105416e-02 -2.10030481e-01
-1.40516818e+00 -3.58426362e-01 -6.57162845e-01 3.55154872e-01
7.62242258e-01 -9.99578059e-01 -5.49068153e-01 -4.33411822e-02
-1.32116723e+00 -6.59255028e-01 -3.27055037e-01 3.58801544e-01
-4.37088311e-01 2.02901751e-01 -1.01069212e+00 -5.73645532e-01
-3.60002667e-01 -8.97130132e-01 1.21402991e+00 -9.98342559e-02
-8.71154130e-01 -1.20003629e+00 -2.58950088e-02 3.87794763e-01
3.72182131e-01 -6.27406687e-02 1.41919756e+00 -9.29887712e-01
-7.19567478e-01 1.54773951e-01 -3.59014034e-01 -1.27513126e-01
1.36001348e-01 -3.90999734e-01 -9.16974723e-01 1.24315068e-01
-5.08121431e-01 -6.35865748e-01 8.23118210e-01 -1.03672743e-01
1.01293337e+00 -4.63587582e-01 -5.99150777e-01 7.75820374e-01
8.47583890e-01 -2.26484910e-01 1.88392192e-01 1.82576135e-01
1.04889452e+00 9.28199828e-01 6.27989829e-01 1.96001142e-01
8.86763155e-01 8.22055101e-01 3.21624279e-02 -1.67569369e-01
-1.94524601e-01 -6.83633268e-01 1.19152158e-01 7.55747020e-01
1.55679345e-01 -3.66287977e-01 -8.86888146e-01 4.82409418e-01
-1.90264916e+00 -7.05295563e-01 -2.46527959e-02 1.74936926e+00
1.56256473e+00 8.57112929e-02 -1.69553503e-01 -9.39908698e-02
5.62766492e-01 9.88828838e-02 -4.25085992e-01 -2.57512808e-01
1.79862186e-01 3.75307918e-01 2.70184427e-01 6.71927929e-01
-1.05621147e+00 1.44385886e+00 5.79145575e+00 8.56871307e-01
-7.37417817e-01 2.18110040e-01 4.79528636e-01 -8.07581916e-02
-8.64765704e-01 4.35231298e-01 -1.20379448e+00 2.07918122e-01
7.69916356e-01 3.47639993e-02 4.64640230e-01 6.64003968e-01
8.44424888e-02 2.88278282e-01 -1.74712658e+00 8.42111647e-01
-2.55733520e-01 -1.18026161e+00 -3.96507867e-02 -4.24799249e-02
5.17798901e-01 -1.79964423e-01 -2.61366982e-02 8.35430205e-01
7.09590137e-01 -1.20084739e+00 6.26347482e-01 1.23596191e-01
1.20485461e+00 -2.79298574e-01 3.65411937e-01 3.65524501e-01
-1.18621624e+00 5.47555648e-02 -2.26668686e-01 -3.33639920e-01
5.21881461e-01 5.96796155e-01 -1.31588125e+00 3.83748084e-01
2.17397418e-02 5.95099270e-01 -5.19461393e-01 4.80582505e-01
-8.39270532e-01 8.89249563e-01 -3.39465588e-01 -2.55912635e-02
1.11303717e-01 -1.45561509e-02 3.34736437e-01 1.41802001e+00
2.56312996e-01 1.91579849e-01 4.28995550e-01 9.97694552e-01
-3.37969542e-01 1.32122666e-01 -4.90002245e-01 -2.43318513e-01
1.10114503e+00 1.27575302e+00 -6.57947361e-01 -4.27271754e-01
-3.58926207e-01 7.84132421e-01 8.64993155e-01 6.60604954e-01
-6.78460836e-01 -1.87277019e-01 6.45428836e-01 1.43607646e-01
1.03475913e-01 -2.65404850e-01 -5.82591236e-01 -1.33355033e+00
4.09195311e-02 -5.76464474e-01 4.58337247e-01 -5.74546874e-01
-1.26034677e+00 6.20864511e-01 2.94329017e-01 -8.38039100e-01
-6.84677184e-01 -3.17316681e-01 -4.42175448e-01 8.98721874e-01
-1.40111423e+00 -1.59559143e+00 -1.20046824e-01 2.75572211e-01
5.75324357e-01 1.05451785e-01 1.16767204e+00 2.87377328e-01
-5.39085805e-01 8.98901761e-01 -4.86198395e-01 8.24318230e-02
8.78570914e-01 -1.47153771e+00 6.42108202e-01 8.31561983e-01
4.93674099e-01 1.01613450e+00 7.14322269e-01 -7.14789033e-01
-8.80960703e-01 -1.21128857e+00 1.50969362e+00 -5.99738657e-01
7.28018939e-01 -8.53790700e-01 -1.08980381e+00 1.05768514e+00
8.22601169e-02 -8.67168605e-02 9.95393157e-01 9.88955081e-01
-6.99887693e-01 2.65019506e-01 -5.15322208e-01 7.86745667e-01
1.83056164e+00 -7.00455010e-01 -6.65275335e-01 5.56304872e-01
1.13079870e+00 -6.61469758e-01 -8.10550272e-01 5.19851446e-01
2.80820876e-01 -1.91633478e-01 8.11490178e-01 -7.86197186e-01
3.90572369e-01 -1.53928980e-01 3.91489863e-02 -1.32579124e+00
-3.86039793e-01 -8.82747352e-01 -5.23286045e-01 1.71711087e+00
9.77522135e-01 -4.77589548e-01 7.52835631e-01 7.95843422e-01
-3.27155948e-01 -9.22916412e-01 -5.00303388e-01 -5.50931752e-01
-7.12763667e-02 -4.71673280e-01 8.47435534e-01 1.01267672e+00
2.46368632e-01 8.93383503e-01 -2.31709793e-01 4.98738512e-02
3.21965456e-01 4.23498869e-01 6.15565598e-01 -1.20102656e+00
-6.97649360e-01 -3.14852774e-01 8.47951397e-02 -1.50421464e+00
6.13107264e-01 -1.46531498e+00 1.97125480e-01 -1.68581223e+00
2.44187593e-01 -1.16661024e+00 2.46587377e-02 1.06363416e+00
-6.38249218e-01 5.92524111e-02 -1.00783341e-01 2.03323200e-01
-6.42116666e-01 4.81684655e-01 9.86401618e-01 9.05655921e-02
-1.26099005e-01 -4.57070116e-03 -1.09375787e+00 5.73602259e-01
5.17858446e-01 -5.23672521e-01 -7.60194123e-01 -6.32223129e-01
6.37067616e-01 -1.05911762e-01 1.49490967e-01 -3.80953163e-01
1.96430221e-01 -2.68319339e-01 -6.74147084e-02 -3.24595690e-01
2.40253165e-01 -4.24170822e-01 1.18563389e-02 -1.75680190e-01
-9.25800979e-01 -1.17568254e-01 -2.01526552e-01 5.09761870e-01
-9.62896124e-02 -1.37974590e-01 1.70603022e-01 6.67998195e-02
-5.43689311e-01 3.05571049e-01 -3.04855518e-02 4.82499748e-01
6.93318069e-01 1.54092126e-02 -4.63400722e-01 -3.05635720e-01
-9.59000289e-01 4.45594937e-01 3.70753974e-01 4.55390424e-01
3.07449043e-01 -1.42397904e+00 -7.03448951e-01 1.57287523e-01
3.54874551e-01 5.77964008e-01 -1.43403783e-01 7.73479939e-01
-3.84423360e-02 4.29094017e-01 4.84527707e-01 -3.93744946e-01
-1.17990625e+00 4.07889992e-01 -1.27924606e-01 -6.80376410e-01
-6.16735458e-01 1.29735529e+00 3.28131109e-01 -5.85605919e-01
2.67669410e-01 -5.67613363e-01 -1.60444096e-01 6.76537456e-04
1.73108011e-01 -7.67814219e-02 1.24459900e-01 -2.58251399e-01
-2.19382465e-01 1.91773266e-01 -2.81494647e-01 -2.89911598e-01
1.19629920e+00 -2.85086900e-01 -9.80949774e-02 3.86638403e-01
9.70750690e-01 1.09600365e-01 -1.25572073e+00 -6.98960185e-01
6.23514891e-01 -1.69981625e-02 -3.47449005e-01 -8.18150759e-01
-3.37834388e-01 8.31859946e-01 -3.96123707e-01 1.93424057e-02
7.94396460e-01 4.20751095e-01 9.58399236e-01 4.56320882e-01
2.47589335e-01 -7.21413493e-01 -1.94498599e-02 7.90542245e-01
5.80288172e-01 -1.05513132e+00 -3.47484469e-01 -9.06279266e-01
-6.19653404e-01 8.42714489e-01 7.27668822e-01 3.96703899e-01
3.60999882e-01 5.70892513e-01 1.20969027e-01 -1.50681466e-01
-1.16061568e+00 -3.00639659e-01 3.43843520e-01 5.70188224e-01
9.45979953e-01 2.29501888e-01 -4.37344611e-01 7.65552998e-01
-5.21911144e-01 -2.69603908e-01 1.18366286e-01 6.99893236e-01
-2.46570900e-01 -1.58116972e+00 2.67913174e-02 5.46319783e-01
-3.33274871e-01 -5.85535407e-01 -2.21618727e-01 4.75441009e-01
9.17117745e-02 9.42082822e-01 -6.90534385e-03 -3.23573172e-01
1.33559659e-01 6.06098413e-01 5.25719225e-01 -1.40435970e+00
-4.36726421e-01 -8.65893587e-02 6.28488123e-01 -3.71775985e-01
-1.54754117e-01 -5.91419518e-01 -1.40413618e+00 1.99472252e-02
-4.38229829e-01 3.75532150e-01 2.70787239e-01 1.19951820e+00
4.91011113e-01 6.04280174e-01 1.74553946e-01 -5.55441916e-01
-8.59802186e-01 -1.35660160e+00 -1.48075476e-01 3.79948407e-01
-6.44130073e-03 -8.42754841e-01 -1.30422488e-01 1.53007761e-01] | [10.153142929077148, 8.572461128234863] |
4c45723d-4418-4be6-b483-6e42a25106ce | uncertainty-aware-cascaded-dilation-filtering | 2201.02366 | null | https://arxiv.org/abs/2201.02366v1 | https://arxiv.org/pdf/2201.02366v1.pdf | Uncertainty-Aware Cascaded Dilation Filtering for High-Efficiency Deraining | Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video captured under a rainy day. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. This, however, leads to time-consuming methods and affects the effectiveness for addressing rain patterns deviated from from the assumptions. In this paper, we propose a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the EfDeRain+ that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming the efficiency. First, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. Second, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. Third, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (i.e., RainMix) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on four single-image deraining datasets and one video deraining dataset in terms of both recovery quality and speed. | ['Song Wang', 'Wei Feng', 'Di Lin', 'Lei Ma', 'Felix Juefei-Xu', 'Jingyang Sun', 'Qing Guo'] | 2022-01-07 | null | null | null | null | ['single-image-deraining'] | ['computer-vision'] | [ 3.44395190e-02 -4.36767578e-01 4.41209465e-01 -4.39792752e-01
-6.25292838e-01 -2.62551427e-01 2.97036976e-01 -5.97099125e-01
-1.35518789e-01 7.61452198e-01 5.23075042e-03 -1.88129485e-01
-6.84713051e-02 -8.35021555e-01 -8.39741528e-01 -1.10021925e+00
1.69411704e-01 -7.12304488e-02 3.81602526e-01 -2.72867471e-01
-1.58124357e-01 5.83295226e-01 -1.67797494e+00 5.41642234e-02
1.63194072e+00 8.12867105e-01 6.25844717e-01 6.87438607e-01
4.19748016e-02 7.78364420e-01 -4.59275365e-01 -1.86047941e-01
5.01559913e-01 -5.59103966e-01 -1.57177880e-01 1.10547148e-01
9.08876956e-01 -6.93138599e-01 -4.30742085e-01 1.00286412e+00
5.14879286e-01 7.17718899e-03 2.90092498e-01 -6.57527566e-01
-4.40063298e-01 2.21499979e-01 -5.34000576e-01 2.68975556e-01
-2.71791726e-01 3.45846951e-01 5.99586725e-01 -1.18214023e+00
1.34980798e-01 1.20828295e+00 1.02258754e+00 2.75139481e-01
-1.11128294e+00 -7.37809896e-01 4.24163103e-01 2.01621726e-01
-1.18997335e+00 -5.03263175e-01 4.50022846e-01 -2.89550066e-01
4.08454776e-01 4.03203875e-01 7.35159576e-01 7.40857422e-01
-2.66467966e-02 7.56250024e-01 1.33713412e+00 -1.77628249e-01
5.22905029e-02 -3.23435515e-01 2.95878381e-01 5.16820908e-01
5.53348720e-01 2.93827355e-01 -1.64087057e-01 2.30297416e-01
6.81139827e-01 4.10722226e-01 -8.94007325e-01 1.60596907e-01
-7.60204613e-01 7.02877879e-01 5.68230629e-01 -1.47353336e-01
-4.83239949e-01 -1.39943287e-01 -2.24791333e-01 3.07095528e-01
8.40701044e-01 3.00528169e-01 -4.70625937e-01 3.82157177e-01
-1.46866739e+00 5.92337966e-01 5.89726686e-01 7.08372772e-01
1.01923478e+00 4.78656620e-01 -5.07300258e-01 7.84902930e-01
3.42211366e-01 1.24271381e+00 -2.71010458e-01 -8.79502952e-01
3.00782174e-01 9.27458182e-02 4.98157561e-01 -6.86693847e-01
-4.01631087e-01 -5.85091829e-01 -1.16838205e+00 4.17040169e-01
1.72021434e-01 -2.48772368e-01 -1.41258442e+00 1.34144676e+00
3.32292855e-01 6.22213125e-01 1.27846420e-01 1.29763269e+00
8.50586116e-01 8.96405160e-01 -1.30784974e-01 -6.29542470e-01
1.07557356e+00 -1.08171296e+00 -9.84677792e-01 -3.99540186e-01
-5.42568192e-02 -8.15404892e-01 1.03335369e+00 4.36927229e-01
-8.19612622e-01 -6.15861356e-01 -1.04375386e+00 1.08079612e-01
1.08807392e-01 1.72847480e-01 6.09818518e-01 3.49515527e-01
-8.14758360e-01 8.27331185e-01 -8.03459942e-01 -7.93720633e-02
5.02448738e-01 -8.27571154e-02 7.66737610e-02 -5.80878019e-01
-1.17977798e+00 7.96840608e-01 1.89631246e-03 7.74857819e-01
-9.52201903e-01 -9.88551438e-01 -7.43624389e-01 5.48949726e-02
2.99854040e-01 -7.97849000e-01 8.19053590e-01 -1.17411900e+00
-1.35328364e+00 2.75478482e-01 -4.38092440e-01 -4.84945208e-01
4.46585238e-01 -9.37976480e-01 -5.56841731e-01 1.12673521e-01
-1.57768488e-01 1.54584989e-01 1.56293726e+00 -1.52435923e+00
-6.03743613e-01 -1.33012414e-01 -1.06887132e-01 2.48432383e-01
1.66733295e-01 -3.10747564e-01 -6.96622670e-01 -1.06034291e+00
1.38720304e-01 -7.61271834e-01 -3.43246549e-01 -2.58559659e-02
-1.47358030e-01 4.50544626e-01 8.69929135e-01 -1.03552032e+00
1.33683205e+00 -2.16398835e+00 6.55783042e-02 -4.01269533e-02
3.64617407e-01 8.35507810e-01 -1.74138233e-01 -1.15579925e-02
1.61516294e-01 -2.13801563e-01 -7.03583837e-01 -4.74088281e-01
-3.60445172e-01 6.02414548e-01 -7.44728744e-01 5.38167596e-01
5.12676239e-01 6.23334944e-01 -6.30844057e-01 -2.09891617e-01
2.98529446e-01 6.84116960e-01 -3.67346466e-01 7.28623033e-01
-3.83513004e-01 4.98775065e-01 -2.62225211e-01 7.53321826e-01
1.53483737e+00 1.32532239e-01 -2.48988092e-01 -5.06522715e-01
-2.30616972e-01 -6.67863414e-02 -1.26815712e+00 1.09913349e+00
-5.41959941e-01 2.38423780e-01 5.00865221e-01 -5.83452582e-01
7.99704731e-01 2.42978223e-02 -3.32633480e-02 -6.05076730e-01
-3.29022586e-01 2.73712784e-01 -3.22875351e-01 -6.52754247e-01
3.96077812e-01 -3.29205334e-01 6.70420110e-01 -6.09167665e-02
-1.31517664e-01 -1.55453816e-01 -1.68713376e-01 1.58732563e-01
8.99906397e-01 4.18891609e-01 -1.99713841e-01 -1.48942575e-01
2.90102512e-01 -1.81018814e-01 1.03564882e+00 9.71100211e-01
-6.33428022e-02 1.17454517e+00 -7.59779438e-02 -6.38484240e-01
-8.37653339e-01 -1.12673378e+00 -2.90661901e-01 8.21749270e-01
4.07815158e-01 -1.02933683e-01 -4.92179841e-01 -5.45712948e-01
8.14191345e-03 5.65715432e-01 -4.91400003e-01 8.77846405e-02
-7.21312881e-01 -1.41279411e+00 2.71839559e-01 2.39266738e-01
7.58680761e-01 -9.76961017e-01 -2.22837254e-01 9.86530781e-02
-2.45719910e-01 -1.16229618e+00 -3.55475396e-01 2.23852605e-01
-9.93621647e-01 -1.00985539e+00 -5.99261165e-01 -3.67271662e-01
4.56107557e-01 7.60539055e-01 1.31773949e+00 2.70346195e-01
-2.16408879e-01 2.29556952e-02 -6.87739313e-01 -4.80962455e-01
1.33592799e-01 -4.05335605e-01 -1.45878747e-01 2.05126211e-01
-2.47421092e-03 -7.67016530e-01 -9.32402670e-01 1.40598118e-01
-1.05148304e+00 1.90754086e-01 7.75273025e-01 9.19834733e-01
7.80415952e-01 -2.35473383e-02 3.34363759e-01 -1.00274146e+00
2.48593584e-01 -5.08845866e-01 -7.56806374e-01 2.28190467e-01
-5.71922898e-01 6.98325550e-03 7.37612665e-01 -1.32472381e-01
-1.46790135e+00 7.55132139e-02 -1.68759346e-01 -6.53612435e-01
-4.73686233e-02 2.82166600e-01 -3.01313788e-01 -1.41902432e-01
5.39537072e-01 4.60557103e-01 -9.27959606e-02 -6.37685537e-01
3.86531532e-01 2.54976481e-01 6.25182450e-01 -2.23697066e-01
1.36977720e+00 7.40807056e-01 -1.21206909e-01 -8.40575457e-01
-1.50523317e+00 -2.59413332e-01 -3.43442649e-01 -1.68787494e-01
6.64652288e-01 -1.48423076e+00 -2.13808954e-01 8.59897494e-01
-9.45523143e-01 -4.76057947e-01 -8.37702528e-02 4.37289596e-01
-9.36166942e-03 4.82921451e-01 -6.49729490e-01 -1.04567719e+00
-7.92947412e-01 -8.28016341e-01 8.91463876e-01 4.39859867e-01
5.29183030e-01 -5.11696279e-01 8.23292285e-02 2.12639689e-01
8.27213466e-01 5.29670566e-02 3.71416390e-01 1.42121956e-01
-9.90580857e-01 1.74666047e-01 -4.81103837e-01 6.58529758e-01
7.24315941e-02 2.14656681e-01 -1.14016688e+00 -3.63824189e-01
1.92307889e-01 -1.11759320e-01 1.51661766e+00 6.03097081e-01
1.10385478e+00 -2.62000412e-01 -2.49087550e-02 1.34579468e+00
1.56058955e+00 -1.57744408e-01 1.04742312e+00 2.92058557e-01
8.70058596e-01 3.21198016e-01 8.39764178e-01 4.51620013e-01
2.71695524e-01 4.23938632e-01 6.86387956e-01 -4.43583488e-01
-3.42448562e-01 2.42564201e-01 4.51110095e-01 7.09713638e-01
-4.79959697e-01 -2.09272593e-01 -2.98816562e-01 5.99572837e-01
-1.94842887e+00 -1.06978965e+00 -3.76083642e-01 2.10694742e+00
8.05517673e-01 -1.87179893e-01 -4.43015575e-01 -3.48326832e-01
4.91197258e-01 4.81551677e-01 -6.21603549e-01 1.57202631e-01
-4.77491081e-01 6.54481769e-01 6.59110248e-01 6.99926734e-01
-1.35228395e+00 9.86924887e-01 5.40932703e+00 8.05263877e-01
-1.15976167e+00 1.50816903e-01 3.79633039e-01 -1.55363962e-01
-3.92812401e-01 1.09827537e-02 -1.05023146e+00 6.72081470e-01
6.08477294e-01 5.72288156e-01 6.03210449e-01 4.95010287e-01
5.90237319e-01 -2.55486071e-01 -3.90299857e-01 8.98201942e-01
-4.39179800e-02 -1.21363676e+00 -3.25888619e-02 -4.70347643e-01
7.45123029e-01 2.74486929e-01 -1.24391027e-01 3.96742046e-01
4.32172209e-01 -1.04385734e+00 5.42642057e-01 1.08874977e+00
5.10335743e-01 -5.62767088e-01 9.09735620e-01 1.79098830e-01
-9.92725790e-01 1.02345601e-01 -5.69215596e-01 4.58094031e-02
1.38911545e-01 1.43340147e+00 -8.65378454e-02 9.78277683e-01
1.21692288e+00 8.52796257e-01 -2.90510505e-01 1.28254688e+00
-5.87217450e-01 1.03728318e+00 -5.18688381e-01 7.76146054e-01
-2.10357588e-02 -5.87348998e-01 5.87042034e-01 1.31595445e+00
4.85539556e-01 4.32066381e-01 8.87616202e-02 7.49301255e-01
9.66835916e-02 -3.89181137e-01 -3.17548245e-01 4.94328320e-01
4.12644148e-01 1.32696044e+00 -2.10580423e-01 -1.93081990e-01
-4.34667468e-01 1.19868600e+00 1.17085084e-01 6.56640291e-01
-1.06492066e+00 -3.52015048e-01 1.19519842e+00 1.63525537e-01
8.31278086e-01 -1.72901034e-01 -1.91286027e-01 -1.45904887e+00
2.47278109e-01 -9.21527505e-01 3.66566912e-03 -6.95019901e-01
-1.43488526e+00 7.51912355e-01 -3.53030592e-01 -1.31745744e+00
4.96876359e-01 -2.75479347e-01 -8.92312646e-01 1.23356783e+00
-2.34913659e+00 -1.24235916e+00 -9.87769485e-01 7.09915340e-01
4.85563874e-01 2.99309075e-01 4.98310417e-01 6.03457034e-01
-7.44243085e-01 3.45889241e-01 3.08344215e-01 -2.69791812e-01
1.18037963e+00 -1.06311214e+00 2.06593886e-01 1.61549902e+00
-1.43557847e-01 3.38291049e-01 9.11499560e-01 -6.03787005e-01
-1.36099553e+00 -1.70073509e+00 5.17329633e-01 -1.45548657e-01
3.20563972e-01 -2.27556482e-01 -1.50447798e+00 4.88742203e-01
-6.42007589e-02 5.77314258e-01 7.86077380e-02 -5.02858758e-02
-4.20053303e-01 -6.48018360e-01 -9.67357099e-01 4.62116301e-01
9.78651106e-01 -1.36455879e-01 -4.03203368e-01 4.27245289e-01
9.68044102e-01 -4.67227787e-01 -5.68901658e-01 8.54986489e-01
2.43520215e-01 -1.38808692e+00 9.69863951e-01 -1.47753626e-01
4.67465967e-01 -8.38934064e-01 -2.52717167e-01 -1.38219655e+00
-4.74565983e-01 -6.35886848e-01 -6.41446531e-01 1.21756423e+00
7.83678144e-02 -5.77921152e-01 3.94883275e-01 2.61611581e-01
-4.89261329e-01 -5.74944317e-01 -5.32090664e-01 -4.78879929e-01
-2.01698065e-01 -3.47444475e-01 4.61382240e-01 8.41419578e-01
-1.06532443e+00 1.41109452e-02 -1.03279161e+00 9.64648902e-01
8.66407514e-01 6.96833968e-01 7.96444118e-01 -1.14888084e+00
-3.69540632e-01 6.45945221e-02 2.25232258e-01 -1.28557658e+00
-1.99123293e-01 -2.85417974e-01 5.85981309e-01 -1.52137744e+00
-1.32446457e-02 -5.29222488e-01 -1.92845732e-01 4.24858391e-01
-8.06284904e-01 1.65393323e-01 2.77077436e-01 6.19470477e-01
-4.55640763e-01 8.87579083e-01 1.36768544e+00 6.77283406e-02
-2.08084062e-01 1.77202523e-01 -5.16440749e-01 8.93232942e-01
6.37974620e-01 -4.37792748e-01 -1.21787451e-01 -7.71662831e-01
1.28575161e-01 -3.62987742e-02 4.63848531e-01 -1.12118161e+00
-5.63622080e-02 -2.61503369e-01 4.79644418e-01 -6.67977691e-01
3.11801344e-01 -7.41107106e-01 1.76156282e-01 1.87598988e-01
3.87274623e-01 -3.84687006e-01 1.35046124e-01 7.91298032e-01
-4.35310632e-01 9.30758789e-02 1.19516253e+00 1.63218640e-02
-8.31329703e-01 5.31845152e-01 -2.72901773e-01 -2.34028772e-01
7.01638997e-01 -8.14476907e-02 -5.13319969e-01 -2.90607929e-01
-6.92751050e-01 4.42925334e-01 4.26843911e-01 3.33097726e-02
7.21005738e-01 -8.34770799e-01 -1.02069521e+00 3.46637338e-01
-1.64868936e-01 3.67282957e-01 7.35941470e-01 1.07200086e+00
-6.97960019e-01 -1.85664043e-01 1.15250088e-01 -3.38479310e-01
-1.06501186e+00 2.68298805e-01 5.07002532e-01 -2.52417564e-01
-1.14419699e+00 9.10744190e-01 4.50112045e-01 -2.71569908e-01
7.33285174e-02 -3.65203708e-01 -1.83509588e-01 -2.74531972e-02
7.52467155e-01 9.51079205e-02 2.17855096e-01 -1.61798999e-01
-2.38657277e-03 5.07601500e-01 -9.61277932e-02 6.01439238e-01
1.70405853e+00 -3.12126517e-01 -3.06026310e-01 1.25750452e-01
5.02990007e-01 2.05475211e-01 -1.89142883e+00 -3.52121651e-01
-5.97478688e-01 -6.55720472e-01 2.92286873e-01 -8.22332859e-01
-1.64150274e+00 7.40872800e-01 8.36396337e-01 -1.88672960e-01
1.60771310e+00 -4.39348400e-01 9.51988280e-01 3.37164253e-01
6.33206666e-02 -5.99875569e-01 -3.37870806e-01 8.86255324e-01
7.54039764e-01 -1.44153082e+00 2.20939860e-01 -4.92478907e-01
-5.77828407e-01 1.07607222e+00 6.17074430e-01 -3.47297370e-01
8.46809506e-01 3.42924476e-01 2.83192575e-01 -1.17693290e-01
-3.98851871e-01 -4.78724837e-01 1.11544847e-01 4.78883833e-01
8.88152421e-02 2.03324668e-02 -1.80301204e-01 7.02060699e-01
2.87319779e-01 2.70788521e-02 4.93766904e-01 6.62428558e-01
-8.21383059e-01 -6.64777339e-01 -7.76016951e-01 6.02169216e-01
-2.79987574e-01 -7.12956250e-01 3.34323376e-01 3.88307244e-01
3.69169921e-01 8.61452639e-01 -1.56272855e-02 -1.94988400e-01
3.21784496e-01 -3.04360986e-01 2.51360536e-01 -3.08666527e-01
-3.81098896e-01 1.86137035e-01 -1.66771278e-01 -6.71637714e-01
-8.02855492e-01 -3.93477559e-01 -7.78571129e-01 -3.98314536e-01
-3.99507284e-01 2.38952022e-02 1.33755818e-01 9.97251630e-01
5.18692017e-01 5.58867991e-01 5.33291399e-01 -1.15690458e+00
-3.05049717e-01 -1.07790709e+00 -9.53823626e-01 1.92044869e-01
7.61923373e-01 -6.84623599e-01 -6.62382841e-01 3.47180367e-02] | [10.88329792022705, -3.2488625049591064] |
c77da1c9-599b-4938-a4d2-786c36ec11ff | pipeline-coreference-resolution-model-for | null | null | https://aclanthology.org/2022.codi-crac.3 | https://aclanthology.org/2022.codi-crac.3.pdf | Pipeline Coreference Resolution Model for Anaphoric Identity in Dialogues | CODI-CRAC 2022 Shared Task in Dialogues consists of three sub-tasks: Sub-task 1 is the resolution of anaphoric identity, sub-task 2 is the resolution of bridging references, and sub-task 3 is the resolution of discourse deixis/abstract anaphora. Anaphora resolution is the task of detecting mentions from input documents and clustering the mentions of the same entity. The end-to-end model proceeds with the pruning of the candidate mention, and the pruning has the possibility of removing the correct mention. Also, the end-to-end anaphora resolution model has high model complexity, which takes a long time to train. Therefore, we proceed with the anaphora resolution as a two-stage pipeline model. In the first mention detection step, the score of the candidate word span is calculated, and the mention is predicted without pruning. In the second anaphora resolution step, the pair of mentions of the anaphora resolution relationship is predicted using the mentions predicted in the mention detection step. We propose a two-stage anaphora resolution pipeline model that reduces model complexity and training time, and maintains similar performance to end-to-end models. As a result of the experiment, the anaphora resolution showed a performance of 68.27% in Light, 48.87% in AMI, 69.06% in Persuasion, and 60.99% on Switchboard. Our final system ranked 3rd on the leaderboard of sub-task 1. | ['Harksoo Kim', 'Mirae Han', 'Seongsik Park', 'Damrin Kim'] | null | null | null | null | coling-codi-crac-2022-10 | ['coreference-resolution'] | ['natural-language-processing'] | [-1.92046165e-02 6.22448206e-01 -2.85429507e-01 -3.12171906e-01
-1.04324210e+00 -5.34698963e-01 6.27613425e-01 2.77902126e-01
-5.58369040e-01 8.92912626e-01 6.33864641e-01 2.04862058e-02
-3.23617965e-01 -7.43582547e-01 -3.58094335e-01 -3.24272096e-01
2.02715963e-01 1.10849762e+00 5.70042372e-01 -4.81306881e-01
3.15234035e-01 2.39832044e-01 -1.09853160e+00 9.79363918e-01
6.03068888e-01 7.40331471e-01 5.48477434e-02 5.66754222e-01
-3.54664326e-01 8.81062806e-01 -9.37296271e-01 -5.17235160e-01
-2.02269837e-01 -1.91449776e-01 -1.54030716e+00 -4.23349559e-01
3.49637717e-01 -1.45419717e-01 -3.42516303e-01 1.05367172e+00
5.11675179e-01 2.05853954e-01 3.06565225e-01 -9.11641121e-01
-6.52658865e-02 1.01256418e+00 -5.53381383e-01 4.01044607e-01
6.47152185e-01 -2.62818426e-01 1.23078477e+00 -8.75530303e-01
1.01754296e+00 1.70224929e+00 5.37689209e-01 5.76709509e-01
-7.94903457e-01 -7.43589878e-01 2.69164629e-02 5.51587164e-01
-1.09816670e+00 -5.38779259e-01 5.10642707e-01 -3.90050322e-01
1.37682247e+00 3.03592533e-01 1.62491307e-01 9.90928173e-01
8.87850299e-02 5.92440426e-01 6.24648273e-01 -3.57349455e-01
8.98856949e-03 -3.19979191e-01 5.80049813e-01 4.48202908e-01
3.27542834e-02 -4.10960406e-01 -6.37427270e-01 -2.49917358e-01
2.16193125e-01 -4.18055952e-01 -2.11426333e-01 4.26010191e-01
-7.82542467e-01 9.50914502e-01 4.26246762e-01 4.38952029e-01
-5.00780642e-01 -4.58927035e-01 5.98981023e-01 1.46170750e-01
2.65964597e-01 6.24099493e-01 -3.77655387e-01 -2.38369197e-01
-7.95397878e-01 7.16367304e-01 1.10752118e+00 9.50145662e-01
2.36264542e-01 -7.37055480e-01 -4.11340237e-01 9.98295248e-01
6.35905564e-02 -3.58874425e-02 5.75059116e-01 -1.25929701e+00
1.02951014e+00 1.00652778e+00 4.29955959e-01 -8.28944147e-01
-8.24464977e-01 -1.36891767e-01 -4.31523263e-01 -2.04071224e-01
7.67232955e-01 -2.64769912e-01 -1.98229566e-01 1.83588386e+00
4.94001240e-01 4.29957844e-02 5.56974113e-01 1.33853436e+00
1.16259444e+00 6.35018170e-01 3.13753128e-01 -6.86086595e-01
2.12963080e+00 -1.10947263e+00 -1.30512166e+00 -4.71067727e-01
5.99021912e-01 -1.06761718e+00 7.93895364e-01 1.55616239e-01
-1.53566015e+00 -3.09422433e-01 -1.09115946e+00 -4.53426659e-01
-6.97035268e-02 -1.64222606e-02 4.91662502e-01 -2.78587043e-01
-1.91151232e-01 6.15475476e-01 -6.32975519e-01 -5.44587255e-01
-1.67510659e-02 2.24677995e-01 -3.33274871e-01 1.06054664e-01
-1.91023231e+00 1.32316196e+00 7.75693357e-01 -1.43720314e-01
-3.59997660e-01 -4.99906451e-01 -8.01490843e-01 4.80198592e-01
4.30710793e-01 -5.44846654e-01 1.58080363e+00 -4.04732049e-01
-1.32242393e+00 1.03793991e+00 -2.54478812e-01 -6.30800188e-01
3.60367954e-01 -6.78906143e-01 -4.82776672e-01 1.59924835e-01
5.88749170e-01 4.44344044e-01 2.50051767e-01 -6.57353640e-01
-1.19899035e+00 -4.01872486e-01 2.15365544e-01 6.46197915e-01
-2.31902319e-04 5.45959055e-01 -5.45485675e-01 -2.25667328e-01
4.02133286e-01 -7.67731905e-01 2.71948606e-01 -7.05444157e-01
-3.93799275e-01 -9.64735985e-01 8.81723583e-01 -8.16908658e-01
1.63620770e+00 -2.10524583e+00 2.85939544e-01 -4.65521276e-01
4.00636345e-02 4.20139551e-01 8.14683214e-02 3.28449279e-01
-2.87679851e-01 -1.89394832e-01 -1.31273061e-01 -2.25492910e-01
-7.56448358e-02 -1.14084065e-01 -5.58559418e-01 1.82830617e-01
3.81925255e-01 4.90615785e-01 -1.01414800e+00 -7.66197860e-01
-2.72929072e-01 -8.40528682e-02 -3.60389382e-01 4.96613860e-01
-3.06238383e-01 9.44685638e-02 -2.82834888e-01 2.34456226e-01
4.54963446e-01 -7.08720237e-02 6.73324108e-01 -4.67796415e-01
-1.47011101e-01 1.12947953e+00 -1.20690763e+00 1.68570173e+00
1.36352684e-02 4.12913412e-01 3.44422877e-01 -6.07526481e-01
9.16624904e-01 7.72055387e-01 1.42118081e-01 -6.59170568e-01
1.30499348e-01 2.87411094e-01 1.92516029e-01 -8.62267673e-01
6.37779832e-01 3.86484363e-03 -6.10574663e-01 5.15165687e-01
-3.42745930e-02 1.09706089e-01 4.61963177e-01 4.54837292e-01
1.24359632e+00 -4.16402631e-02 5.38181484e-01 -1.38498068e-01
6.75078750e-01 2.99146920e-01 9.73520577e-01 4.06603843e-01
-1.40475631e-01 3.26638907e-01 7.96184778e-01 -4.77357715e-01
-5.85544646e-01 -9.78457391e-01 1.83830392e-02 1.10416460e+00
3.24713826e-01 -7.35479534e-01 -1.11904943e+00 -8.17587554e-01
-2.21235752e-01 9.70500231e-01 -2.83449203e-01 -1.31488413e-01
-1.22886288e+00 -7.71341503e-01 8.25705469e-01 4.36788678e-01
7.10882723e-01 -1.54839563e+00 -6.53669775e-01 4.42571908e-01
-9.62080836e-01 -1.10889363e+00 -3.69821340e-01 1.22245185e-01
-5.71680486e-01 -1.54971659e+00 6.05014749e-02 -9.91233349e-01
1.25865147e-01 -1.45308048e-01 9.12719011e-01 1.35160401e-01
-2.38778759e-02 -3.93215656e-01 -1.73478015e-02 -7.52746686e-02
-2.66494066e-01 2.02021182e-01 1.18339315e-01 -4.23851788e-01
8.77720952e-01 -3.10535729e-01 -3.21346492e-01 2.44900092e-01
-2.93240726e-01 -3.51727679e-02 1.48862451e-01 8.86950076e-01
4.52451915e-01 -1.55567124e-01 7.25581348e-01 -9.83234823e-01
9.40567374e-01 -5.26128709e-01 -3.41008186e-01 1.64470509e-01
-3.67917389e-01 -2.13053644e-01 4.26990032e-01 -5.32426775e-01
-1.40913904e+00 1.19307235e-01 -2.47987118e-02 -9.72450376e-02
-4.71253805e-02 5.45622826e-01 -5.27305722e-01 9.69199359e-01
7.72102296e-01 -5.63028395e-01 -1.49143681e-01 -6.91821814e-01
2.63480932e-01 8.68911684e-01 1.19349670e+00 -6.24169230e-01
3.55844021e-01 -3.67784351e-02 -3.88933569e-01 -2.73208529e-01
-1.51377070e+00 -4.88115311e-01 -6.94438159e-01 1.77515328e-01
1.03258622e+00 -8.42425525e-01 -9.38574791e-01 1.53385729e-01
-1.90458620e+00 -6.45285994e-02 -1.82909131e-01 4.76990342e-01
-4.06895071e-01 3.10232967e-01 -1.25683069e+00 -4.62403834e-01
-8.91652286e-01 -9.95863736e-01 7.46748507e-01 5.68759501e-01
-1.04685724e+00 -5.36143541e-01 -6.93058944e-04 6.81896448e-01
-4.26251218e-02 -1.02599397e-01 1.16550815e+00 -1.33276951e+00
-5.51145449e-02 -1.29235864e-01 -3.74050200e-01 -3.69890302e-01
-1.12992302e-02 -4.45930511e-01 -8.40806186e-01 -2.36557707e-01
1.91552728e-01 -2.80607074e-01 6.06596589e-01 1.17863141e-01
3.63974571e-01 -5.16618252e-01 -6.13443375e-01 2.08048061e-01
6.47012055e-01 2.90103436e-01 6.42388284e-01 7.59918213e-01
2.35518739e-01 8.74403834e-01 1.43987787e+00 4.73122969e-02
4.05789196e-01 1.07919705e+00 3.01338047e-01 2.67211199e-01
-3.22770655e-01 -8.80262777e-02 3.21905077e-01 6.36934876e-01
2.31829658e-01 -7.45015591e-02 -9.09813762e-01 6.08866036e-01
-2.22839785e+00 -1.25723875e+00 -6.70918167e-01 1.87123764e+00
1.33664155e+00 4.11177874e-01 -1.21829227e-01 1.88378304e-01
1.15632248e+00 1.91146489e-02 -2.36675322e-01 -5.27367830e-01
-6.44085407e-02 3.18287015e-02 -1.64133310e-01 1.10726964e+00
-1.44281292e+00 1.59773254e+00 5.37086678e+00 5.94119012e-01
-5.81671298e-01 2.42124468e-01 7.16235712e-02 -1.69462621e-01
4.79017168e-01 3.94303977e-01 -1.32161534e+00 4.35196161e-01
8.83216560e-01 -1.42676651e-01 1.24802612e-01 6.58654273e-01
3.03919124e-03 -4.43994999e-02 -1.11153042e+00 5.68780124e-01
-8.12625885e-02 -1.19738734e+00 1.68024830e-03 -4.32666361e-01
1.34861827e-01 -3.47307712e-01 -6.77430511e-01 5.89776635e-01
1.95762590e-01 -8.30890000e-01 5.06546497e-01 2.95822084e-01
5.46964824e-01 -7.58322179e-01 1.12195385e+00 4.62042928e-01
-9.77524757e-01 -1.59307942e-01 -4.07627463e-01 -2.24789098e-01
5.67705274e-01 2.52007693e-01 -1.09506559e+00 2.93789119e-01
6.02082849e-01 2.70592421e-01 -1.57063887e-01 7.09441006e-01
-8.51878703e-01 4.61026460e-01 -1.45425171e-01 3.00504029e-01
4.24382165e-02 1.23134285e-01 9.53026533e-01 1.66226161e+00
-1.01619311e-01 7.21295297e-01 1.00337930e-01 7.80683577e-01
-2.69945413e-01 -5.92198223e-02 1.43571526e-01 4.81435210e-01
1.23580086e+00 1.48662651e+00 -2.64002115e-01 -5.54337978e-01
3.81282121e-02 8.69156539e-01 7.41051555e-01 -2.82176211e-03
-8.77240300e-01 -7.92368293e-01 4.52078462e-01 3.95678356e-03
-5.39834313e-02 4.47556287e-01 -1.64231524e-01 -5.08218825e-01
-1.01614676e-01 -9.72494960e-01 1.15731776e+00 -6.91338539e-01
-1.23287570e+00 5.94678044e-01 -4.03762087e-02 -6.97150767e-01
-4.72244263e-01 -2.33103320e-01 -1.06557918e+00 1.01698864e+00
-1.20464396e+00 -8.60960305e-01 -3.55045974e-01 4.19390231e-01
7.71551549e-01 -1.81147218e-01 1.17975104e+00 2.99082875e-01
-7.47511387e-01 5.51328123e-01 -6.02831125e-01 4.10963804e-01
1.26905072e+00 -1.22183216e+00 2.74635851e-01 7.06574261e-01
-5.30818522e-01 8.49601746e-01 7.78073430e-01 -9.71174896e-01
-7.09709585e-01 -1.04385328e+00 1.72504163e+00 -2.88985044e-01
7.28240490e-01 1.05086952e-01 -1.27648640e+00 7.32207358e-01
2.25502685e-01 -4.46341842e-01 3.96970898e-01 3.90802175e-01
-3.56638968e-01 2.35890776e-01 -1.17523587e+00 4.61656451e-01
8.58096480e-01 -4.38505322e-01 -1.54776895e+00 5.25738418e-01
9.75741208e-01 -9.04661298e-01 -1.09023488e+00 4.25742537e-01
1.46388590e-01 -4.21149224e-01 9.06822741e-01 -9.79398251e-01
6.82005048e-01 -1.91954032e-01 -9.85829160e-02 -7.58743048e-01
-5.75581312e-01 -7.09353924e-01 -4.99247819e-01 1.70145941e+00
5.75292170e-01 1.88884325e-02 4.58184719e-01 7.13758528e-01
-3.46778303e-01 -4.00663078e-01 -1.11498737e+00 -2.99943358e-01
-5.48355617e-02 1.55463114e-01 4.70474303e-01 1.27624929e+00
8.97370994e-01 1.25859320e+00 5.41685745e-02 3.04749936e-01
3.13426107e-01 4.83484775e-01 5.08242965e-01 -1.56310952e+00
-2.44310983e-02 -4.13977504e-01 4.02291328e-01 -8.78225267e-01
4.52998728e-01 -8.85167658e-01 9.32522789e-02 -1.61608434e+00
2.80314684e-01 -1.60767183e-01 -3.37317809e-02 6.82875276e-01
-6.06652677e-01 -3.44846994e-01 8.33884850e-02 6.34699881e-01
-8.35333347e-01 1.35882542e-01 8.33088875e-01 -7.97393918e-02
-5.21229625e-01 -1.18218385e-01 -5.57317078e-01 1.06096876e+00
8.25747609e-01 -7.01001406e-01 1.63944229e-01 -2.49388754e-01
-1.26260906e-01 4.90351737e-01 -4.93968278e-02 -5.21968186e-01
7.55179107e-01 -1.97932005e-01 4.66782786e-02 -6.84669197e-01
5.81442893e-01 -3.64366472e-01 -2.13544980e-01 5.19509733e-01
-4.85825539e-01 3.63729931e-02 1.81775615e-01 8.31955671e-02
-1.34090587e-01 -6.86662734e-01 7.80148268e-01 -7.54934698e-02
-4.59274888e-01 -3.65487814e-01 -3.96986753e-01 4.30976152e-01
7.96082973e-01 2.77807385e-01 -9.40980017e-01 1.47135044e-02
-9.12199914e-01 4.81579930e-01 -4.85527106e-02 6.83773220e-01
3.51476014e-01 -1.11850286e+00 -9.41876233e-01 -3.85615498e-01
-2.54216075e-01 3.66902530e-01 -5.58177307e-02 8.29668462e-01
-1.63346305e-01 5.04391134e-01 -1.05582640e-01 -2.57549912e-01
-1.65459025e+00 4.13903296e-01 2.73109317e-01 -7.51365006e-01
-8.00432265e-01 7.51813829e-01 -8.31781700e-02 -2.60898858e-01
4.72974330e-01 3.73120755e-01 -8.93836558e-01 3.89968634e-01
8.49534214e-01 4.75345999e-01 2.46443581e-02 -6.62228644e-01
-5.89087188e-01 1.17413729e-01 -6.03092849e-01 -1.41411707e-01
1.33151877e+00 5.43158241e-02 -5.57074964e-01 7.09282607e-02
6.15663111e-01 7.09081218e-02 -8.52543652e-01 -3.19988251e-01
6.73464775e-01 2.41504144e-02 -2.75283486e-01 -1.13321412e+00
-5.78807592e-01 6.35894299e-01 2.00379282e-01 -3.52672525e-02
7.39232540e-01 9.57761854e-02 8.57765079e-01 4.67903852e-01
-1.95894055e-02 -1.20721912e+00 -4.91793975e-02 1.15059400e+00
1.13786948e+00 -8.01396132e-01 9.19516981e-02 -7.41280079e-01
-5.74188471e-01 1.12145150e+00 1.24953008e+00 2.35326178e-02
-6.52071238e-02 5.23109436e-01 -1.05229986e-03 -5.43690085e-01
-9.48339820e-01 2.52318501e-01 5.96168637e-02 1.67366073e-01
7.83168495e-01 -1.47079714e-02 -1.05326068e+00 1.59291983e+00
-3.95980448e-01 -5.00189602e-01 2.80551314e-01 6.60332680e-01
-6.87489271e-01 -9.14799154e-01 -4.82473969e-01 -5.19342981e-02
-7.01656103e-01 -6.88621625e-02 -8.36313665e-01 7.74762690e-01
-6.43214583e-02 1.25113165e+00 3.63371253e-01 -2.41535679e-01
7.84772813e-01 4.63059634e-01 1.10933699e-01 -7.40175962e-01
-9.66633379e-01 -2.96906866e-02 8.16068828e-01 -5.84787309e-01
-1.46860018e-01 -6.37150705e-01 -2.09155655e+00 -2.61571676e-01
-6.00644469e-01 7.63541639e-01 2.05604866e-01 1.18200588e+00
3.65126163e-01 5.47063589e-01 1.60121933e-01 -5.10306954e-01
-6.83229148e-01 -1.45118213e+00 -8.04967713e-03 7.57005751e-01
-2.11879387e-01 -7.13432610e-01 -2.80614913e-01 -1.33172676e-01] | [9.341130256652832, 9.53217887878418] |
df280b00-1b36-4990-b6cf-767137bd03bc | int-fp-qsim-mixed-precision-and-formats-for | 2307.03712 | null | https://arxiv.org/abs/2307.03712v1 | https://arxiv.org/pdf/2307.03712v1.pdf | INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers | The recent rise of large language models (LLMs) has resulted in increased efforts towards running LLMs at reduced precision. Running LLMs at lower precision supports resource constraints and furthers their democratization, enabling users to run billion-parameter LLMs on their personal devices. To supplement this ongoing effort, we propose INT-FP-QSim: an open-source simulator that enables flexible evaluation of LLMs and vision transformers at various numerical precisions and formats. INT-FP-QSim leverages existing open-source repositories such as TensorRT, QPytorch and AIMET for a combined simulator that supports various floating point and integer formats. With the help of our simulator, we survey the impact of different numerical formats on the performance of LLMs and vision transformers at 4-bit weights and 4-bit or 8-bit activations. We also compare recently proposed methods like Adaptive Block Floating Point, SmoothQuant, GPTQ and RPTQ on the model performances. We hope INT-FP-QSim will enable researchers to flexibly simulate models at various precisions to support further research in quantization of LLMs and vision transformers. | ['Darius Bunandar', 'Ayon Basumallik', 'Craig Chan', 'Arulselvan Madhavan', 'Mikhail Bernadskiy', 'Lakshmi Nair'] | 2023-07-07 | null | null | null | null | ['quantization'] | ['methodology'] | [-4.09263045e-01 -7.29153991e-01 -5.12445867e-01 -3.09561193e-01
-8.95520687e-01 -5.81106365e-01 5.11811495e-01 2.24870786e-01
-4.98408943e-01 1.65260673e-01 2.87305295e-01 -8.83591413e-01
2.33348355e-01 -8.49290073e-01 -4.82543468e-01 -2.54214872e-02
-4.15106773e-01 8.94522741e-02 3.71280164e-01 -4.93326604e-01
4.97658491e-01 4.95409250e-01 -1.50201535e+00 7.38655508e-01
5.98527789e-01 1.13393605e+00 9.51220840e-02 1.03536272e+00
-2.50403136e-01 9.73196864e-01 -5.51704645e-01 -6.32243276e-01
4.88236129e-01 3.58360201e-01 -6.06533170e-01 -6.85259283e-01
4.61963743e-01 -5.67404628e-01 -2.49596566e-01 8.65100145e-01
7.02006400e-01 -3.86186659e-01 1.82901144e-01 -1.22127616e+00
-3.49903136e-01 7.95472562e-01 -5.11321008e-01 4.81933206e-01
3.32451046e-01 8.13360453e-01 9.66723442e-01 -8.36442530e-01
1.56386673e-01 1.71896148e+00 9.27728295e-01 -1.76876962e-01
-1.20537198e+00 -8.56543779e-01 -3.84217024e-01 1.40202746e-01
-2.02100205e+00 -7.75113702e-01 -1.74908757e-01 -2.26509422e-02
1.59047127e+00 3.92530113e-01 6.45175397e-01 6.51746809e-01
7.86684334e-01 3.61305535e-01 1.15484297e+00 -3.89559537e-01
3.86295587e-01 -3.06983292e-01 1.74901083e-01 8.56335938e-01
1.33567452e-01 1.09169647e-01 -9.28802073e-01 -5.24630427e-01
8.64365339e-01 -5.97722530e-01 1.15360193e-01 2.44252130e-01
-1.35464990e+00 8.14746618e-01 1.05940267e-01 1.32865191e-01
-1.57047451e-01 9.93011594e-01 8.16276908e-01 3.90699387e-01
2.49091703e-02 2.98425257e-01 -5.31046450e-01 -7.56251752e-01
-1.32359147e+00 4.66171682e-01 8.59388590e-01 1.07849514e+00
5.53656399e-01 2.73680896e-01 -5.02280653e-01 5.35513759e-01
6.24139607e-01 7.51489282e-01 5.55226088e-01 -1.35101974e+00
6.96743369e-01 2.41777003e-01 -3.25547419e-02 -7.28399217e-01
-4.84689355e-01 -4.72252607e-01 -8.10532689e-01 1.54055744e-01
8.49574581e-02 1.49022743e-01 -7.50612259e-01 1.16750801e+00
3.37303951e-02 8.21035653e-02 -4.14704420e-02 6.54102683e-01
4.96863961e-01 9.11569178e-01 1.28498867e-01 2.06026927e-01
1.47819591e+00 -7.24372506e-01 -5.16102135e-01 6.50110319e-02
1.14807475e+00 -1.18756688e+00 1.54166162e+00 8.49752307e-01
-1.37870038e+00 -4.12032783e-01 -1.37444508e+00 -4.33066756e-01
-1.76501483e-01 1.08512744e-01 8.22116196e-01 1.04802012e+00
-1.53170943e+00 7.78880358e-01 -1.20590413e+00 3.41321737e-01
2.62186795e-01 6.73628926e-01 3.28707904e-01 1.62767321e-01
-1.27687716e+00 8.89311135e-01 9.31296423e-02 -1.13392420e-01
-6.24641478e-01 -1.01277244e+00 -5.93909979e-01 1.25235632e-01
-1.39523530e-02 -6.47825301e-01 1.56392789e+00 -4.63607579e-01
-1.66104150e+00 4.83934671e-01 -1.13793783e-01 -9.72430646e-01
1.98652178e-01 -5.71143348e-03 -7.94236064e-01 -2.15967491e-01
-1.37530982e-01 6.99970305e-01 5.53677738e-01 -2.58177370e-01
-2.48212919e-01 -1.23474121e-01 6.05065599e-02 4.03192081e-02
-3.05389732e-01 1.14182308e-01 -4.89604801e-01 -5.81675231e-01
-3.28476548e-01 -6.48042738e-01 -3.29685599e-01 1.48216337e-01
-1.15984268e-01 1.36330768e-01 4.62371588e-01 -2.67654002e-01
1.68987405e+00 -2.07064509e+00 -3.28320920e-01 3.07453513e-01
1.53911412e-01 5.51707685e-01 -1.45119935e-01 6.61181450e-01
3.82297933e-01 2.85124898e-01 2.29037732e-01 -3.11711043e-01
3.43159258e-01 2.85102159e-01 -2.82111257e-01 3.54653955e-01
-1.57796353e-01 7.92273462e-01 -6.17092788e-01 -5.57272792e-01
2.65416384e-01 5.27580678e-01 -9.58996832e-01 -3.47229213e-01
-2.39499480e-01 -2.40322575e-01 -1.94359183e-01 6.79030538e-01
8.25415432e-01 -5.14517307e-01 4.61933799e-02 -5.35290420e-01
-6.53748333e-01 8.15614104e-01 -1.29659128e+00 1.84483266e+00
-7.52733767e-01 5.86633801e-01 2.44817793e-01 -1.61172822e-01
5.81342697e-01 6.41096607e-02 -4.01578844e-03 -1.13510215e+00
-3.35559621e-02 5.16783357e-01 -1.15707619e-02 4.38340530e-02
1.27444220e+00 1.37293711e-01 -2.74302065e-01 1.90392956e-01
-1.92225307e-01 -6.39962375e-01 4.41056520e-01 4.18988109e-01
1.05858099e+00 -2.32607588e-01 8.66866484e-02 -5.82314909e-01
4.47828025e-01 -2.74486721e-01 1.14506096e-01 6.25279546e-01
-1.04401611e-01 1.56254604e-01 4.06780481e-01 -3.22551697e-01
-1.22885418e+00 -1.28198373e+00 -5.01205385e-01 1.25374162e+00
-3.12860072e-01 -1.44505966e+00 -6.41070604e-01 3.04307997e-01
1.80016197e-02 7.62963593e-01 6.94520399e-02 7.94544145e-02
-2.84562200e-01 -7.97267497e-01 1.28175223e+00 3.35673600e-01
8.22048962e-01 -3.96483898e-01 -9.83395875e-01 2.89530367e-01
3.78064871e-01 -1.11357808e+00 -6.06494308e-01 1.81807280e-01
-9.04326737e-01 -3.33444744e-01 -4.00172025e-01 -2.25486577e-01
-2.13026300e-01 -1.81049466e-01 1.40786600e+00 3.68479602e-02
-8.64530504e-02 3.82043868e-02 -8.81884694e-02 -1.77371427e-01
-6.66554630e-01 1.17951587e-01 6.87855780e-02 -5.62647283e-01
-3.61464452e-03 -5.14782012e-01 -6.86139762e-01 -8.32287245e-04
-9.88978624e-01 1.84020698e-01 2.35118836e-01 3.70847702e-01
6.16166413e-01 -2.32112944e-01 8.63073096e-02 -4.48095173e-01
9.30713117e-01 -1.90621838e-01 -9.98807132e-01 -3.92562747e-02
-6.49505079e-01 6.37114167e-01 7.10545480e-01 -1.15764268e-01
-3.57276291e-01 -3.45993042e-01 -6.88137174e-01 -3.38276654e-01
8.72878253e-01 5.45041621e-01 2.92414814e-01 -2.84921527e-01
7.70865917e-01 6.44855797e-02 -2.23185331e-01 -7.98754618e-02
6.39374197e-01 8.20418298e-01 4.28208679e-01 -6.84775352e-01
1.79219425e-01 1.95897788e-01 4.19869386e-02 -6.55691564e-01
-1.22278586e-01 -2.31905859e-02 3.78423221e-02 2.86964238e-01
3.10301244e-01 -1.24126625e+00 -8.86202812e-01 5.74080706e-01
-1.02206326e+00 -5.48125386e-01 -1.95259616e-01 1.92811683e-01
-4.34566349e-01 5.04809797e-01 -9.69038069e-01 -4.93156850e-01
-9.09597099e-01 -1.83092785e+00 1.37740445e+00 -5.46052866e-02
-4.16219205e-01 -8.77258182e-01 -2.07964271e-01 -4.25246842e-02
8.71258616e-01 -3.49890232e-01 7.08156586e-01 2.97017712e-02
-7.59823442e-01 1.87472984e-01 -2.26215079e-01 4.23744559e-01
-3.33698303e-01 3.11842442e-01 -6.77960277e-01 -3.85047972e-01
-2.51227289e-01 -4.03317600e-01 3.82652581e-01 2.76790082e-01
1.19039059e+00 -3.68250012e-01 2.00656001e-02 1.03098893e+00
1.44177115e+00 -3.36432517e-01 8.80195916e-01 1.51184648e-01
3.14486623e-01 -5.17749786e-01 4.12179530e-01 9.52489436e-01
6.36000276e-01 7.97205925e-01 2.58152097e-01 1.12167373e-01
-1.31789297e-01 5.77314710e-03 6.99735880e-01 1.33202910e+00
2.07966030e-01 -5.76218739e-02 -1.03422868e+00 4.82576750e-02
-1.08263063e+00 -5.11311352e-01 -3.49585593e-01 2.35907173e+00
1.16302037e+00 5.01131952e-01 -1.01490237e-01 3.05365562e-01
-1.35219460e-02 1.87356636e-01 -4.28755254e-01 -1.31897235e+00
4.88819852e-02 9.87847328e-01 1.34668493e+00 5.93727171e-01
-5.07478893e-01 1.09213209e+00 7.37179708e+00 1.40328276e+00
-1.47049725e+00 2.67813206e-01 7.24116385e-01 -3.21997792e-01
-3.41682732e-01 6.19736016e-02 -1.14994752e+00 6.49306297e-01
1.99510896e+00 -3.59344006e-01 6.37154996e-01 5.45925438e-01
4.33679819e-01 -2.35778898e-01 -9.58153546e-01 1.10536873e+00
-5.40292501e-01 -1.72395003e+00 2.32649207e-01 1.03605911e-01
4.22155976e-01 6.25267088e-01 4.44721431e-01 3.92295927e-01
3.87448370e-01 -1.20992362e+00 9.72955108e-01 2.79402524e-01
1.41025472e+00 -8.65487456e-01 2.30847940e-01 2.88571082e-02
-1.49259329e+00 2.62974035e-02 -3.96913081e-01 -3.87854695e-01
5.56176677e-02 5.57220638e-01 -8.89758348e-01 9.62903798e-02
5.10876894e-01 3.36419016e-01 -6.75642669e-01 7.18156815e-01
3.19718450e-01 8.30642939e-01 -7.32049167e-01 -1.21732034e-01
4.22150046e-01 2.17695817e-01 -1.61952153e-02 1.42769814e+00
5.26010513e-01 -1.34752899e-01 4.26483080e-02 7.96733499e-01
1.64233431e-01 7.85371885e-02 5.04163019e-02 -1.33988783e-01
9.37041700e-01 1.00428879e+00 -5.01405120e-01 -5.80463469e-01
-4.28145647e-01 7.69781768e-01 -9.04034916e-03 -8.76290426e-02
-1.06731105e+00 -3.13465923e-01 8.31165373e-01 3.67227465e-01
1.51433393e-01 -9.28176403e-01 -5.25876641e-01 -1.19210553e+00
-3.78376156e-01 -1.35045648e+00 1.20810792e-01 -8.94048929e-01
-5.48789024e-01 3.44631821e-01 2.33108960e-02 -8.46312106e-01
-2.77424127e-01 -6.57157838e-01 -1.36246502e-01 1.12891066e+00
-1.35454977e+00 -7.37074554e-01 1.28825277e-01 6.29522979e-01
3.48140895e-01 9.64333210e-03 9.90587294e-01 5.65066159e-01
-2.62091190e-01 1.03139234e+00 2.71020919e-01 -3.16556960e-01
4.11589414e-01 -7.99388468e-01 1.20686746e+00 4.12276328e-01
2.69718338e-02 9.05035496e-01 6.73866570e-01 -3.63059580e-01
-2.12220073e+00 -9.35124397e-01 4.91066933e-01 -1.30039647e-01
9.34782505e-01 -4.16779280e-01 -5.49084067e-01 5.12540102e-01
4.96580005e-02 2.76133984e-01 4.85411942e-01 -3.05297732e-01
-4.36342180e-01 -2.32655689e-01 -1.03446245e+00 7.26461351e-01
6.23954892e-01 -6.69363856e-01 1.60618678e-01 2.42432132e-01
8.46744359e-01 -8.45192492e-01 -1.31436753e+00 1.00199565e-01
6.10841572e-01 -1.16990280e+00 1.21703601e+00 1.49517536e-01
1.82599485e-01 -1.67524263e-01 -7.60843992e-01 -9.42058921e-01
-5.44224493e-02 -9.09814060e-01 -2.31335476e-01 7.46293485e-01
1.94669411e-01 -6.64092541e-01 4.31853145e-01 3.16693246e-01
-1.60689175e-01 -8.16016316e-01 -1.15497923e+00 -6.81843758e-01
3.80816430e-01 -1.01650405e+00 9.65730429e-01 2.53677666e-01
-8.15869793e-02 2.56810278e-01 -3.37202102e-02 -7.87856337e-03
3.07488143e-01 -3.03877562e-01 6.16124928e-01 -4.40297812e-01
-6.92698359e-01 -4.44732189e-01 -5.92610598e-01 -1.27827775e+00
-3.71211529e-01 -1.13556898e+00 -5.89140773e-01 -1.02355480e+00
-2.50550658e-01 -8.87096763e-01 6.12051114e-02 3.89341295e-01
5.45760691e-01 5.38697720e-01 3.60029012e-01 1.76095977e-01
-7.21963227e-01 4.58612412e-01 1.16952980e+00 7.73743913e-02
-4.53220978e-02 -4.03177381e-01 -5.17897427e-01 6.49638832e-01
5.33317804e-01 -8.57007354e-02 -2.57232904e-01 -5.26372433e-01
6.53220713e-01 2.35164464e-01 3.57428938e-01 -1.41429210e+00
1.85466498e-01 1.26175076e-01 2.65523940e-01 -6.33410454e-01
6.07223392e-01 -1.73019350e-01 1.43332988e-01 7.22801745e-01
-1.23524584e-01 7.05680907e-01 5.85018158e-01 -2.04236209e-01
1.71709031e-01 -1.31410643e-01 7.29555607e-01 -9.38446224e-02
-7.61346817e-01 3.70317996e-02 -5.74574232e-01 2.21780494e-01
5.02864361e-01 1.77732073e-02 -3.50500911e-01 -2.62256503e-01
-3.91915828e-01 2.60957688e-01 5.47897637e-01 1.12573251e-01
4.98068839e-01 -1.29680550e+00 -5.30128598e-01 3.94718558e-01
-2.11060688e-01 -2.85917908e-01 -3.30650471e-02 7.15119541e-01
-1.19110620e+00 8.04023623e-01 -1.42636308e-02 -7.10477471e-01
-1.14589548e+00 1.70806572e-01 3.87737602e-01 -5.88177562e-01
-3.35107476e-01 7.75644422e-01 -3.31001252e-01 -1.60166726e-01
3.77881527e-02 -1.22888374e+00 6.10085666e-01 -3.92864704e-01
7.25614488e-01 4.92892057e-01 5.18086016e-01 -5.34932196e-01
-3.65056962e-01 2.84444302e-01 1.45363837e-01 -4.17665780e-01
8.88490677e-01 2.22115591e-02 -1.61565572e-01 4.96537179e-01
1.32865655e+00 1.37196288e-01 -9.00338054e-01 9.04382914e-02
-1.05200924e-01 -1.36175856e-01 4.85614061e-01 -7.31235802e-01
-8.61087680e-01 9.11206126e-01 9.23728406e-01 -2.77741611e-01
1.10720122e+00 -5.45274556e-01 1.15954113e+00 2.81194985e-01
9.61232901e-01 -8.72220039e-01 -1.62529171e-01 8.00126791e-01
5.33516347e-01 -5.02983451e-01 4.09166873e-01 -2.07836524e-01
-2.02391848e-01 1.10628748e+00 6.98197260e-02 -1.26435295e-01
6.90189838e-01 1.07231915e+00 -1.02288604e-01 5.48785813e-02
-1.10364282e+00 2.92236894e-01 4.02540304e-02 1.43312335e-01
9.98529553e-01 2.14119256e-01 -4.60532129e-01 3.70982915e-01
-7.65996695e-01 4.74368542e-01 7.81936467e-01 9.60082889e-01
-3.54498029e-01 -1.60126436e+00 -6.97789133e-01 6.03467166e-01
-8.17275286e-01 -8.42251122e-01 3.69799465e-01 4.60171402e-01
5.56488633e-02 8.88885140e-01 2.27167159e-01 -4.25691217e-01
-3.49069908e-02 -3.03432584e-01 7.75091112e-01 -4.92677689e-01
-1.12911534e+00 -7.43330568e-02 2.15393364e-01 -9.17127490e-01
1.11612260e-01 -4.08957481e-01 -1.69791877e+00 -9.40482795e-01
-1.06181078e-01 -3.40430662e-02 1.00769925e+00 3.68546575e-01
7.97186971e-01 4.51628774e-01 2.19520181e-02 -7.78078198e-01
-1.14877212e+00 -6.82039976e-01 -4.48537916e-01 -5.19333422e-01
2.09334701e-01 -1.93425760e-01 6.36863336e-02 -2.94657797e-01] | [8.642549514770508, 3.4407434463500977] |
3701846f-37d1-4960-a3a5-538f88185986 | acorn-adaptive-coordinate-networks-for-neural | 2105.02788 | null | https://arxiv.org/abs/2105.02788v1 | https://arxiv.org/pdf/2105.02788v1.pdf | ACORN: Adaptive Coordinate Networks for Neural Scene Representation | Neural representations have emerged as a new paradigm for applications in rendering, imaging, geometric modeling, and simulation. Compared to traditional representations such as meshes, point clouds, or volumes they can be flexibly incorporated into differentiable learning-based pipelines. While recent improvements to neural representations now make it possible to represent signals with fine details at moderate resolutions (e.g., for images and 3D shapes), adequately representing large-scale or complex scenes has proven a challenge. Current neural representations fail to accurately represent images at resolutions greater than a megapixel or 3D scenes with more than a few hundred thousand polygons. Here, we introduce a new hybrid implicit-explicit network architecture and training strategy that adaptively allocates resources during training and inference based on the local complexity of a signal of interest. Our approach uses a multiscale block-coordinate decomposition, similar to a quadtree or octree, that is optimized during training. The network architecture operates in two stages: using the bulk of the network parameters, a coordinate encoder generates a feature grid in a single forward pass. Then, hundreds or thousands of samples within each block can be efficiently evaluated using a lightweight feature decoder. With this hybrid implicit-explicit network architecture, we demonstrate the first experiments that fit gigapixel images to nearly 40 dB peak signal-to-noise ratio. Notably this represents an increase in scale of over 1000x compared to the resolution of previously demonstrated image-fitting experiments. Moreover, our approach is able to represent 3D shapes significantly faster and better than previous techniques; it reduces training times from days to hours or minutes and memory requirements by over an order of magnitude. | ['Gordon Wetzstein', 'Marco Monteiro', 'Eric R. Chan', 'Connor Z. Lin', 'David B. Lindell', 'Julien N. P. Martel'] | 2021-05-06 | null | null | null | null | ['3d-shape-representation'] | ['computer-vision'] | [ 3.08099002e-01 3.46580185e-02 3.55172962e-01 -2.91364014e-01
-9.34246182e-01 -1.72374517e-01 7.38177061e-01 2.52492756e-01
-2.98264176e-01 6.58676147e-01 -1.82102650e-01 -2.71654278e-01
-1.63937174e-02 -1.03064072e+00 -8.88002932e-01 -4.90655810e-01
-4.19451505e-01 6.35771573e-01 2.83726335e-01 -3.37439366e-02
6.31298125e-02 1.13912845e+00 -1.79080093e+00 3.77236396e-01
4.99270588e-01 1.39312088e+00 6.74293935e-02 8.71644080e-01
-2.69342512e-01 5.69226801e-01 -4.99721617e-01 1.61810830e-01
2.62414932e-01 1.70781553e-01 -5.35754442e-01 -3.89626510e-02
8.15550804e-01 -4.70586687e-01 -2.21360162e-01 5.85077882e-01
7.04934955e-01 4.13268507e-02 5.00960886e-01 -7.10987449e-01
-2.42778495e-01 1.16490178e-01 -5.95565259e-01 -6.18621893e-02
1.35393232e-01 2.87367821e-01 5.72108686e-01 -9.74034369e-01
4.90169346e-01 1.40082479e+00 1.08320940e+00 3.07144642e-01
-1.82503939e+00 -4.88788933e-01 8.69500414e-02 -2.76833415e-01
-1.35620964e+00 -3.96979928e-01 5.62020838e-01 -4.24447209e-01
1.24332023e+00 3.37982684e-01 8.35725188e-01 6.61269248e-01
1.27071455e-01 2.89862245e-01 1.06739235e+00 -1.77974775e-01
1.94445938e-01 -1.05780922e-02 -1.12534188e-01 7.47146428e-01
-1.19809322e-02 1.33352831e-01 -4.11362439e-01 -3.91107500e-01
1.44411266e+00 -2.21410662e-01 -1.99042901e-01 -2.43501961e-01
-1.27065170e+00 8.64536166e-01 7.40562975e-01 9.69772860e-02
-5.22552371e-01 8.63504171e-01 5.01528800e-01 2.10752860e-01
6.51379824e-01 4.47560161e-01 -4.23841804e-01 -3.38859558e-02
-1.33031237e+00 3.99373412e-01 7.08442390e-01 8.09172094e-01
9.81521308e-01 4.47968096e-01 1.33822814e-01 6.95762992e-01
5.56706861e-02 4.28066730e-01 1.29644454e-01 -1.17366266e+00
7.04183206e-02 4.08231884e-01 4.23122458e-02 -1.24263978e+00
-6.50206029e-01 -6.35247111e-01 -1.16978550e+00 7.75789261e-01
2.69205987e-01 -4.10289876e-03 -9.53688741e-01 1.33229554e+00
5.08647978e-01 3.74754131e-01 -4.88252878e-01 8.35883975e-01
7.15337038e-01 8.71729434e-01 -1.45292968e-01 4.90471311e-02
1.46651328e+00 -4.50103939e-01 -1.15334719e-01 -3.62869054e-02
3.35758477e-01 -7.17854917e-01 9.60188210e-01 4.97243732e-01
-1.40291917e+00 -6.20132744e-01 -1.13737822e+00 -2.74380893e-01
-2.94661582e-01 -1.14122912e-01 8.26206088e-01 4.43368673e-01
-1.41863775e+00 9.24302101e-01 -1.03716040e+00 1.32933753e-02
5.56651354e-01 6.04744673e-01 -1.43190399e-01 8.07532594e-02
-7.09750414e-01 5.67592263e-01 2.07943078e-02 -7.65978219e-03
-7.18324542e-01 -1.22883284e+00 -8.29496086e-01 2.85646498e-01
-1.20341606e-01 -1.05912459e+00 9.52010572e-01 -9.00387108e-01
-1.54554892e+00 7.57969439e-01 -1.30363539e-01 -7.26218641e-01
4.67556417e-01 -3.91920246e-02 -4.89138700e-02 2.11000279e-01
-2.48094067e-01 8.38267267e-01 9.18354154e-01 -1.17246974e+00
-2.72787333e-01 -2.24190533e-01 1.21976353e-01 -9.65878088e-03
7.64586627e-02 1.30906776e-02 -4.15955693e-01 -7.36432791e-01
3.31262410e-01 -5.94931304e-01 -6.30621552e-01 7.16348588e-01
-7.08271414e-02 2.43672192e-01 6.89627945e-01 -4.81709957e-01
6.51590228e-01 -2.09029961e+00 -1.47013828e-01 3.75830203e-01
3.84797454e-01 8.29230919e-02 -1.23237148e-01 2.52260536e-01
9.79283941e-04 1.46090090e-01 -3.74395281e-01 -5.31305432e-01
-6.35373965e-02 9.80326831e-02 -1.95918173e-01 4.77522582e-01
4.22483295e-01 6.95338905e-01 -5.79206228e-01 -3.34440082e-01
3.02378923e-01 1.08549905e+00 -7.45215178e-01 -9.68315750e-02
-3.03154111e-01 3.27813178e-01 -3.79345179e-01 4.65868920e-01
7.96193838e-01 -5.38361132e-01 2.44273711e-02 -3.67463380e-01
-3.55340153e-01 4.70399439e-01 -1.34930384e+00 1.74622548e+00
-8.20298374e-01 9.12329137e-01 3.92089844e-01 -1.01065397e+00
9.18691099e-01 3.38237405e-01 5.39516270e-01 -7.26085007e-01
-6.41603619e-02 2.75149792e-01 -3.53853762e-01 1.39364704e-01
4.74182278e-01 -1.10693932e-01 1.15169376e-01 2.37164751e-01
-7.34757781e-02 -5.86870134e-01 -8.94148573e-02 -1.20468870e-01
1.02796185e+00 2.04858169e-01 1.54015347e-01 -2.66382992e-01
3.24238807e-01 8.92441422e-02 2.77769446e-01 6.76533341e-01
4.45545793e-01 8.35426033e-01 4.84762281e-01 -9.97867942e-01
-1.21646214e+00 -1.00119555e+00 -4.32348341e-01 8.13803673e-01
-3.42471629e-01 -3.64926189e-01 -6.43363595e-01 2.31685817e-01
2.12394167e-02 3.54923815e-01 -5.58033526e-01 3.15042377e-01
-8.84994328e-01 -6.49290144e-01 5.45729697e-01 5.63450813e-01
3.77259970e-01 -8.65540862e-01 -9.69456911e-01 4.95201021e-01
5.83932996e-01 -1.06170213e+00 8.52015316e-02 2.65178740e-01
-1.26007462e+00 -8.20471227e-01 -6.43205106e-01 -4.90851045e-01
6.43334448e-01 -6.86133187e-03 1.50509667e+00 1.93040028e-01
-6.49359226e-01 1.70016423e-01 2.81219572e-01 -1.99494198e-01
-2.29508892e-01 -1.30657822e-01 -9.56658423e-02 -2.22939670e-01
-3.14857960e-01 -1.16217768e+00 -7.34892607e-01 -4.84344028e-02
-7.36003995e-01 3.74118388e-01 4.69790190e-01 7.74213910e-01
1.04154694e+00 -3.46361667e-01 3.28347296e-01 -8.26696098e-01
4.36746091e-01 -2.50920922e-01 -1.01721811e+00 -2.39919662e-01
-3.12254667e-01 1.51882946e-01 7.74981260e-01 -4.30228382e-01
-5.95626295e-01 2.65845001e-01 -3.60800803e-01 -5.12907803e-01
-1.54366001e-01 5.35592556e-01 3.86629373e-01 -5.06234288e-01
7.13574171e-01 1.03584729e-01 6.46878779e-02 -4.02861565e-01
3.94136667e-01 1.83079988e-01 4.92558867e-01 -7.11169720e-01
6.51729584e-01 6.04631543e-01 3.33860070e-01 -1.09253037e+00
-1.81698397e-01 3.08479997e-03 -6.63688064e-01 -1.23159550e-01
6.34194255e-01 -9.28016663e-01 -8.64375710e-01 3.21988374e-01
-1.25853038e+00 -5.45006514e-01 -5.20051539e-01 3.57541353e-01
-6.96448088e-01 1.01148272e-02 -6.38922334e-01 -5.66257179e-01
-4.04427052e-01 -1.10181165e+00 1.29091775e+00 -6.50779232e-02
-2.09628686e-01 -9.17418301e-01 -2.42928162e-01 -1.71365976e-01
8.86460483e-01 8.13219190e-01 1.10957658e+00 2.02888828e-02
-9.80795324e-01 -1.60210431e-01 -5.18163562e-01 1.01949252e-01
-1.50372222e-01 1.31012037e-01 -1.04577696e+00 -2.52790779e-01
5.84052119e-04 -4.69258666e-01 6.52033150e-01 5.10801733e-01
1.55918586e+00 -2.60475665e-01 -2.28076354e-01 1.03647876e+00
1.57272017e+00 -1.59144074e-01 6.29866242e-01 1.77775458e-01
5.01563191e-01 3.20722312e-01 2.00129356e-02 5.38744688e-01
1.17082596e-01 6.96108997e-01 5.07657230e-01 -4.11944121e-01
-2.50746518e-01 1.54839605e-01 -1.54574692e-01 7.44362593e-01
-2.42161959e-01 2.65941292e-01 -9.73171890e-01 2.64236361e-01
-1.29654396e+00 -8.52520525e-01 -1.03811577e-01 2.38162994e+00
7.21352160e-01 2.79039383e-01 -1.52901441e-01 1.64660379e-01
2.01927766e-01 2.43736267e-01 -6.00303352e-01 -6.29380465e-01
-1.06293252e-02 6.56264007e-01 5.17611861e-01 5.02660334e-01
-8.39235425e-01 5.81827819e-01 6.60161972e+00 7.03474104e-01
-1.67997336e+00 -2.45647319e-02 8.28537166e-01 -3.11420202e-01
-4.20693427e-01 -2.68529564e-01 -5.21961987e-01 1.42080784e-01
1.14955556e+00 4.78898212e-02 5.68370342e-01 8.48082960e-01
2.43132561e-01 4.84168194e-02 -1.08280206e+00 1.20302844e+00
-1.91129714e-01 -1.85588872e+00 1.50604665e-01 1.48436785e-01
4.86265242e-01 4.46506590e-01 1.15574419e-01 1.30043045e-01
8.76087695e-02 -1.57959509e+00 7.41878033e-01 5.72283566e-01
1.24304163e+00 -8.32549870e-01 1.31952688e-01 5.60247540e-01
-1.26586044e+00 2.49617875e-01 -6.19062304e-01 -9.24406052e-02
1.37539044e-01 7.58149862e-01 -7.64205813e-01 2.71283627e-01
7.18000650e-01 4.19720054e-01 -2.91573375e-01 1.01821625e+00
2.76104301e-01 5.31931400e-01 -7.91184187e-01 8.61819088e-02
3.81408781e-01 -7.86441565e-02 4.68163103e-01 1.28477824e+00
3.79857212e-01 1.75013795e-01 1.07439190e-01 1.04643393e+00
-5.41239902e-02 -1.23045504e-01 -4.93885607e-01 2.68705636e-01
3.97245169e-01 1.19604981e+00 -6.49241030e-01 -4.22233313e-01
-3.97714883e-01 7.14806676e-01 4.73396808e-01 3.19518775e-01
-7.36436248e-01 -3.97142917e-01 7.25319505e-01 5.25383115e-01
5.00717700e-01 -5.77704847e-01 -4.03734267e-01 -6.95638776e-01
-4.23955619e-02 -8.82995963e-01 -2.68191934e-01 -8.78553450e-01
-8.68571401e-01 9.08286870e-01 -9.20941979e-02 -1.07844484e+00
-4.55446839e-01 -7.59371698e-01 -4.65036988e-01 1.10709572e+00
-1.48634851e+00 -1.03298366e+00 -4.94646877e-01 3.40544105e-01
3.07313442e-01 2.22504273e-01 1.14727926e+00 3.00362080e-01
2.27815993e-02 1.93452045e-01 1.19569547e-01 4.56273817e-02
3.16837686e-03 -1.06056011e+00 8.56162488e-01 3.19573104e-01
1.04615167e-01 5.16509712e-01 4.95442748e-01 -2.01681137e-01
-1.52193904e+00 -9.57749724e-01 3.80094796e-01 5.74858710e-02
4.05109644e-01 -5.74654758e-01 -1.05760658e+00 5.10910988e-01
5.63238896e-02 5.68049908e-01 2.72674978e-01 8.23824033e-02
-3.95522326e-01 -1.93367243e-01 -1.15916681e+00 3.38281453e-01
8.43984067e-01 -4.95100081e-01 1.93624347e-02 3.15068722e-01
6.88372374e-01 -8.25385869e-01 -1.02276635e+00 4.04379785e-01
5.80805421e-01 -1.12654936e+00 1.27176940e+00 -2.54659981e-01
2.86713779e-01 -3.54440331e-01 -2.01599821e-01 -1.11333060e+00
-4.15835112e-01 -6.48075581e-01 -2.13539362e-01 7.19496965e-01
2.61841327e-01 -6.22627616e-01 7.82194078e-01 3.65766078e-01
-2.70864576e-01 -1.19914389e+00 -1.17272568e+00 -3.25534642e-01
7.46354535e-02 -5.59879541e-01 6.95135117e-01 7.29862392e-01
-6.91963077e-01 2.27841921e-02 2.95925494e-02 3.33213508e-01
7.30392754e-01 1.50495321e-01 7.17267692e-01 -1.41089523e+00
-3.38128567e-01 -5.60662687e-01 -6.71490371e-01 -1.34084296e+00
-1.43155172e-01 -7.84926891e-01 -1.79328963e-01 -1.69909894e+00
-3.81023824e-01 -9.54224586e-01 9.96296480e-02 2.44175375e-01
3.64930123e-01 4.84390765e-01 7.32230544e-02 -8.90131816e-02
4.13135476e-02 3.09113353e-01 1.10668504e+00 -1.50483996e-01
-1.48039572e-02 -1.39499918e-01 -2.92872757e-01 8.47802341e-01
6.27046287e-01 -2.55124629e-01 -3.12993586e-01 -8.92526507e-01
3.59798342e-01 2.76702613e-01 7.91892886e-01 -1.44196010e+00
2.07810313e-01 1.38990164e-01 7.97446847e-01 -7.65153348e-01
8.55863452e-01 -7.94832110e-01 5.03363907e-01 2.83920258e-01
-2.00786993e-01 5.67776971e-02 6.31054223e-01 2.82749861e-01
-1.74121827e-01 7.83897117e-02 9.27107453e-01 -2.95890808e-01
-2.46697128e-01 4.44865912e-01 -3.89539242e-01 -1.34501889e-01
6.13986254e-01 -4.83764082e-01 8.57058764e-02 -2.84898341e-01
-6.67591333e-01 -2.07412094e-02 4.78144705e-01 -9.56703871e-02
7.45913744e-01 -1.28308737e+00 -7.84871757e-01 4.24906760e-01
-4.71425861e-01 5.46839058e-01 2.78316915e-01 6.21183753e-01
-1.03129578e+00 3.64074349e-01 -1.56576753e-01 -9.31294322e-01
-1.08550632e+00 1.38488382e-01 7.26283252e-01 -2.65964687e-01
-9.42539752e-01 8.20007682e-01 2.08581045e-01 -3.76737773e-01
1.75375775e-01 -8.32748592e-01 5.96513972e-02 -2.06652939e-01
6.38407707e-01 2.99610645e-01 1.81147978e-01 -5.80335200e-01
-1.43077105e-01 7.82119095e-01 1.37323931e-01 9.59817413e-03
1.68163931e+00 3.68028551e-01 -1.57064736e-01 4.46572453e-01
1.28579092e+00 -1.29809435e-02 -1.60731006e+00 -5.13291992e-02
-4.08419818e-01 -3.60346943e-01 3.08935314e-01 -4.65376407e-01
-1.05560899e+00 1.15360332e+00 5.58897316e-01 2.54171103e-01
1.11124289e+00 -1.37973070e-01 6.54086530e-01 3.06147218e-01
5.00854790e-01 -6.04917228e-01 -1.35771230e-01 5.60417354e-01
1.11153185e+00 -7.58248985e-01 3.20403963e-01 -4.51436579e-01
9.81354937e-02 1.32078969e+00 2.07865790e-01 -5.70406616e-01
7.22328842e-01 7.17622101e-01 -1.38602003e-01 -2.96846211e-01
-8.87614071e-01 2.91534573e-01 3.89869213e-01 6.22905374e-01
5.86413383e-01 3.65233384e-02 4.02613610e-01 3.43962274e-02
-2.78090447e-01 -7.72504183e-03 2.28398025e-01 7.35365450e-01
-4.87902522e-01 -8.25290024e-01 -3.51256222e-01 6.61216438e-01
-3.04597855e-01 -1.81226239e-01 3.20031136e-01 7.97251463e-01
-1.77939180e-02 2.15106636e-01 5.91962397e-01 -3.00580841e-02
3.45149934e-01 -2.17133224e-01 5.68093300e-01 -5.22068858e-01
-7.17350364e-01 6.85715079e-02 -9.95631889e-03 -9.53363359e-01
-3.53671670e-01 -5.09275198e-01 -1.46062517e+00 -4.34834093e-01
7.15940073e-02 -1.99603125e-01 9.80687559e-01 5.09399056e-01
6.27054811e-01 7.08389640e-01 3.97877216e-01 -1.55731928e+00
-3.34339082e-01 -6.26885951e-01 -3.53933930e-01 -7.20851272e-02
5.43416381e-01 -4.60169077e-01 -1.81415111e-01 -4.75026406e-02] | [9.259081840515137, -3.157470703125] |
4d957c74-ea89-4d27-9fce-923a594cd3b7 | personalization-in-goal-oriented-dialog | 1706.07503 | null | http://arxiv.org/abs/1706.07503v3 | http://arxiv.org/pdf/1706.07503v3.pdf | Personalization in Goal-Oriented Dialog | The main goal of modeling human conversation is to create agents which can
interact with people in both open-ended and goal-oriented scenarios. End-to-end
trained neural dialog systems are an important line of research for such
generalized dialog models as they do not resort to any situation-specific
handcrafting of rules. However, incorporating personalization into such systems
is a largely unexplored topic as there are no existing corpora to facilitate
such work. In this paper, we present a new dataset of goal-oriented dialogs
which are influenced by speaker profiles attached to them. We analyze the
shortcomings of an existing end-to-end dialog system based on Memory Networks
and propose modifications to the architecture which enable personalization. We
also investigate personalization in dialog as a multi-task learning problem,
and show that a single model which shares features among various profiles
outperforms separate models for each profile. | ['Fei Mi', 'Boi Faltings', 'Chaitanya K. Joshi'] | 2017-06-22 | null | null | null | null | ['goal-oriented-dialog'] | ['natural-language-processing'] | [-2.55510569e-01 6.66391611e-01 -5.29309409e-03 -9.53820407e-01
-2.08965942e-01 -6.26740575e-01 1.00336397e+00 -2.86261350e-01
-6.33162618e-01 9.74149525e-01 8.19505990e-01 -1.50086746e-01
-1.46654680e-01 -5.56459427e-01 7.15035126e-02 -3.63936871e-01
1.50153279e-01 1.40290546e+00 3.43853980e-01 -9.80547845e-01
1.39434421e-02 3.89552772e-01 -1.10423005e+00 5.35413265e-01
6.86529636e-01 3.68858755e-01 2.52419561e-01 8.86705458e-01
-2.88764745e-01 6.86225593e-01 -8.14283311e-01 -5.97448051e-01
7.76275108e-03 -3.66643935e-01 -1.24460566e+00 5.06151021e-01
2.27110788e-01 -5.06847024e-01 -2.76322186e-01 5.63793719e-01
6.82324171e-01 8.07953596e-01 6.79654598e-01 -1.04497206e+00
-7.57037878e-01 1.04915535e+00 4.20048267e-01 -3.44083868e-02
4.31774646e-01 2.44904801e-01 9.69656467e-01 -3.72049183e-01
4.28178042e-01 1.61670697e+00 4.47371453e-01 1.41697276e+00
-1.27041888e+00 3.21429595e-02 3.90566528e-01 -2.81813014e-02
-6.73498034e-01 -7.17011809e-01 8.47880840e-01 -4.34831291e-01
1.10572064e+00 2.09769309e-01 1.16810024e-01 1.56557262e+00
2.05298681e-02 6.44888401e-01 9.28734064e-01 -4.10497785e-01
2.62199670e-01 7.66812623e-01 5.91515183e-01 4.48929638e-01
-3.45269889e-01 -4.26079519e-02 -5.28847516e-01 -3.07421267e-01
4.38617051e-01 -1.48356006e-01 -1.71070844e-01 -2.50631839e-01
-1.01472032e+00 1.24672174e+00 2.41367500e-02 4.94663537e-01
-2.93361396e-01 -4.74053293e-01 3.70453537e-01 5.87768912e-01
4.20445949e-01 7.51611173e-01 -6.50085568e-01 -5.02895415e-02
-4.26790386e-01 6.27795994e-01 1.60449731e+00 9.08026218e-01
7.49260724e-01 -1.39747158e-01 -6.46204233e-01 1.30118692e+00
5.03276467e-01 -1.93299409e-02 7.95291185e-01 -1.20474052e+00
2.47496918e-01 7.72242427e-01 3.81535232e-01 -2.85160661e-01
-9.70152974e-01 6.25366271e-02 -5.70591211e-01 3.50276977e-01
6.11325741e-01 -9.58999217e-01 -4.21216547e-01 1.91381252e+00
3.11525822e-01 -4.75966603e-01 5.07293105e-01 4.76022959e-01
1.03807998e+00 5.27908802e-01 3.15097541e-01 -1.84549093e-01
1.54885161e+00 -1.43876183e+00 -8.84265840e-01 -4.14605916e-01
4.18277264e-01 -5.59175909e-01 1.19477880e+00 1.55267507e-01
-1.18789279e+00 -5.96748888e-01 -7.06649542e-01 -1.25687972e-01
-6.19183898e-01 -2.72380531e-01 7.74443388e-01 1.07323432e+00
-1.37415481e+00 5.59083760e-01 -3.23840439e-01 -8.53491783e-01
-2.92271376e-01 7.29962885e-01 -1.45587519e-01 7.69492149e-01
-1.41384137e+00 1.47367513e+00 3.83444458e-01 -3.55499536e-01
-6.32640064e-01 -3.75661790e-01 -7.35082150e-01 2.32549727e-01
3.64109010e-01 -9.87211406e-01 1.91813982e+00 -5.51921070e-01
-2.62354159e+00 8.71544063e-01 3.86291929e-02 -5.77661455e-01
3.89157027e-01 -1.80493966e-01 -3.21455508e-01 -3.49481285e-01
-3.10319871e-01 8.33778620e-01 4.81210768e-01 -1.24960530e+00
-7.41060436e-01 -2.60589093e-01 5.94953120e-01 6.02588713e-01
-6.98751450e-01 9.39081833e-02 -1.31074458e-01 -2.83668160e-01
-7.12939203e-01 -1.02855182e+00 -6.71139777e-01 -6.16721153e-01
-3.18586320e-01 -7.81138718e-01 7.22055316e-01 -3.74852300e-01
9.73372102e-01 -1.59668410e+00 3.13426167e-01 -2.74358600e-01
1.72190651e-01 4.94114906e-01 2.01091357e-02 8.30916166e-01
4.30615515e-01 -1.98161647e-01 6.97319359e-02 -9.19420660e-01
6.38412535e-01 3.97704899e-01 -1.48199379e-01 -1.39109582e-01
-3.57525229e-01 6.15134597e-01 -6.71027958e-01 -3.83693337e-01
4.96537298e-01 8.55401531e-02 -7.89457619e-01 1.02818131e+00
-7.74504483e-01 9.41930354e-01 -4.57567245e-01 -1.98177546e-01
2.20794469e-01 -1.98746510e-02 3.87390107e-01 2.32898891e-01
-1.67870730e-01 5.04617035e-01 -8.16704035e-01 1.75749683e+00
-7.03406572e-01 2.15991676e-01 3.19972277e-01 -6.52537346e-01
1.11663258e+00 6.24074697e-01 2.97759175e-01 3.81428413e-02
3.14229995e-01 -3.42828184e-01 2.30437547e-01 -6.37931585e-01
8.78888786e-01 -4.61308867e-01 -4.11251754e-01 6.97204173e-01
4.43549842e-01 -1.19025692e-01 2.18260929e-01 5.79604656e-02
7.14424253e-01 -1.70701116e-01 4.22757059e-01 -3.63958806e-01
9.35211718e-01 -3.65461558e-02 2.66880810e-01 9.30534601e-01
-4.03121442e-01 3.15089077e-01 1.72549069e-01 -4.42065209e-01
-7.34175265e-01 -8.22368264e-01 4.92380857e-02 1.91789639e+00
-1.33347869e-01 -1.56473905e-01 -8.02798867e-01 -7.87673354e-01
-2.56311953e-01 1.10489428e+00 -3.85709018e-01 3.60287316e-02
-6.10415518e-01 -7.32159019e-01 5.04353464e-01 2.65182465e-01
7.45779514e-01 -1.50997889e+00 -3.81609470e-01 4.28840905e-01
-1.00388899e-01 -1.09114766e+00 -6.74554646e-01 1.25618845e-01
-6.96751535e-01 -5.96534193e-01 -7.06991613e-01 -8.23555589e-01
2.69814953e-02 -2.08351269e-01 1.33730888e+00 -2.38718361e-01
6.27027333e-01 8.28402936e-01 -3.25560659e-01 -4.00718212e-01
-1.04226017e+00 5.42721868e-01 1.30658507e-01 -3.42049375e-02
7.27012396e-01 -7.51482785e-01 -3.61497313e-01 4.78711933e-01
-4.71032739e-01 -1.22614317e-01 3.02918285e-01 9.80295956e-01
-5.04402697e-01 -4.04414743e-01 1.00225985e+00 -1.29757881e+00
1.42826867e+00 -3.15117747e-01 -3.13723117e-01 4.04095411e-01
-3.70221078e-01 2.23265916e-01 5.96004367e-01 -4.26620185e-01
-2.08864594e+00 2.31720656e-01 -6.01113319e-01 3.03713530e-01
-7.02318013e-01 1.20905161e-01 -4.91809428e-01 1.32464319e-01
9.02148068e-01 -6.11443892e-02 2.19514012e-01 -6.45314813e-01
8.17071795e-01 1.06440651e+00 5.30638993e-01 -7.83448458e-01
3.32174242e-01 1.43851414e-01 -5.10891676e-01 -1.05262995e+00
-7.12594748e-01 -5.76557815e-01 -7.70651221e-01 -1.35366693e-01
1.09232593e+00 -5.90886116e-01 -1.19141984e+00 4.30198580e-01
-1.34043193e+00 -8.16430449e-01 -1.37364775e-01 3.49544317e-01
-8.36259305e-01 5.04224300e-01 -7.05123782e-01 -9.96567369e-01
-4.36954021e-01 -1.01880372e+00 6.72716439e-01 4.63350445e-01
-8.08281004e-01 -1.71494150e+00 5.10545194e-01 7.88032293e-01
7.13870943e-01 -5.35936832e-01 8.12818885e-01 -1.61114824e+00
-1.13871276e-01 2.38660853e-02 5.48161864e-01 3.13000441e-01
3.34795952e-01 -6.33545101e-01 -1.25148129e+00 -1.31317779e-01
4.57893968e-01 -5.88514686e-01 4.52332586e-01 1.61513492e-01
4.39080834e-01 -5.43504059e-01 -2.56486177e-01 1.38898551e-01
5.39310217e-01 3.92860681e-01 2.74731249e-01 9.53927636e-02
3.62439781e-01 1.21953118e+00 2.11101130e-01 5.62611163e-01
7.63498008e-01 1.02330709e+00 6.50732666e-02 2.29920268e-01
-1.32489800e-01 -1.76910982e-02 4.61488366e-01 5.47942281e-01
1.20688019e-04 -5.32006323e-01 -5.54635227e-01 4.51765418e-01
-2.04726434e+00 -9.15575683e-01 1.31621003e-01 1.92239690e+00
1.13953149e+00 -5.96493818e-02 5.90291798e-01 -6.53912902e-01
7.93381095e-01 3.12586755e-01 -3.14218670e-01 -6.02682769e-01
1.59771413e-01 -7.90104792e-02 -7.09136128e-02 1.10020709e+00
-1.16299963e+00 1.33223474e+00 6.48667192e+00 1.89518571e-01
-5.46016812e-01 2.82724530e-01 5.08997798e-01 3.04469347e-01
3.39850076e-02 -9.78041217e-02 -1.34043419e+00 1.53416201e-01
1.19571579e+00 -9.27434862e-02 4.32960033e-01 1.03324902e+00
1.79514959e-01 2.15332717e-01 -1.60249829e+00 4.71255779e-01
1.38618082e-01 -1.07873476e+00 1.17952619e-02 -2.56215297e-02
5.91648698e-01 -3.74574125e-01 -7.18936473e-02 7.62762547e-01
1.08981323e+00 -8.86715174e-01 2.84684100e-03 4.46292967e-01
-1.40836388e-01 -2.33962879e-01 7.06617534e-01 6.35370433e-01
-4.98709261e-01 -7.02702850e-02 -4.71110821e-01 -2.33273908e-01
6.13594413e-01 -1.35183096e-01 -1.43582439e+00 1.47790283e-01
4.03410912e-01 -2.77084708e-02 -1.95376322e-01 5.40121436e-01
-5.29634915e-02 2.45715410e-01 -9.58351642e-02 -3.49329025e-01
2.29970917e-01 -2.88252413e-01 7.29181349e-01 1.35603988e+00
-7.94102252e-02 1.08926706e-01 4.17601347e-01 7.16423929e-01
-1.90983322e-02 9.99111459e-02 -6.37964666e-01 3.02898228e-01
3.56400400e-01 1.22829032e+00 -2.08423033e-01 -4.28195000e-01
-6.19820297e-01 1.02039170e+00 5.25441945e-01 2.48771966e-01
-3.08420181e-01 4.35672067e-02 7.40613043e-01 -2.87608415e-01
1.96807683e-02 -1.66993856e-01 -2.17655510e-01 -1.19011343e+00
-6.30133271e-01 -9.85457659e-01 6.37305081e-01 -2.35908374e-01
-1.80051041e+00 9.35977876e-01 3.12702715e-01 -4.71420169e-01
-9.90951598e-01 -7.94984519e-01 -9.27080810e-01 9.23732996e-01
-9.67776954e-01 -1.23389030e+00 -1.93723574e-01 8.54932189e-01
1.04345298e+00 -7.97688365e-01 1.28057075e+00 -5.46605932e-03
-3.36222649e-01 5.61566830e-01 -1.04425520e-01 3.01401839e-02
1.10298169e+00 -1.54930675e+00 2.56462097e-01 2.57797331e-01
-1.79348022e-01 7.98588276e-01 1.15470874e+00 -6.48496568e-01
-8.12185824e-01 -8.38329554e-01 1.20718694e+00 -8.48930180e-01
5.69975913e-01 -4.94398624e-01 -8.70343685e-01 1.06634867e+00
1.12239528e+00 -9.61526334e-01 9.18718994e-01 7.40507245e-01
1.64516538e-01 1.30552828e-01 -1.12941694e+00 9.45524514e-01
9.49808300e-01 -1.72059774e-01 -1.31387067e+00 5.82300901e-01
6.89005136e-01 -3.31840038e-01 -9.01167274e-01 7.57289082e-02
1.80225715e-01 -1.28547275e+00 1.07770717e+00 -9.39198613e-01
-1.24415010e-01 3.74924898e-01 1.14911497e-01 -1.67399788e+00
-3.20401102e-01 -1.13962483e+00 -1.58783607e-02 1.58760500e+00
5.62546611e-01 -7.89364219e-01 1.04371655e+00 1.28433895e+00
-4.86929744e-01 -2.09290832e-01 -5.73570073e-01 -5.81400931e-01
5.07227957e-01 1.51593074e-01 6.61082089e-01 6.97897017e-01
6.38703108e-01 1.14277196e+00 -9.64208007e-01 -1.03407487e-01
2.27536410e-01 4.91633788e-02 1.22579265e+00 -1.42224288e+00
-6.13995552e-01 -6.21863365e-01 3.03561866e-01 -1.57965076e+00
6.13831103e-01 -5.98766625e-01 2.47538194e-01 -1.41954780e+00
-8.85176808e-02 -3.36108983e-01 2.66188174e-01 1.97050929e-01
-3.58154893e-01 -4.84005868e-01 1.90071449e-01 -2.33825184e-02
-6.14269018e-01 1.01815939e+00 9.04507935e-01 -1.37335807e-01
-8.74637902e-01 7.52438128e-01 -8.46773624e-01 9.14706469e-01
1.08559632e+00 -1.06258228e-01 -7.64991999e-01 -1.63626656e-01
-3.78421217e-01 2.33427376e-01 -6.49499223e-02 -8.04392040e-01
6.73523486e-01 -2.12668404e-01 -4.64946143e-02 -2.71486253e-01
9.56828594e-01 -6.69290781e-01 -2.33831316e-01 1.05395295e-01
-7.31017888e-01 -1.11267967e-02 -3.98540981e-02 3.79159123e-01
2.29873843e-02 -6.58279598e-01 8.60258222e-01 -6.09627783e-01
-7.73429811e-01 9.93047133e-02 -8.42197716e-01 -3.96973193e-02
8.55071664e-01 1.36669204e-01 -4.99602795e-01 -1.03285265e+00
-1.08188570e+00 5.67494333e-01 1.50387242e-01 4.96031672e-01
1.94205895e-01 -7.87832379e-01 -7.05698252e-01 -2.65245616e-01
-1.43496051e-01 -2.74771988e-01 4.52951759e-01 1.30482063e-01
2.48787291e-02 7.38005221e-01 -4.81237173e-01 -2.36218289e-01
-1.39198101e+00 6.52903795e-01 4.83043402e-01 -7.41561890e-01
-4.53748196e-01 8.35756779e-01 4.23853934e-01 -1.10415375e+00
5.88559508e-01 2.99503595e-01 -9.60962713e-01 8.69794711e-02
4.45016831e-01 2.08006680e-01 -2.05890208e-01 -5.93252778e-01
1.81681380e-01 -1.25110000e-01 -3.68790388e-01 -5.20020723e-01
1.24273467e+00 -5.04297376e-01 8.21866021e-02 5.19339561e-01
4.76017565e-01 -1.73843816e-01 -1.27710128e+00 -4.71406907e-01
2.33434275e-01 -9.69071537e-02 -6.43238783e-01 -8.82467389e-01
-5.32963037e-01 7.77078032e-01 3.76248062e-01 5.44554174e-01
5.76851130e-01 1.57471463e-01 5.79483986e-01 1.09460914e+00
1.26620844e-01 -1.19824934e+00 2.97912329e-01 1.11168098e+00
1.11119938e+00 -1.37835848e+00 -2.86377788e-01 -3.00469846e-01
-1.29382217e+00 1.00128686e+00 1.12222767e+00 1.06273927e-01
6.79243982e-01 -1.89794481e-01 4.43174720e-01 -1.16110191e-01
-9.46497023e-01 -3.70399296e-01 1.45339102e-01 1.01995885e+00
4.62187946e-01 -7.92608261e-02 -3.22448999e-01 9.20709014e-01
-5.30035973e-01 -4.46479499e-01 4.81763303e-01 6.19763672e-01
-5.38900554e-01 -1.72753561e+00 -2.89058149e-01 1.05934337e-01
-2.93083459e-01 5.14043868e-02 -7.20251203e-01 6.32568598e-01
-2.43208483e-01 1.52958167e+00 -3.14530820e-01 -4.19132024e-01
3.91058832e-01 7.15964735e-01 1.89741924e-01 -1.07027388e+00
-1.29877055e+00 -2.04656422e-01 8.30968618e-01 4.92188893e-02
-4.81240869e-01 -5.11052907e-01 -7.58614123e-01 -2.60843098e-01
-6.61143940e-03 4.86181438e-01 2.21601725e-01 1.01627731e+00
1.44290105e-01 4.03422147e-01 5.30421138e-01 -1.18166125e+00
-9.67414856e-01 -1.51702058e+00 -4.97997582e-01 6.45139277e-01
5.86976483e-02 -6.00767016e-01 -1.16487458e-01 1.05930664e-01] | [12.785675048828125, 8.020492553710938] |
00c35ae9-dda7-45a9-b868-fa76a3679968 | cross3dvg-baseline-and-dataset-for-cross | 2305.13876 | null | https://arxiv.org/abs/2305.13876v1 | https://arxiv.org/pdf/2305.13876v1.pdf | Cross3DVG: Baseline and Dataset for Cross-Dataset 3D Visual Grounding on Different RGB-D Scans | We present Cross3DVG, a novel task for cross-dataset visual grounding in 3D scenes, revealing the limitations of existing 3D visual grounding models using restricted 3D resources and thus easily overfit to a specific 3D dataset. To facilitate Cross3DVG, we have created a large-scale 3D visual grounding dataset containing more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan with human annotations, paired with the existing 52k descriptions on ScanRefer. We perform Cross3DVG by training a model on the source 3D visual grounding dataset and then evaluating it on the target dataset constructed in different ways (e.g., different sensors, 3D reconstruction methods, and language annotators) without using target labels. We conduct comprehensive experiments using established visual grounding models, as well as a CLIP-based 2D-3D integration method, designed to bridge the gaps between 3D datasets. By performing Cross3DVG tasks, we found that (i) cross-dataset 3D visual grounding has significantly lower performance than learning and evaluation with a single dataset, suggesting much room for improvement in cross-dataset generalization of 3D visual grounding, (ii) better detectors and transformer-based localization modules for 3D grounding are beneficial for enhancing 3D grounding performance and (iii) fusing 2D-3D data using CLIP demonstrates further performance improvements. Our Cross3DVG task will provide a benchmark for developing robust 3D visual grounding models capable of handling diverse 3D scenes while leveraging deep language understanding. | ['Motoki Kawanabe', 'Shuhei Kurita', 'Daichi Azuma', 'Taiki Miyanishi'] | 2023-05-23 | null | null | null | null | ['visual-grounding', '3d-reconstruction'] | ['computer-vision', 'computer-vision'] | [-1.18143909e-01 2.25254968e-01 -9.94250104e-02 -5.72502494e-01
-1.10941303e+00 -1.12997258e+00 5.59716284e-01 3.97758543e-01
1.28966402e-02 6.02613911e-02 2.06584454e-01 -4.66512442e-01
4.75453623e-02 -8.21782410e-01 -1.13745844e+00 -2.21330151e-02
-1.89564049e-01 6.64577723e-01 4.24335390e-01 -1.39590949e-01
-1.32785827e-01 9.09572423e-01 -1.56754363e+00 3.02960128e-01
3.08756322e-01 1.15406990e+00 2.80539155e-01 4.46825117e-01
-2.99189210e-01 3.89344543e-01 -5.91737151e-01 4.03550416e-02
6.63318992e-01 -1.31819218e-01 -7.03214943e-01 2.81727552e-01
1.19612575e+00 -2.07556084e-01 -2.67129749e-01 7.02270150e-01
5.71048915e-01 2.59621143e-02 4.62009579e-01 -1.61013806e+00
-8.98627222e-01 8.99382234e-02 -4.34747338e-01 -3.34724396e-01
8.60360980e-01 2.12885052e-01 8.27967525e-01 -8.55603933e-01
8.63522232e-01 1.43301642e+00 1.11781943e+00 5.38388193e-01
-1.39957082e+00 -8.48402202e-01 2.81533360e-01 -4.83864218e-01
-1.75756431e+00 -1.27358600e-01 6.61827207e-01 -7.21096814e-01
1.31344259e+00 5.57967126e-02 8.30071747e-01 1.34495342e+00
4.93729189e-02 5.76997519e-01 1.22729695e+00 -2.17517406e-01
2.88769186e-01 -4.65793833e-02 2.03998629e-02 9.28174317e-01
2.63958395e-01 1.09313600e-01 -8.02337766e-01 -1.53779373e-01
7.34813690e-01 -3.09521649e-02 -7.86656812e-02 -9.41192329e-01
-1.37359428e+00 4.71505433e-01 9.68806505e-01 -9.68699381e-02
8.59759897e-02 3.59010786e-01 2.59324402e-01 1.32846147e-01
6.55954301e-01 4.54537988e-01 -4.69935209e-01 3.13150316e-01
-8.97781610e-01 4.89634722e-01 4.72489178e-01 1.62308669e+00
1.15199995e+00 -1.29633054e-01 5.31593263e-02 3.92955452e-01
6.00547135e-01 1.16040671e+00 -1.83253154e-01 -9.29883897e-01
8.23501050e-01 8.00986290e-01 1.47769200e-02 -9.84445989e-01
-7.39744961e-01 -1.97023585e-01 -3.92746329e-01 4.00977641e-01
2.56925076e-01 3.13206196e-01 -1.32874537e+00 1.61885405e+00
3.82666707e-01 -1.37776569e-01 4.75535206e-02 9.28352654e-01
1.37856472e+00 3.67601842e-01 5.78848980e-02 7.54223347e-01
1.08113706e+00 -5.51225126e-01 -9.41036344e-02 -4.78404343e-01
8.81421506e-01 -4.85862464e-01 1.26598692e+00 3.43164690e-02
-6.08669162e-01 -7.26165473e-01 -1.17813087e+00 -3.63484591e-01
-7.70449221e-01 -1.29590660e-01 6.43944621e-01 4.71124053e-01
-1.18773353e+00 1.40599653e-01 -8.59646499e-01 -9.73750651e-01
5.40094912e-01 1.47446156e-01 -8.83707643e-01 -3.33246112e-01
-7.18201339e-01 8.74519289e-01 5.32058954e-01 -2.23146349e-01
-1.41484833e+00 -7.02007174e-01 -1.33571100e+00 -6.92244589e-01
2.80107647e-01 -8.81458104e-01 9.02958691e-01 -1.15213357e-01
-5.77824414e-01 1.65891695e+00 1.49224982e-01 -4.71596830e-02
4.31287885e-01 -1.22120120e-01 -4.11335409e-01 -1.19278580e-01
7.22849429e-01 9.89376366e-01 3.05384547e-01 -1.71729958e+00
-2.40010217e-01 -7.16768682e-01 2.13860810e-01 2.47356817e-01
5.09195447e-01 -5.37784755e-01 -5.01348794e-01 -3.37648630e-01
8.00116420e-01 -9.51711059e-01 -1.15822917e-02 4.00072813e-01
-6.34241760e-01 1.42721385e-01 7.15599537e-01 -3.83853406e-01
3.65778148e-01 -2.23349905e+00 -8.32388401e-02 2.63968557e-01
1.74994960e-01 -1.34441301e-01 -1.48600623e-01 4.17769223e-01
9.15879905e-02 3.10539305e-01 -2.37097386e-02 -5.58844268e-01
1.00215346e-01 5.07261455e-01 -3.97681028e-01 4.72227007e-01
2.28565544e-01 9.15618420e-01 -1.02040195e+00 -5.02669394e-01
4.12170231e-01 3.40430439e-01 -5.31236291e-01 3.15165758e-01
-3.78046274e-01 3.87561172e-01 -4.15711015e-01 1.12385368e+00
7.19811380e-01 -3.98461461e-01 -1.72391504e-01 -4.34539437e-01
-5.48421964e-02 2.22883880e-01 -1.14773774e+00 2.59107065e+00
-5.00228286e-01 4.41219360e-01 -1.07793778e-01 -4.65456307e-01
1.28576636e+00 -1.14475615e-01 2.81113118e-01 -8.05284023e-01
-6.51499182e-02 1.82859525e-01 -7.99232900e-01 -4.38142478e-01
5.69527149e-01 -9.23223644e-02 -5.85071027e-01 3.66514206e-01
4.66685355e-01 -1.07444119e+00 -4.25839067e-01 2.83164114e-01
1.03513408e+00 7.18534827e-01 1.49416879e-01 -1.86329797e-01
-2.31167480e-01 6.35205328e-01 2.64544841e-02 1.05531871e+00
-1.50531709e-01 1.06064475e+00 -7.98472576e-03 -4.66349721e-01
-1.10665965e+00 -1.52121103e+00 -2.38755107e-01 6.53252900e-01
6.03945553e-01 -5.19138396e-01 -2.47026682e-01 -8.49717259e-01
5.53908050e-01 6.19291067e-01 -7.54240453e-01 4.64234781e-03
-7.79305398e-02 -1.98796064e-01 9.92691100e-01 7.34734595e-01
6.55611157e-01 -3.58605653e-01 -6.41046762e-01 -2.17599213e-01
-5.91969723e-03 -1.35135436e+00 -6.69445917e-02 7.39319146e-01
-7.65255094e-01 -1.11966777e+00 -4.83698398e-01 -6.01920605e-01
4.93945807e-01 6.86030984e-01 1.47562516e+00 -1.76168159e-01
-2.12579086e-01 9.97163713e-01 -4.74812388e-01 -5.52175105e-01
-4.01807934e-01 1.63319245e-01 1.00825526e-01 -7.64844418e-01
4.05252367e-01 -2.82102913e-01 -1.65012285e-01 4.88739192e-01
-6.14704847e-01 2.15974450e-01 1.59240171e-01 2.81449527e-01
1.03833723e+00 -4.26059127e-01 -5.81411161e-02 -4.24716741e-01
-2.57747117e-02 -5.33630967e-01 -7.49199629e-01 3.02756727e-01
-2.54929364e-01 -1.95091683e-02 -8.77982080e-02 -1.49668649e-01
-5.41509211e-01 6.93114921e-02 -7.64327645e-02 -6.57753766e-01
-4.63438570e-01 2.37069741e-01 -3.96723300e-01 -3.17480803e-01
1.06967711e+00 -2.01832175e-01 -1.20255359e-01 -6.08811557e-01
6.66471124e-01 5.48790157e-01 5.95388353e-01 -7.98656344e-01
1.03011286e+00 6.78945601e-01 1.97573245e-01 -5.25785506e-01
-1.15844429e+00 -5.59093058e-01 -8.24991107e-01 -1.71118349e-01
1.24775076e+00 -1.49124849e+00 -3.00441206e-01 2.52203226e-01
-1.13151348e+00 -6.66336238e-01 -4.02807504e-01 4.42523152e-01
-5.92252135e-01 1.09982483e-01 -9.14282650e-02 -6.10723257e-01
1.13624342e-01 -1.07152522e+00 1.92619872e+00 -2.01773658e-01
-3.54258060e-01 -7.78754950e-01 1.61765262e-01 3.40457708e-01
-8.91490579e-02 7.12240458e-01 7.49170601e-01 -5.76935470e-01
-6.57333255e-01 -1.41193748e-01 -4.32862580e-01 2.23224074e-01
2.90800482e-01 -2.87258863e-01 -1.09896886e+00 -1.01194136e-01
-4.86978024e-01 -7.15669394e-01 5.26642501e-01 1.29309222e-02
7.98512638e-01 3.76029164e-01 -5.42214453e-01 9.55025375e-01
1.57740915e+00 -7.24418536e-02 3.00406963e-01 5.50602794e-01
1.15672827e+00 4.53158110e-01 7.20101237e-01 2.51347750e-01
8.49117100e-01 7.25038528e-01 1.00511539e+00 -5.98074436e-01
-4.38088089e-01 -8.14300060e-01 4.58723791e-02 2.61064500e-01
2.16726571e-01 -4.09293920e-01 -1.40276253e+00 5.63272178e-01
-1.55631566e+00 -4.62017059e-01 -1.89903542e-01 2.15702820e+00
4.17609811e-01 8.43016356e-02 -5.06770089e-02 -1.96591839e-01
3.85610312e-01 2.68433750e-01 -6.72604382e-01 4.23959270e-02
-5.20101964e-01 1.36212379e-01 8.77643943e-01 3.48734379e-01
-1.11799812e+00 1.04382622e+00 6.63687229e+00 3.49187702e-01
-8.84425402e-01 2.17443425e-02 1.66303992e-01 -1.51360020e-01
-5.45856833e-01 1.08151644e-01 -1.01669455e+00 -3.37101892e-02
3.00155401e-01 3.92184794e-01 2.29324475e-01 1.11367643e+00
-6.81690574e-02 3.11588198e-02 -1.35723639e+00 1.24152815e+00
2.52783060e-01 -1.37582791e+00 1.15549967e-01 1.81102052e-01
7.96913981e-01 6.66027427e-01 -4.40881997e-01 1.24782920e-01
7.11239100e-01 -9.81524527e-01 1.50290108e+00 2.19761387e-01
9.02972937e-01 -2.12630898e-01 4.54642624e-01 1.21772833e-01
-1.26575458e+00 4.20033664e-01 -2.62709051e-01 1.31718621e-01
1.81856707e-01 3.02609295e-01 -8.46250534e-01 9.02184129e-01
1.15118718e+00 9.33564544e-01 -9.10375059e-01 7.86245823e-01
-2.71053165e-01 -6.66426821e-03 -5.74446917e-01 2.30674878e-01
2.79008001e-01 1.47847667e-01 4.30641472e-01 1.02051616e+00
6.25034094e-01 -3.01483393e-01 5.08847356e-01 1.12005877e+00
4.78787534e-02 -2.40176916e-01 -1.39102602e+00 1.52347848e-01
4.31589127e-01 8.89867127e-01 -7.84379780e-01 -2.42333457e-01
-4.12908554e-01 8.56838524e-01 2.19839647e-01 3.54854017e-01
-9.44958091e-01 -1.67891607e-01 7.95252144e-01 4.19232428e-01
1.42985702e-01 -9.08525705e-01 -3.31615418e-01 -1.11683774e+00
-7.84000754e-02 -4.94305253e-01 3.31004888e-01 -1.61579120e+00
-1.33385122e+00 5.42932153e-01 4.53871250e-01 -1.30941987e+00
1.14691611e-02 -7.98146844e-01 2.73485929e-01 8.47077131e-01
-1.29111719e+00 -1.81940413e+00 -9.87361372e-01 7.62889683e-01
-2.02232283e-02 1.58248186e-01 8.21992874e-01 1.89362511e-01
8.75392035e-02 2.41601944e-01 -4.23912823e-01 -2.27587321e-03
7.44086385e-01 -1.19676793e+00 7.94390261e-01 6.30368054e-01
5.32916844e-01 4.19468313e-01 3.94124568e-01 -8.09752584e-01
-1.46399605e+00 -1.42255723e+00 5.43889940e-01 -1.13421261e+00
5.34138262e-01 -9.95781779e-01 -7.06840515e-01 1.03374839e+00
-3.03615034e-01 2.99541473e-01 6.77759111e-01 1.05591953e-01
-9.20593977e-01 3.72431837e-02 -1.31463253e+00 3.23504627e-01
1.91726661e+00 -1.05778956e+00 -5.27508974e-01 3.93041134e-01
1.12149060e+00 -9.44393456e-01 -9.78863001e-01 5.32665312e-01
4.19173509e-01 -9.00892913e-01 1.23721814e+00 -4.35902238e-01
4.08536494e-02 -8.18890512e-01 -1.14609277e+00 -1.11737609e+00
-9.37490538e-02 -2.40974519e-02 3.13838452e-01 1.27786720e+00
2.18225121e-01 -3.62888932e-01 6.43344879e-01 4.33525980e-01
-6.51451051e-01 -1.20570362e-01 -9.03348982e-01 -1.15573227e+00
-8.29080194e-02 -1.18734157e+00 1.02100444e+00 9.09534633e-01
-5.70625186e-01 2.62935907e-02 2.78988685e-02 5.40436625e-01
6.06534481e-01 2.65661776e-01 1.35388041e+00 -1.11631846e+00
-3.35159078e-02 -5.01217088e-04 -8.96836042e-01 -1.21656680e+00
2.32086003e-01 -1.34145904e+00 9.98338088e-02 -1.96259785e+00
-9.38610956e-02 -8.87427747e-01 7.24110082e-02 9.86697733e-01
5.03127933e-01 6.59709036e-01 1.20725721e-01 1.29626483e-01
-7.04814970e-01 5.26010633e-01 1.06186056e+00 -4.70918775e-01
-8.62876400e-02 -5.67416310e-01 -6.32149041e-01 5.32986999e-01
3.30397546e-01 -4.91020650e-01 -4.29432720e-01 -9.09427166e-01
3.79492998e-01 -3.30987155e-01 9.98087049e-01 -1.19314659e+00
-1.35704949e-01 -6.55350089e-02 5.12636900e-01 -1.02346623e+00
4.93950188e-01 -9.89719748e-01 4.44108129e-01 -8.35595056e-02
-9.13264137e-03 6.90724328e-02 6.46416128e-01 4.42380369e-01
1.25323340e-01 2.02590153e-01 3.42008263e-01 -4.73188847e-01
-1.13920295e+00 2.72833318e-01 6.45333854e-03 2.35857874e-01
8.25881720e-01 -5.18032968e-01 -4.61746454e-01 -2.09146217e-02
-7.02356696e-01 1.48058429e-01 1.16691351e+00 7.08680034e-01
5.39749622e-01 -1.61617625e+00 -2.93486953e-01 3.44218284e-01
1.00238502e+00 5.25662959e-01 1.01015478e-01 7.47004077e-02
-6.38194501e-01 1.94339469e-01 -1.67268142e-01 -1.30789161e+00
-9.98507500e-01 4.60275471e-01 4.60668921e-01 3.20417523e-01
-6.45679474e-01 9.78650987e-01 2.63840884e-01 -1.09350216e+00
1.15849845e-01 -8.87858391e-01 5.08814216e-01 -4.56203260e-02
4.04579490e-02 1.88303590e-02 4.21911746e-01 -9.10534263e-01
-9.63161230e-01 1.03118801e+00 6.88555002e-01 -8.25888440e-02
1.16511571e+00 -1.81652382e-01 1.75176695e-01 7.23118663e-01
1.31877315e+00 -8.05007666e-02 -1.28805339e+00 -1.86092451e-01
-1.68421403e-01 -4.82083321e-01 1.24888718e-02 -8.43476713e-01
-6.70181394e-01 7.70006180e-01 8.12985957e-01 3.76621597e-02
7.75022686e-01 8.28976631e-01 2.51289219e-01 3.50903541e-01
1.20498264e+00 -5.17196774e-01 1.54612705e-01 3.93896550e-01
9.93225455e-01 -1.47521627e+00 2.73208052e-01 -2.53170013e-01
-3.91582906e-01 8.15251350e-01 5.74172974e-01 1.14571854e-01
6.01658463e-01 2.41045818e-01 3.28696907e-01 -8.53200138e-01
-8.51751044e-02 -4.50093627e-01 3.97098094e-01 1.13881350e+00
3.06877997e-02 1.03172235e-01 9.35988426e-01 2.81547397e-01
-3.24827820e-01 -1.58655152e-01 4.46053073e-02 1.00270116e+00
1.61260534e-02 -9.19182062e-01 -5.02423406e-01 -1.29264742e-01
3.35405827e-01 8.81088153e-02 -6.28563523e-01 1.34671736e+00
5.50567150e-01 8.75299931e-01 1.51471466e-01 -7.17044652e-01
7.61186779e-01 -1.80961803e-01 7.98875690e-01 -8.96713555e-01
-2.87213057e-01 -2.92846829e-01 1.72206640e-01 -9.72869992e-01
-5.68025351e-01 -4.76709604e-01 -1.20577943e+00 -6.96381107e-02
-1.65047377e-01 -3.49204093e-01 1.05099833e+00 7.23148108e-01
6.08818948e-01 2.83239633e-01 1.95767358e-01 -1.26845956e+00
7.36069912e-03 -6.03901505e-01 -7.09242523e-01 5.21810591e-01
3.25294375e-01 -1.00214970e+00 -3.02279413e-01 -9.98702496e-02] | [8.069695472717285, -3.0801408290863037] |
8950000b-673d-4e9e-845a-f99fa848cb84 | deep-learning-for-real-time-gravitational-1 | 1711.03121 | null | http://arxiv.org/abs/1711.03121v1 | http://arxiv.org/pdf/1711.03121v1.pdf | Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data | The recent Nobel-prize-winning detections of gravitational waves from merging
black holes and the subsequent detection of the collision of two neutron stars
in coincidence with electromagnetic observations have inaugurated a new era of
multimessenger astrophysics. To enhance the scope of this emergent field of
science, we pioneered the use of deep learning with convolutional neural
networks, that take time-series inputs, for rapid detection and
characterization of gravitational wave signals. This approach, Deep Filtering,
was initially demonstrated using simulated LIGO noise. In this article, we
present the extension of Deep Filtering using real data from LIGO, for both
detection and parameter estimation of gravitational waves from binary black
hole mergers using continuous data streams from multiple LIGO detectors. We
demonstrate for the first time that machine learning can detect and estimate
the true parameters of real events observed by LIGO. Our results show that Deep
Filtering achieves similar sensitivities and lower errors compared to
matched-filtering while being far more computationally efficient and more
resilient to glitches, allowing real-time processing of weak time-series
signals in non-stationary non-Gaussian noise with minimal resources, and also
enables the detection of new classes of gravitational wave sources that may go
unnoticed with existing detection algorithms. This unified framework for data
analysis is ideally suited to enable coincident detection campaigns of
gravitational waves and their multimessenger counterparts in real-time. | ['E. A. Huerta', 'Daniel George'] | 2017-11-08 | null | null | null | null | ['gravitational-wave-detection'] | ['miscellaneous'] | [-4.14244533e-01 -2.98208714e-01 5.65558672e-01 -8.26998726e-02
-5.59040189e-01 -6.28269076e-01 1.15851450e+00 -3.16671312e-01
-5.57363153e-01 3.04430038e-01 -8.72582048e-02 -6.65207744e-01
-3.09677213e-01 -1.06806946e+00 -4.32706773e-01 -8.47948492e-01
-5.69281816e-01 8.70765746e-01 3.36004823e-01 -2.39822879e-01
7.15699345e-02 8.67099524e-01 -1.30314052e+00 -1.70809373e-01
8.01567137e-02 1.08292258e+00 8.41954872e-02 8.26096773e-01
2.94724077e-01 4.37015146e-01 -6.27693772e-01 -3.05231452e-01
6.39948308e-01 -3.52713466e-01 -4.07694668e-01 -5.30079007e-01
2.73089200e-01 -1.77539423e-01 -9.85683382e-01 9.19268310e-01
8.44134808e-01 2.38268271e-01 2.52733320e-01 -7.93296158e-01
-6.30945861e-02 4.32500213e-01 -1.35837868e-01 1.03021741e+00
-3.56089324e-02 9.16606605e-01 8.55891049e-01 -6.94490314e-01
3.36964250e-01 8.74121666e-01 9.14605796e-01 4.96659130e-02
-9.93989050e-01 -7.70218372e-01 -1.00866461e+00 2.91234732e-01
-7.13858604e-01 -5.20803034e-01 5.33977270e-01 -7.53663301e-01
1.39171088e+00 1.96368605e-01 5.61503112e-01 8.87904584e-01
-1.07669914e-02 2.91753829e-01 9.02727783e-01 -5.39061010e-01
2.51589537e-01 -7.22921073e-01 -1.22045524e-01 3.82521421e-01
4.69591588e-01 1.28798258e+00 -8.00791681e-01 -3.49079162e-01
8.05022657e-01 -3.88619542e-01 -2.71620661e-01 1.80607691e-01
-1.37533581e+00 1.09444499e+00 2.04395995e-01 5.47582626e-01
-2.82880992e-01 3.82216483e-01 2.57681400e-01 4.91050303e-01
3.85018259e-01 9.08635437e-01 -6.38650596e-01 -3.35898489e-01
-1.04493618e+00 6.11750662e-01 7.01743245e-01 3.88741672e-01
5.76959848e-01 5.53498626e-01 1.84000537e-01 1.09661534e-01
2.01045528e-01 8.28938961e-01 8.19884777e-01 -5.32342196e-01
1.03247009e-01 -1.02704279e-02 1.89023972e-01 -6.49504542e-01
-1.15276170e+00 -1.00446570e+00 -6.47623837e-01 6.34580314e-01
8.07681561e-01 -4.52209622e-01 -8.46591830e-01 1.35370517e+00
2.97624767e-01 4.43296254e-01 -2.31090710e-02 1.04540217e+00
8.54752839e-01 3.26935053e-01 -2.88465053e-01 -5.72106950e-02
1.48992193e+00 -1.72834218e-01 -1.95573196e-01 -6.27831340e-01
3.49506408e-01 -9.41486478e-01 6.43566623e-02 3.46463948e-01
-7.98270643e-01 -4.60788995e-01 -1.02234066e+00 3.73719156e-01
-2.28200361e-01 -2.28107512e-01 1.32146764e+00 6.84449911e-01
-5.89725256e-01 9.13069725e-01 -1.19955850e+00 -1.72481745e-01
2.12916985e-01 2.33162835e-01 7.54904971e-02 8.14947307e-01
-1.30683827e+00 6.28853738e-01 5.19797146e-01 -6.30022883e-02
-6.88196599e-01 -9.48729575e-01 -4.19255406e-01 1.75124347e-01
-9.95404795e-02 -6.50595009e-01 1.48175406e+00 -3.29444200e-01
-1.06088805e+00 9.64971244e-01 4.71420467e-01 -1.27063620e+00
5.97447813e-01 5.83883896e-02 -8.86143982e-01 1.22902259e-01
4.12203930e-02 -2.52086878e-01 7.64905572e-01 -2.78118253e-01
-9.95881975e-01 -2.23750830e-01 -3.91632259e-01 -6.06544435e-01
4.34584469e-01 3.51568997e-01 6.70045540e-02 -6.98703527e-01
6.51563048e-01 -5.25100648e-01 -1.03141010e-01 -6.56505167e-01
1.30343199e-01 -2.75242716e-01 5.17470241e-01 -4.39391196e-01
4.49965745e-01 -2.04740691e+00 -4.03860003e-01 -4.61925603e-02
4.37980294e-01 4.04822260e-01 3.05475414e-01 5.17393231e-01
-3.68788183e-01 -2.95910329e-01 1.47607133e-01 5.73123991e-03
1.48805842e-01 -2.46038988e-01 -5.32527328e-01 7.51513720e-01
-8.36563110e-02 1.06879103e+00 -8.82694185e-01 4.59291965e-01
4.80861634e-01 6.41582236e-02 -3.18001151e-01 2.46593520e-01
-1.04964897e-01 7.58397818e-01 -8.29545632e-02 3.50854367e-01
9.25945759e-01 5.04879393e-02 -3.87264460e-01 -1.07746467e-01
-5.90607345e-01 5.64956844e-01 -1.00276244e+00 1.16400182e+00
-2.44791955e-01 1.10129142e+00 4.01197284e-01 -1.23968184e+00
1.15359950e+00 2.38853261e-01 4.20290560e-01 -1.03197551e+00
3.71629268e-01 4.92622226e-01 2.21082538e-01 -8.10292661e-01
3.24160814e-01 -8.83321881e-01 -4.05582339e-02 3.95504951e-01
5.53416491e-01 -3.84181976e-01 1.19725473e-01 -9.74217057e-02
1.41942263e+00 -2.15407535e-01 5.15634834e-04 -1.59400910e-01
-2.07074322e-02 -1.33806661e-01 5.03730536e-01 1.44775319e+00
-1.16786778e-01 7.16391206e-01 6.98119029e-02 -1.07971549e+00
-1.13301325e+00 -1.08518374e+00 -4.54632699e-01 6.85208082e-01
-2.08896711e-01 -2.18113005e-01 1.01211518e-01 -8.84173885e-02
3.72985482e-01 5.92858493e-01 -2.59741813e-01 -3.76717746e-01
-6.24612868e-01 -1.64056945e+00 6.82145536e-01 2.59050012e-01
4.03525889e-01 -1.05083501e+00 -9.02940214e-01 4.93715465e-01
1.28429249e-01 -9.59627092e-01 3.99596334e-01 6.06544971e-01
-6.29441559e-01 -1.12232411e+00 -1.07357949e-01 -3.55565399e-01
-1.77367508e-01 1.39625287e-02 1.21467185e+00 -6.48115501e-02
-6.83320701e-01 6.26966804e-02 -3.14647257e-01 -5.82314610e-01
-4.64237928e-01 -4.07178640e-01 3.78934503e-01 1.90783218e-02
7.67150521e-01 -9.92425799e-01 -4.46822196e-01 1.48969829e-01
-6.02338135e-01 -3.53697479e-01 5.01743138e-01 6.94450140e-01
-2.48769760e-01 2.65333086e-01 6.49620056e-01 -1.82912350e-01
2.43658796e-01 -6.24260843e-01 -1.44527316e+00 -3.99724662e-01
-2.30952159e-01 1.92485929e-01 5.03502488e-01 -3.12165678e-01
-7.96208024e-01 -1.56880096e-01 -4.51491177e-01 -2.09130630e-01
-1.51602447e-01 3.28960836e-01 4.58687633e-01 -4.57383126e-01
1.08807957e+00 1.35838374e-01 -2.12988243e-01 -7.91271031e-01
2.16612756e-01 4.81372058e-01 1.38150799e+00 -3.34195375e-01
1.28370810e+00 7.63719320e-01 2.63894409e-01 -7.89889514e-01
-5.23464799e-01 -8.45828474e-01 -2.63860315e-01 -1.89023703e-01
5.46405613e-01 -9.34085906e-01 -9.54523742e-01 7.19142079e-01
-1.11305404e+00 1.23545006e-01 -3.68706137e-01 1.19441319e+00
-3.83699358e-01 3.66790533e-01 -3.19122046e-01 -8.86023760e-01
-1.76681012e-01 -4.97664183e-01 6.26655340e-01 4.71529961e-01
1.63111657e-01 -7.80577242e-01 4.09709781e-01 2.05483586e-01
7.22241879e-01 3.48627567e-01 2.44525343e-01 -8.70539725e-01
-6.63121402e-01 -7.38790393e-01 -1.31605491e-01 -1.26300961e-01
-2.81712919e-01 -2.87086844e-01 -1.08825612e+00 -3.33820999e-01
7.94616997e-01 7.77776493e-03 1.31002843e+00 6.20168149e-01
3.17829758e-01 2.05109939e-01 -2.50094622e-01 1.11064851e+00
1.34617543e+00 1.98590428e-01 2.02811375e-01 6.55479193e-01
1.01442210e-01 9.17434618e-02 1.05226655e-02 7.74577916e-01
-3.48104030e-01 4.65854794e-01 5.20431459e-01 -1.13326376e-02
-2.02994570e-01 2.93287963e-01 -7.85400718e-02 4.33439136e-01
-3.09537917e-01 9.83755589e-02 -1.01666415e+00 6.92493975e-01
-1.65301347e+00 -1.40666056e+00 -7.63579428e-01 2.52159739e+00
7.49560595e-02 5.78156173e-01 1.40121132e-02 -1.53036460e-01
6.41102314e-01 4.38140780e-02 -2.10932791e-01 1.40896933e-02
-3.35410655e-01 7.50281572e-01 1.01538706e+00 4.75078881e-01
-1.24346483e+00 3.19069177e-01 6.56504297e+00 4.66181844e-01
-1.16544437e+00 4.85704124e-01 4.77812439e-02 -4.62159246e-01
-1.14741050e-01 1.50865510e-01 -5.05404353e-01 6.29959404e-01
1.06127214e+00 -2.88516760e-01 4.44389701e-01 4.68025178e-01
3.20851833e-01 -1.62758723e-01 -6.37268007e-01 1.26578009e+00
-4.75291401e-01 -1.73337960e+00 -8.74703825e-01 -1.42271236e-01
4.83410776e-01 1.05217135e+00 -4.21466231e-01 3.60732675e-01
4.22039330e-01 -5.73535919e-01 8.74717176e-01 5.61980188e-01
1.76750928e-01 -6.94246650e-01 8.71146381e-01 4.12393928e-01
-8.54602814e-01 -1.45583138e-01 -6.16236985e-01 -7.00125873e-01
5.66895962e-01 1.27556646e+00 -1.03521860e+00 7.79869795e-01
7.76270986e-01 1.85341150e-01 -4.11449552e-01 1.56142271e+00
-1.99145079e-01 1.07902813e+00 -9.51490045e-01 -4.24278751e-02
3.22969139e-01 2.30301712e-02 1.04087305e+00 1.13272870e+00
4.68387485e-01 -3.88515405e-02 -9.50246975e-02 8.50546837e-01
1.68548133e-02 -5.43012798e-01 -5.25613368e-01 6.45790622e-02
2.16256484e-01 1.31027627e+00 -7.74330676e-01 -3.15639675e-01
-6.01582527e-01 3.14445188e-03 -2.22661253e-02 1.17356144e-01
-6.76855266e-01 -4.88917589e-01 6.20583534e-01 2.05571756e-01
5.30408144e-01 -7.15402186e-01 -4.35680449e-01 -1.33128238e+00
-1.26114815e-01 -2.77755022e-01 4.78572577e-01 -4.60970163e-01
-1.23632908e+00 4.24629867e-01 -2.83290267e-01 -1.12551892e+00
-3.51486742e-01 -6.27385378e-01 -1.16981864e+00 1.01091719e+00
-1.11229587e+00 -5.66625297e-01 -4.72637340e-02 5.15941437e-03
5.83196692e-02 -6.07447565e-01 3.21687192e-01 2.99732953e-01
1.59994680e-02 -1.63629636e-01 6.15237951e-01 1.60484314e-01
5.00507712e-01 -1.18682086e+00 1.15848386e+00 1.30791366e+00
4.24679488e-01 1.16092116e-01 1.45477700e+00 -7.94279933e-01
-1.45358181e+00 -6.98768497e-01 8.22618008e-01 -3.00424814e-01
1.17125893e+00 -6.09727800e-01 -7.48741210e-01 5.77299118e-01
1.90556403e-02 3.09091449e-01 1.11212552e-01 8.88967514e-02
-1.78887486e-01 2.17231959e-02 -1.09574568e+00 -1.45601273e-01
8.13315034e-01 -5.28032482e-01 -1.03151512e+00 7.27837205e-01
3.31752211e-01 -2.44289353e-01 -1.79010704e-01 7.30557621e-01
3.84058744e-01 -1.09179652e+00 1.03142798e+00 -7.39484906e-01
-2.63746232e-01 -3.34994107e-01 2.14971378e-01 -1.14031768e+00
-6.53452277e-01 -1.35311878e+00 -7.17669167e-03 8.72297049e-01
-3.68987061e-02 -7.68729568e-01 9.06002820e-01 9.71065611e-02
-2.12948665e-01 1.92417458e-01 -1.65852308e+00 -1.14105022e+00
1.52051240e-01 -9.06062365e-01 4.26136613e-01 7.92683542e-01
-2.14972869e-01 1.59090478e-02 -3.94563705e-01 7.61430085e-01
9.00006115e-01 4.81940866e-01 5.82105935e-01 -1.45247722e+00
-8.54054272e-01 -5.48892558e-01 -9.20317829e-01 -7.76977181e-01
-4.57824200e-01 -1.06611633e+00 1.79637343e-01 -7.78002620e-01
-5.94853818e-01 -1.63030490e-01 6.32258784e-03 2.28751928e-01
1.54086679e-01 6.06719732e-01 -8.68384615e-02 2.10794106e-01
-3.83844860e-02 2.19493464e-01 3.92157048e-01 3.98163013e-02
1.52069867e-01 3.87267619e-01 1.99637166e-03 8.51647675e-01
6.66785300e-01 -6.10931754e-01 4.06894296e-01 -4.97832328e-01
6.50768518e-01 2.33044177e-01 7.04052985e-01 -1.61850429e+00
4.98557746e-01 1.97624788e-01 4.61968094e-01 -5.81355035e-01
4.37144423e-03 -1.93787187e-01 3.66002291e-01 6.53705239e-01
4.22961086e-01 -3.97802681e-01 2.28668943e-01 2.88806528e-01
-1.80035010e-01 -7.11645663e-01 1.02441871e+00 -3.69277328e-01
-6.84296370e-01 1.38489783e-01 -7.45165229e-01 8.56596902e-02
6.63938105e-01 5.33379853e-01 -3.27878386e-01 -2.79927731e-01
-9.09349918e-01 -8.13763291e-02 2.15732912e-03 3.59873444e-01
3.27503420e-02 -1.08141148e+00 -1.05634379e+00 5.13702154e-01
-2.88350284e-01 -2.97841877e-01 1.42496645e-01 5.93529224e-01
-7.62092113e-01 4.92891282e-01 -6.04812279e-02 -4.75662231e-01
-7.27510691e-01 5.52731872e-01 7.41453230e-01 -9.68491565e-03
-8.09617698e-01 1.06397915e+00 -3.55980545e-02 -4.87322867e-01
-3.01723272e-01 -1.84994996e-01 3.33508760e-01 8.37777779e-02
7.86807477e-01 2.15082213e-01 6.56404793e-01 -4.77733970e-01
-2.81578630e-01 1.25543803e-01 2.71522701e-01 2.49772822e-03
1.56201828e+00 9.74151641e-02 -2.24775430e-02 9.19758454e-02
8.22806776e-01 1.32022694e-01 -1.10144913e+00 -3.12908441e-01
1.90179467e-01 -4.80719239e-01 3.60301703e-01 -8.60979497e-01
-1.14540184e+00 7.05154538e-01 7.44596958e-01 9.54027534e-01
7.16145813e-01 6.92503393e-01 6.73907876e-01 4.01714891e-01
5.91868520e-01 -6.23629272e-01 -4.81554270e-01 6.27138317e-01
5.56403637e-01 -1.01804101e+00 -1.87143445e-01 2.57508487e-01
4.22373354e-01 1.62043619e+00 1.21526532e-01 -2.53743351e-01
6.52726293e-01 4.95917916e-01 -1.76490769e-02 -6.15702927e-01
-6.25964642e-01 -4.45024788e-01 1.58736613e-02 5.15173256e-01
-1.12203427e-01 2.24499032e-01 -4.70652431e-01 5.85468054e-01
-6.68906331e-01 -3.14790428e-01 6.81370556e-01 7.66520798e-01
-8.87089670e-01 -7.61247873e-01 -1.03514385e+00 5.02309322e-01
-6.36964679e-01 -1.24445371e-01 5.73491342e-02 4.91356045e-01
2.74521470e-01 9.89742696e-01 2.61805832e-01 -8.54174644e-02
1.40942872e-01 2.59132326e-01 3.21790993e-01 -1.97952315e-01
-6.75868154e-01 1.37984619e-01 1.64170116e-01 -2.40693182e-01
-1.81688905e-01 -8.25500250e-01 -9.09820795e-01 -2.65670568e-01
-5.16055226e-01 4.23034161e-01 8.17417502e-01 1.19553542e+00
1.34228259e-01 4.90949124e-01 7.08669186e-01 -1.25896764e+00
-6.60148978e-01 -1.13974082e+00 -6.82383716e-01 4.03074026e-01
6.11407995e-01 -6.52190506e-01 -1.03853142e+00 -2.99479038e-01] | [7.562434673309326, 3.1218490600585938] |
5f59112c-8adb-407b-bd53-1f114f345fd6 | model-agnostic-few-shot-open-set-recognition | 2206.09236 | null | https://arxiv.org/abs/2206.09236v1 | https://arxiv.org/pdf/2206.09236v1.pdf | Model-Agnostic Few-Shot Open-Set Recognition | We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have few labeled samples, while simultaneously detecting instances that do not belong to any known class. Departing from existing literature, we focus on developing model-agnostic inference methods that can be plugged into any existing model, regardless of its architecture or its training procedure. Through evaluating the embedding's quality of a variety of models, we quantify the intrinsic difficulty of model-agnostic FSOSR. Furthermore, a fair empirical evaluation suggests that the naive combination of a kNN detector and a prototypical classifier ranks before specialized or complex methods in the inductive setting of FSOSR. These observations motivated us to resort to transduction, as a popular and practical relaxation of standard few-shot learning problems. We introduce an Open Set Transductive Information Maximization method OSTIM, which hallucinates an outlier prototype while maximizing the mutual information between extracted features and assignments. Through extensive experiments spanning 5 datasets, we show that OSTIM surpasses both inductive and existing transductive methods in detecting open-set instances while competing with the strongest transductive methods in classifying closed-set instances. We further show that OSTIM's model agnosticity allows it to successfully leverage the strong expressive abilities of the latest architectures and training strategies without any hyperparameter modification, a promising sign that architectural advances to come will continue to positively impact OSTIM's performances. | ['Ismail Ben Ayed', 'Pablo Piantanida', 'Antoine Toubhans', 'Celine Hudelot', 'Myriam Tami', 'Etienne Bennequin', 'Malik Boudiaf'] | 2022-06-18 | null | null | null | null | ['open-set-learning'] | ['miscellaneous'] | [ 5.50733507e-01 3.11988026e-01 -4.66649055e-01 -2.07332835e-01
-9.62971091e-01 -6.59183741e-01 7.05160737e-01 1.47672549e-01
-1.59944668e-01 6.88545465e-01 -1.08522199e-01 -1.61300614e-01
-4.36703503e-01 -7.95876026e-01 -6.56917870e-01 -6.88662291e-01
-9.50945467e-02 7.75272191e-01 8.16028863e-02 -3.39623928e-01
1.12097524e-01 2.36993209e-01 -1.88653851e+00 2.40787104e-01
7.53077924e-01 1.12957239e+00 -3.24714303e-01 5.96274793e-01
-2.12339461e-02 6.59281433e-01 -3.18146288e-01 -3.90934259e-01
3.18518192e-01 -1.68569118e-01 -8.71415913e-01 3.15487683e-01
4.11871940e-01 1.10779256e-01 -1.84347689e-01 1.00033689e+00
4.19392377e-01 3.56527865e-01 9.23881352e-01 -1.36151123e+00
-8.44806433e-01 5.51818132e-01 -1.50378928e-01 3.06353688e-01
3.06512594e-01 3.79897594e-01 1.43637109e+00 -1.13506222e+00
6.91719055e-01 9.64890361e-01 8.34789932e-01 6.65888071e-01
-1.66819406e+00 -2.44905323e-01 8.37138966e-02 3.09831291e-01
-1.41513085e+00 -6.10302210e-01 5.78258753e-01 -4.90485430e-01
1.00044560e+00 5.28687418e-01 5.42536736e-01 1.29742885e+00
-2.71812648e-01 8.93264949e-01 1.14876616e+00 -6.78241909e-01
7.80223787e-01 4.55529779e-01 5.61163723e-01 6.38074756e-01
3.03721577e-01 2.43108362e-01 -4.61131185e-01 -4.09095556e-01
2.79166132e-01 1.59622893e-01 -2.26892859e-01 -5.92788756e-01
-9.34193909e-01 8.69406104e-01 3.21278423e-01 3.60393524e-01
-2.83054039e-02 5.83068840e-03 3.56501400e-01 5.54109395e-01
4.79133010e-01 8.90131533e-01 -3.98219854e-01 6.73346594e-02
-7.94882238e-01 -4.40242440e-02 9.85600412e-01 8.51851225e-01
1.07362938e+00 -1.09743424e-01 -2.29642794e-01 8.72628152e-01
1.24677494e-01 9.40855891e-02 6.22594893e-01 -8.29955935e-01
-1.48194686e-01 9.87376511e-01 -1.45919651e-01 -5.32403052e-01
-8.08589533e-02 -4.44475293e-01 -4.33769137e-01 -1.24280497e-01
2.04935268e-01 7.31295049e-02 -1.04853034e+00 1.50684321e+00
3.13640237e-01 4.89747882e-01 2.16087952e-01 6.24595761e-01
6.27734244e-01 5.17645597e-01 -1.51351452e-01 -3.30973059e-01
1.22839391e+00 -6.77641809e-01 -2.48058274e-01 -3.34570050e-01
9.79619741e-01 -2.81025231e-01 1.07372737e+00 3.92340362e-01
-5.90317547e-01 -2.13460490e-01 -1.19077277e+00 1.02986969e-01
-5.47508597e-01 -3.05377394e-01 8.35873723e-01 6.64349139e-01
-7.98137188e-01 6.95105612e-01 -5.83290279e-01 -5.70022225e-01
7.30945706e-01 2.65698910e-01 -4.76434618e-01 -3.22055191e-01
-1.16129994e+00 8.18851173e-01 4.68333542e-01 -5.90350479e-02
-1.03007627e+00 -8.88494253e-01 -6.98305786e-01 2.28352562e-01
8.14842045e-01 -7.49712348e-01 1.10717654e+00 -8.23232949e-01
-1.23702133e+00 1.10834599e+00 -1.75691992e-02 -6.43183053e-01
3.23639125e-01 1.59711558e-02 -4.59925652e-01 3.33518013e-02
1.67972986e-02 3.69287968e-01 8.81217062e-01 -1.28366613e+00
-4.32407320e-01 -4.44574624e-01 1.74474597e-01 -1.29176512e-01
-6.68836176e-01 -3.68473351e-01 -7.74280280e-02 -2.01483428e-01
1.21977001e-01 -9.14124668e-01 -4.04595941e-01 -6.39599413e-02
-7.13139653e-01 -4.58350718e-01 5.88237941e-01 2.52704710e-01
1.20533788e+00 -1.96196902e+00 1.72636896e-01 2.48450056e-01
4.16399688e-01 4.70308691e-01 -1.83884919e-01 5.86245239e-01
-2.10050717e-01 8.12373832e-02 -4.66521204e-01 -8.93777981e-02
2.94483483e-01 4.22864884e-01 -7.18401968e-01 4.84408200e-01
3.27781349e-01 1.10242355e+00 -1.01309049e+00 -4.98084098e-01
2.40027651e-01 1.09271199e-01 -5.82760751e-01 1.28504217e-01
-4.78121936e-01 -7.28311837e-02 -2.64751971e-01 8.95007133e-01
1.93091020e-01 -5.81796050e-01 5.89859076e-02 -2.98764952e-03
2.62361974e-01 -4.68666852e-02 -1.20693064e+00 1.55819809e+00
-3.40088814e-01 4.20902401e-01 -4.54188436e-01 -1.35118985e+00
9.32576120e-01 2.11459979e-01 3.66053820e-01 -2.91073054e-01
2.64758110e-01 3.26148868e-01 -1.09213106e-01 -5.58622658e-01
1.29637241e-01 -6.45355523e-01 -1.53393179e-01 4.04586673e-01
5.62397182e-01 3.15441005e-02 2.35466719e-01 3.13884109e-01
1.44829130e+00 -1.24741055e-01 5.89428186e-01 -2.55504251e-01
2.00145245e-01 8.33889395e-02 5.35089135e-01 1.16359925e+00
-3.44774783e-01 4.65204060e-01 4.66208130e-01 -4.94665325e-01
-7.72708714e-01 -1.36762249e+00 -4.71322834e-01 1.39228165e+00
-1.19926021e-01 -3.93157840e-01 -3.64114165e-01 -8.63051057e-01
9.46390033e-02 7.06548393e-01 -9.18858826e-01 -5.61445296e-01
4.53200750e-02 -9.87424493e-01 6.01313591e-01 3.18824500e-01
-1.96581930e-01 -7.45835185e-01 -3.60231817e-01 3.02442256e-02
8.26768205e-02 -7.75123596e-01 1.13421679e-03 7.66258121e-01
-7.59100139e-01 -1.11339200e+00 -3.12427878e-01 -5.41647673e-01
5.56755841e-01 1.59801319e-01 1.07846248e+00 -1.41208217e-01
-6.59702659e-01 6.10326409e-01 -4.64232832e-01 -4.89145398e-01
-3.37871283e-01 1.03013180e-01 2.82302916e-01 2.89604455e-01
8.08059812e-01 -7.53547788e-01 -1.71485692e-01 1.64616317e-01
-9.90586758e-01 -4.18313146e-01 5.15544891e-01 1.04775655e+00
4.66067910e-01 -2.27660924e-01 9.07895207e-01 -1.29092300e+00
4.44937438e-01 -7.96398818e-01 -3.44181776e-01 4.67170119e-01
-9.41006184e-01 2.63146520e-01 6.53176904e-01 -4.90921736e-01
-7.79701948e-01 -3.25433910e-02 1.93482980e-01 -7.19503164e-01
-2.34081566e-01 4.25135434e-01 -1.61877815e-02 -2.70047765e-02
1.25987506e+00 2.15496823e-01 -1.39835134e-01 -2.52646625e-01
5.61336339e-01 7.66473770e-01 4.08503354e-01 -5.74186802e-01
9.39545691e-01 7.25801706e-01 -1.54557362e-01 -1.04174840e+00
-1.45203757e+00 -8.01034570e-01 -5.73990762e-01 -5.67966066e-02
4.39089864e-01 -7.64614999e-01 -6.66492581e-01 1.58159097e-03
-6.85589671e-01 -3.04146130e-02 -8.96599948e-01 2.03392506e-01
-6.68336928e-01 2.79147178e-01 -3.92996788e-01 -9.62716281e-01
-1.36658922e-01 -7.47102141e-01 1.00107384e+00 2.12114174e-02
-3.55322063e-01 -1.14541090e+00 4.00823772e-01 4.58365798e-01
1.54229030e-01 1.20252810e-01 8.41795266e-01 -1.32634175e+00
-4.23637480e-01 -5.53763926e-01 6.01046234e-02 4.08325166e-01
-1.67114124e-01 -9.25644040e-02 -1.46857631e+00 -3.07839006e-01
-3.39191295e-02 -8.61002982e-01 1.26424718e+00 6.17153160e-02
9.00869429e-01 -2.74375588e-01 -3.82230878e-01 5.13196230e-01
1.52138793e+00 -1.48963884e-01 4.92043912e-01 1.24486722e-01
5.74330032e-01 5.27540743e-01 4.04061258e-01 5.70690632e-01
-9.05951951e-03 3.36099714e-01 2.38678336e-01 1.50456414e-01
2.39655256e-01 -3.42513472e-01 3.45474899e-01 5.60606778e-01
5.53287305e-02 -1.36169285e-01 -8.31155598e-01 5.14726639e-01
-1.86743307e+00 -1.16574609e+00 2.82684237e-01 2.28859186e+00
8.46535504e-01 3.36701274e-01 3.53759304e-02 3.40531021e-01
6.66342378e-01 8.07461515e-02 -7.57024050e-01 -3.82350981e-01
-8.49994421e-02 3.98228139e-01 2.59935975e-01 2.18285009e-01
-1.09783423e+00 8.01905394e-01 6.59891367e+00 1.05495477e+00
-8.12546611e-01 -1.14946999e-03 5.71396410e-01 -3.15797269e-01
-4.57472622e-01 3.20763230e-01 -8.12179029e-01 1.72358379e-01
1.04038930e+00 -2.12069973e-01 5.80395222e-01 1.13497233e+00
-3.69872332e-01 2.33064834e-02 -1.77577412e+00 7.99001455e-01
2.38068134e-01 -1.61592269e+00 8.44209567e-02 7.93560743e-02
8.19091022e-01 1.11225754e-01 7.16333613e-02 9.06399548e-01
4.87218946e-01 -1.14819300e+00 3.80434275e-01 5.37156165e-01
5.71197808e-01 -3.97755623e-01 4.81960654e-01 4.26027745e-01
-7.86695957e-01 -4.44051713e-01 -4.38886732e-01 -1.94312900e-01
-1.80166751e-01 6.04313135e-01 -1.00165379e+00 3.87935311e-01
3.49927127e-01 7.20221937e-01 -5.48230886e-01 9.17158723e-01
4.51764725e-02 8.53572369e-01 -4.12644088e-01 -1.25154015e-02
2.28507742e-01 -1.06948260e-02 7.59310246e-01 1.10662174e+00
-6.03597909e-02 7.72631094e-02 3.72574061e-01 1.00002444e+00
-1.88548133e-01 -2.90532559e-02 -1.05001867e+00 -2.36150354e-01
5.91213167e-01 1.27520967e+00 -5.85593998e-01 -5.51842153e-01
-2.55980283e-01 6.52132034e-01 5.78134716e-01 1.77733406e-01
-6.18891418e-01 -2.95785934e-01 4.47519124e-01 5.14944382e-02
3.73776555e-01 4.36406046e-01 -2.74194330e-01 -1.46643794e+00
4.92124679e-03 -6.81734562e-01 7.98423588e-01 -4.64399517e-01
-1.80145085e+00 2.82076389e-01 -1.35320455e-01 -1.33412254e+00
-1.24875180e-01 -6.14921689e-01 -7.07618237e-01 2.44972512e-01
-1.37468755e+00 -1.02602971e+00 1.30752623e-01 4.23719525e-01
3.71240705e-01 -5.57518378e-02 9.89329755e-01 7.46075064e-02
-7.54815578e-01 6.71653211e-01 2.12140381e-01 -6.41828356e-03
5.10222673e-01 -1.34808075e+00 -9.66843665e-02 7.71944582e-01
4.44260657e-01 7.54197299e-01 8.13473105e-01 -2.49830633e-01
-1.59485579e+00 -1.24968636e+00 6.21854484e-01 -7.72542179e-01
1.07398808e+00 -4.38343495e-01 -9.81185079e-01 9.29579496e-01
-4.13517267e-01 5.82922280e-01 1.06468785e+00 5.64072371e-01
-8.28481913e-01 -1.09440044e-01 -1.02406049e+00 4.33060914e-01
1.17913210e+00 -6.44259512e-01 -9.89109695e-01 4.06465262e-01
7.30043411e-01 2.74339288e-01 -9.38394904e-01 4.97965097e-01
2.54664481e-01 -7.93842554e-01 1.00571895e+00 -1.25195241e+00
4.22046900e-01 -6.39968291e-02 -5.99225461e-01 -1.19448054e+00
-3.29881042e-01 -6.44768536e-01 -3.63811195e-01 1.12683392e+00
4.50689703e-01 -7.17755318e-01 7.53218353e-01 6.24061465e-01
-1.48536831e-01 -9.56694961e-01 -1.06084394e+00 -1.04612076e+00
-6.90677762e-02 -6.35858357e-01 7.24705160e-02 1.12072289e+00
4.74380791e-01 7.53158391e-01 -3.01811576e-01 1.05872219e-02
7.82291234e-01 3.63988638e-01 6.94929302e-01 -1.59072649e+00
-5.75029433e-01 -2.45167598e-01 -7.28891075e-01 -4.99528795e-01
2.30720416e-01 -1.37666345e+00 4.21294272e-02 -1.13076830e+00
4.28786010e-01 -5.55576026e-01 -5.50944388e-01 6.37884021e-01
-1.21852927e-01 4.77094203e-01 -7.21050650e-02 1.59414977e-01
-1.05388904e+00 5.94937861e-01 7.42086709e-01 -2.25239560e-01
-3.35342467e-01 -1.15710385e-01 -9.55199063e-01 8.27115357e-01
3.91749531e-01 -3.95695746e-01 -3.50006968e-01 1.95571125e-01
3.26093793e-01 -8.93396363e-02 5.69528043e-01 -9.74889755e-01
1.54153287e-01 -1.42267793e-01 1.55002594e-01 7.64447227e-02
3.75286549e-01 -5.71062744e-01 -1.82746932e-01 3.78972322e-01
-5.82004070e-01 -7.86446512e-01 -1.59658760e-01 1.02971470e+00
6.44185916e-02 -4.23860162e-01 9.45178807e-01 -2.13372499e-01
-9.44595933e-01 4.31486398e-01 -3.36565137e-01 4.10361648e-01
1.32849061e+00 -3.86829317e-01 -3.39472085e-01 1.45727992e-01
-1.02759778e+00 7.26205856e-02 4.09646541e-01 3.24982911e-01
4.76002306e-01 -1.14785016e+00 -5.87767363e-01 1.90095708e-01
8.18784356e-01 -2.02763751e-01 2.74122834e-01 9.48005557e-01
1.62883028e-01 3.23004484e-01 1.52694657e-01 -7.79276729e-01
-8.42060447e-01 8.99886370e-01 1.90235987e-01 -1.63115367e-01
-5.38687766e-01 8.38486195e-01 1.40708163e-01 -6.88967288e-01
1.79318905e-01 -1.03875753e-02 6.90791011e-02 2.47008100e-01
4.58162278e-01 4.68046784e-01 2.31725007e-01 -1.97445631e-01
-3.04392934e-01 1.06860377e-01 -2.25519359e-01 2.25906476e-01
1.40558624e+00 1.17147878e-01 3.27032642e-03 1.03247213e+00
1.26343405e+00 -4.56795543e-01 -9.09690559e-01 -6.03942215e-01
1.61925793e-01 -3.05845320e-01 -5.60686290e-02 -7.41715789e-01
-3.49193990e-01 8.00161242e-01 5.08311450e-01 4.08405662e-01
7.88245261e-01 4.22569782e-01 5.19487083e-01 8.15638423e-01
3.77930999e-01 -1.15644670e+00 2.06870645e-01 4.47573900e-01
4.07495230e-01 -1.52653933e+00 -1.77594677e-01 -3.00068796e-01
-4.59009945e-01 1.01318359e+00 4.60513771e-01 -3.08316052e-01
5.46128213e-01 1.30954564e-01 -1.85846895e-01 -3.74364525e-01
-1.31689739e+00 -5.12581527e-01 2.64234155e-01 5.40621638e-01
5.22788242e-02 1.78365916e-01 1.09325409e-01 5.70283175e-01
6.56447485e-02 5.06440513e-02 4.52009439e-01 8.42907369e-01
-8.27589035e-01 -6.25083387e-01 -2.17991784e-01 9.09039736e-01
-8.17805678e-02 -1.03304327e-01 -4.98729289e-01 5.54513454e-01
1.01130195e-01 9.03495610e-01 -7.39691257e-02 -5.07120788e-01
1.24478199e-01 4.72291827e-01 4.85192567e-01 -9.60313797e-01
-3.03411871e-01 -3.47551703e-01 4.77747582e-02 -5.23308396e-01
-1.22728370e-01 -4.88672793e-01 -9.27633286e-01 3.55428569e-02
-6.61926270e-01 1.39658108e-01 8.83045495e-02 1.24389124e+00
3.38357747e-01 1.70559183e-01 7.42722869e-01 -6.51027381e-01
-1.14888060e+00 -8.27402174e-01 -5.93203306e-01 4.23808962e-01
2.62308031e-01 -7.70128667e-01 -6.74239874e-01 -4.67996784e-02] | [9.780423164367676, 2.9995365142822266] |
5ffc6fc4-918e-432d-9845-973b5ae7289c | ppg-based-heart-rate-estimation-with | 2303.13636 | null | https://arxiv.org/abs/2303.13636v1 | https://arxiv.org/pdf/2303.13636v1.pdf | PPG-based Heart Rate Estimation with Efficient Sensor Sampling and Learning Models | Recent studies showed that Photoplethysmography (PPG) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy. However, despite of prior research efforts, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling and the resource-intensive machine-learning models. In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices. More specifically, we seek to design techniques that could provide high-accuracy HR estimation with low-frequency PPG sampling, small model size, and fast inference time. First, we show that by combining signal processing and ML, it is possible to reduce the PPG sampling frequency from 125 Hz to only 25 Hz while providing higher HR estimation accuracy. This combination also helps to reduce the ML model feature size, leading to smaller models. Additionally, we present a comprehensive analysis on different ML models and feature sizes to compare their accuracy, model size, and inference time. The models explored include Decision Tree (DT), Random Forest (RF), K-nearest neighbor (KNN), Support vector machines (SVM), and Multi-layer perceptron (MLP). Experiments were conducted using both a widely-utilized dataset and our self-collected dataset. The experimental results show that our method by combining signal processing and ML had only 5% error for HR estimation using low-frequency PPG data. Moreover, our analysis showed that DT models with 10 to 20 input features usually have good accuracy, while are several magnitude smaller in model sizes and faster in inference time. | ['Dakai Zhu', 'Jing Wang', 'Keying Ye', 'Wei Wang', 'Mimi Xie', 'Jingye Xu', 'Yuntong Zhang'] | 2023-03-23 | null | null | null | null | ['photoplethysmography-ppg', 'heart-rate-estimation'] | ['medical', 'medical'] | [ 2.35193938e-01 -1.10733412e-01 -3.98166329e-01 -1.88801229e-01
-2.72570044e-01 -7.14599863e-02 -3.98272216e-01 1.93865895e-02
-1.88746989e-01 8.81190300e-01 -8.34919419e-03 -2.96100110e-01
-1.74256209e-02 -7.72540867e-01 -6.16401806e-02 -5.77765465e-01
-2.01856300e-01 -5.01424909e-01 -1.92141309e-01 3.87434542e-01
8.56129080e-02 4.73633260e-01 -1.56488037e+00 -1.96934879e-01
9.74354506e-01 1.35663652e+00 -1.81511864e-01 7.38580942e-01
5.64879477e-01 4.01986897e-01 -6.40016198e-01 1.09923951e-01
1.51244894e-01 -7.26450384e-01 -2.49364033e-01 -5.08812964e-01
1.91090688e-01 -3.63741189e-01 -2.40527362e-01 3.44831854e-01
1.15037870e+00 6.35199025e-02 1.81730419e-01 -1.20560324e+00
-6.74659312e-02 2.94985026e-01 -2.62153924e-01 1.51641577e-01
5.47287881e-01 1.89280555e-01 2.56434083e-01 -4.80471134e-01
-3.28116529e-02 6.77297890e-01 1.21622372e+00 5.79955041e-01
-1.24240506e+00 -8.16824853e-01 -5.80003202e-01 3.72049659e-01
-1.62956500e+00 -4.48648572e-01 1.12187314e+00 -8.96965861e-02
1.13676953e+00 7.61804640e-01 1.13841462e+00 7.74583399e-01
5.82691252e-01 9.77313742e-02 1.61716437e+00 -6.32842422e-01
3.71080905e-01 3.44405472e-01 1.53781444e-01 5.42304218e-01
5.00702560e-01 2.13087410e-01 -5.74051619e-01 -3.04886520e-01
9.33248460e-01 3.52222845e-02 -5.59301674e-01 4.08927381e-01
-8.31106365e-01 5.80546319e-01 5.03462479e-02 4.22599554e-01
-4.35781151e-01 9.51287746e-02 2.63179183e-01 -1.00592040e-02
1.55503452e-01 5.78513563e-01 -5.30439675e-01 -4.10085052e-01
-8.98274720e-01 -2.01971337e-01 1.32616711e+00 4.67237949e-01
4.97178376e-01 1.76679567e-01 -3.29483628e-01 8.07904482e-01
2.40734428e-01 7.00119913e-01 6.81118786e-01 -9.68250334e-01
1.43445969e-01 4.28508967e-01 -1.52614070e-02 -1.25633979e+00
-8.67091119e-01 -2.37341627e-01 -1.26059496e+00 -2.35802084e-01
2.50334918e-01 -3.90680522e-01 -4.65466559e-01 1.45142961e+00
2.48757526e-01 3.12475473e-01 -1.07354335e-01 9.39164639e-01
8.99499655e-01 3.95871192e-01 3.21776927e-01 -7.81560957e-01
1.57309258e+00 -5.27619958e-01 -8.90241027e-01 -1.31318077e-01
3.55493903e-01 -4.11490053e-01 1.11196637e+00 3.83113652e-01
-7.84541249e-01 -9.29927349e-01 -1.18387413e+00 4.35547233e-02
-1.83472093e-02 4.00102437e-01 7.06372797e-01 1.33026624e+00
-7.47073948e-01 1.02024758e+00 -7.40047038e-01 -4.33671594e-01
2.85062585e-02 2.73167908e-01 1.09397553e-01 3.52727890e-01
-1.44830012e+00 1.00126255e+00 5.59910536e-02 4.23451453e-01
1.06868982e-01 -6.98548436e-01 -8.65865827e-01 1.50911942e-01
-8.40260535e-02 -6.47195995e-01 6.79678261e-01 -3.69475245e-01
-2.13111401e+00 3.50425363e-01 -3.47338140e-01 -4.20881569e-01
1.69287235e-01 -2.33291924e-01 -8.46648157e-01 4.19092953e-01
-7.25775898e-01 1.73761770e-01 7.88526773e-01 -4.80350077e-01
1.14910439e-01 -4.07311618e-01 -5.25585830e-01 4.52746674e-02
-4.44887906e-01 -2.98619360e-01 1.99116573e-01 -2.09642202e-01
2.31637493e-01 -9.49011087e-01 -9.88408700e-02 -9.00351703e-02
-1.64478496e-01 -1.43983159e-02 5.93393624e-01 -1.05558670e+00
1.72055471e+00 -1.98604178e+00 -4.25138652e-01 3.47880363e-01
2.16137260e-01 3.57991040e-01 5.82896709e-01 2.72197425e-01
1.51970670e-01 1.37556404e-01 5.12218662e-02 8.48188326e-02
-2.38982484e-01 6.13844357e-02 1.52984858e-02 5.49406052e-01
-2.83420831e-01 8.72701168e-01 -3.36184144e-01 -6.47802114e-01
8.48230481e-01 6.20780587e-01 -1.31671488e-01 3.14820677e-01
5.81280053e-01 3.32242459e-01 -3.21366005e-02 8.32547188e-01
4.28361863e-01 -5.88875674e-02 3.47160876e-01 -8.60313237e-01
-1.32364267e-03 1.36376604e-01 -1.24944651e+00 1.17005825e+00
-7.29588032e-01 4.58778590e-01 -4.54724789e-01 -6.77798271e-01
1.56682396e+00 4.48289096e-01 5.82131326e-01 -7.99864054e-01
1.42457440e-01 2.39620730e-01 -1.48979966e-02 -8.87861729e-01
2.99836062e-02 -3.15692008e-01 9.55692977e-02 1.28625229e-01
-2.11457282e-01 3.61620151e-02 -3.03518593e-01 -5.78270555e-01
8.18407059e-01 2.24676244e-02 7.16947913e-01 -2.41898984e-01
4.86986041e-01 -5.01243174e-01 7.44408846e-01 6.30654156e-01
-5.61481833e-01 3.41496915e-01 8.50885138e-02 -6.20367646e-01
-4.99662250e-01 -6.85849905e-01 -3.86729091e-01 2.61833042e-01
1.86831549e-01 -3.55679452e-01 -3.86509567e-01 -2.22355896e-03
1.11306667e-01 6.86617911e-01 -2.06863269e-01 -3.93533796e-01
-5.47137320e-01 -9.74098265e-01 8.62679720e-01 6.14689171e-01
8.82134676e-01 -1.11671591e+00 -1.23987842e+00 2.55613118e-01
-2.17651665e-01 -1.00727403e+00 -1.25588655e-01 2.49985382e-02
-1.34693921e+00 -9.17423844e-01 -5.14836133e-01 -2.66525567e-01
1.94209650e-01 -3.41526717e-01 8.63870919e-01 -1.35872215e-01
-7.47155607e-01 3.25784236e-01 -9.23573822e-02 -5.41573942e-01
1.81312218e-01 -1.04728267e-01 3.40404063e-01 -2.38187447e-01
5.43714583e-01 -6.97111189e-01 -1.09849238e+00 2.70189673e-01
-4.87081185e-02 -3.68317366e-02 6.60581112e-01 5.11356473e-01
5.34318328e-01 -7.91292638e-02 8.43848705e-01 -3.98044258e-01
6.78358018e-01 -1.65176660e-01 -2.79692769e-01 1.39596492e-01
-1.26036549e+00 -3.60008448e-01 6.87949061e-01 -6.70152485e-01
-7.51778424e-01 3.51928547e-02 -3.29350382e-02 -3.81517678e-01
-1.26612946e-01 2.99699217e-01 6.36636466e-02 -2.91312605e-01
9.71556723e-01 3.40429038e-01 3.89205784e-01 -4.13229138e-01
-8.88920948e-02 8.16929162e-01 3.69407296e-01 -3.50609779e-01
3.61477643e-01 -7.20140487e-02 3.92067194e-01 -1.06809211e+00
-3.03419828e-01 -2.08210319e-01 -4.33930635e-01 -4.92670238e-01
7.23544478e-01 -9.61380303e-01 -1.23729968e+00 5.84480524e-01
-4.90988374e-01 -2.97293127e-01 -6.92818537e-02 9.87105250e-01
-4.31189239e-01 4.55447406e-01 -7.99750686e-01 -1.43832695e+00
-1.19822490e+00 -4.69550639e-01 5.50591946e-01 7.83582509e-01
-5.86500406e-01 -9.02883053e-01 -1.30181044e-01 4.40459520e-01
8.15234303e-01 6.73682332e-01 5.22504032e-01 4.21612598e-02
8.88412148e-02 -3.96086037e-01 1.40841771e-02 3.98037851e-01
2.86625534e-01 -2.55905241e-01 -1.22310388e+00 -2.88373917e-01
3.98381919e-01 -1.07087880e-01 2.91856706e-01 5.93220949e-01
1.49890471e+00 -4.77603227e-01 -3.36447448e-01 6.39481068e-01
1.64603674e+00 2.84334600e-01 1.01511657e+00 -1.02887608e-01
4.77730244e-01 3.12640250e-01 5.15021682e-01 4.48272258e-01
2.59497702e-01 6.08592629e-01 -2.29411379e-01 -5.21576226e-01
2.64837109e-02 -2.56834418e-01 1.97047874e-01 7.70407200e-01
-5.44336736e-01 3.11261654e-01 -4.52383518e-01 4.35019843e-02
-1.46848381e+00 -8.85643959e-01 -1.38839081e-01 2.61198711e+00
1.01049113e+00 -2.10488528e-01 3.91943038e-01 6.44204736e-01
5.43816388e-01 -1.49599224e-01 -6.76471353e-01 -7.95446992e-01
2.58146852e-01 5.32718956e-01 6.61559522e-01 1.10893454e-02
-8.80520999e-01 -1.74590647e-02 6.56658506e+00 3.30940872e-01
-1.37995982e+00 -1.88114285e-01 7.59935856e-01 -1.36961862e-01
3.04388046e-01 -1.64977685e-01 -8.16987276e-01 8.53489578e-01
1.47287369e+00 -4.21400130e-01 4.10718203e-01 9.17867303e-01
4.64893788e-01 -4.50698495e-01 -9.25316811e-01 1.50209355e+00
6.34149984e-02 -9.39028740e-01 -7.67848849e-01 -7.55971298e-02
5.97842410e-03 -5.89065313e-01 -6.29892707e-01 3.32721353e-01
-9.23911691e-01 -9.22051847e-01 -1.45287111e-01 7.60715783e-01
1.08410382e+00 -5.10145962e-01 8.90993059e-01 9.72653553e-02
-1.29754984e+00 -6.93059564e-02 -3.01740885e-01 -5.72435915e-01
-6.12123385e-02 1.14016771e+00 -6.55290365e-01 4.93567884e-01
8.38119626e-01 4.05717582e-01 -3.85644585e-01 1.12766004e+00
-1.13146238e-01 7.59503722e-01 -6.29552424e-01 -4.83048171e-01
-8.42000127e-01 -1.20235130e-01 5.02857417e-02 9.83711839e-01
4.46328759e-01 6.41807020e-01 6.67032301e-02 8.17095757e-01
4.44817394e-01 8.89979377e-02 -3.74935985e-01 2.75494337e-01
7.36596406e-01 1.40675294e+00 -4.24375057e-01 -1.17955640e-01
-3.87079448e-01 5.98017335e-01 -3.00341457e-01 1.76770136e-01
-1.05811167e+00 -1.01258850e+00 3.46658081e-01 3.22983474e-01
-3.77121925e-01 -2.04462141e-01 -7.88339972e-01 -9.11001205e-01
1.51747972e-01 -4.60189223e-01 4.08633947e-01 -5.28068900e-01
-1.04211509e+00 4.02379781e-01 -4.52535367e-03 -1.29306924e+00
-2.16609851e-01 -1.49656072e-01 -5.94473779e-01 1.22443843e+00
-1.40778089e+00 -4.34319198e-01 -7.80152261e-01 5.12903333e-01
7.99362361e-02 4.63841677e-01 1.11750329e+00 4.38601196e-01
-8.61073613e-01 7.72289574e-01 -5.17660081e-01 -1.83645517e-01
5.56516826e-01 -8.89964044e-01 -2.79479742e-01 5.30148387e-01
-5.49780190e-01 6.68110728e-01 4.69866872e-01 -4.45137382e-01
-1.80052030e+00 -7.69398391e-01 1.05573010e+00 -3.03816870e-02
-4.28465828e-02 -1.80035964e-01 -8.73759329e-01 -2.02227291e-02
-3.24761510e-01 2.86090404e-01 9.02481675e-01 1.14540190e-01
1.68836892e-01 -7.14346528e-01 -1.66365361e+00 2.88906008e-01
6.25112832e-01 -4.69215780e-01 -4.25288796e-01 -8.61893222e-02
2.36272410e-01 -5.85044444e-01 -1.69720995e+00 7.05636680e-01
1.18533659e+00 -6.73825741e-01 8.47080708e-01 2.67094433e-01
-3.94015387e-02 -2.76889473e-01 2.30823830e-01 -8.61452937e-01
-3.39982182e-01 -6.50380611e-01 -7.08448946e-01 1.13565397e+00
1.57739058e-01 -1.06234658e+00 5.69059730e-01 1.44356048e+00
2.67611653e-01 -9.62760150e-01 -8.54005754e-01 -8.51575315e-01
-6.63170636e-01 -8.32553059e-02 1.82023287e-01 7.91691601e-01
6.65488183e-01 2.51493722e-01 -7.84037113e-01 -4.42142710e-02
7.24332809e-01 3.38174105e-01 5.02080500e-01 -1.22018456e+00
-3.51644307e-01 9.37889293e-02 -3.84504884e-01 -4.04736966e-01
-4.10677105e-01 -2.34683976e-01 -7.01551698e-03 -1.34834075e+00
2.07419991e-02 -5.37529469e-01 -5.37677824e-01 8.15532267e-01
-3.87813807e-01 5.12849271e-01 1.69736221e-02 5.62054403e-02
1.60641894e-01 2.61397719e-01 8.39426398e-01 3.45263988e-01
-9.70177114e-01 2.38270581e-01 -4.49563831e-01 2.98799932e-01
1.09207404e+00 -3.18761975e-01 -3.76104236e-01 3.77911091e-01
-2.20271438e-01 4.19690102e-01 3.45472097e-01 -1.38944769e+00
1.92475140e-01 -6.91546500e-02 1.02054644e+00 -2.09994569e-01
3.58023554e-01 -6.64739192e-01 6.64438426e-01 9.68104005e-01
9.49949920e-02 -3.49680305e-01 4.19494182e-01 1.16568021e-01
1.12758130e-01 1.14236481e-01 7.80343294e-01 2.94366535e-02
-4.07486111e-01 -2.98122540e-02 -1.91331625e-01 -4.66238290e-01
9.72999930e-01 -5.63098311e-01 -3.73007476e-01 -3.27865064e-01
-6.13476157e-01 -1.25586897e-01 6.38638437e-02 2.41287112e-01
6.67181969e-01 -1.17155933e+00 -1.67223766e-01 3.67708415e-01
-1.08253203e-01 -5.96142352e-01 5.65360427e-01 1.19702518e+00
-3.61281335e-01 4.97694790e-01 -4.71691787e-01 -5.66584289e-01
-1.39323485e+00 3.39802772e-01 5.31256735e-01 3.13146822e-02
-7.70571411e-01 1.18079357e-01 -8.19724321e-01 6.51605874e-02
1.52880475e-01 -4.84127194e-01 -2.80455530e-01 -1.90319628e-01
4.82081681e-01 9.49708521e-01 3.83301228e-02 1.36216015e-01
-5.53831816e-01 9.15862918e-01 8.09875488e-01 3.76813412e-01
8.12104344e-01 -2.38058284e-01 9.96172130e-02 5.42236209e-01
1.00613225e+00 -1.46030545e-01 -7.61776030e-01 1.81367159e-01
-2.68822283e-01 -4.65704381e-01 2.58344144e-01 -9.46189880e-01
-9.86464500e-01 5.71967900e-01 1.16266966e+00 1.86914191e-01
1.77469957e+00 -5.50163865e-01 9.51147318e-01 1.62888989e-01
6.42190695e-01 -1.19458997e+00 -3.95842969e-01 -4.19567496e-01
4.54221696e-01 -8.73494804e-01 4.82888162e-01 -5.94585359e-01
-4.97770101e-01 1.31846416e+00 8.43424141e-01 9.18983594e-02
8.36842775e-01 7.24855512e-02 -5.28969392e-02 2.17601746e-01
-4.94744658e-01 1.24501206e-01 3.19183320e-01 5.44268966e-01
5.34065485e-01 3.38858873e-01 -9.67993677e-01 8.31848979e-01
-1.58042580e-01 8.07561815e-01 4.55020338e-01 7.07952321e-01
-3.92825872e-01 -7.50419080e-01 -2.14961186e-01 9.06953454e-01
-5.06299973e-01 3.40937898e-02 1.99512467e-01 5.88905692e-01
-3.18495668e-02 1.30310249e+00 -1.12405837e-01 -6.43071651e-01
5.17821908e-01 3.14019471e-01 5.95931828e-01 -1.35216191e-01
-6.39237344e-01 -1.22401277e-02 1.62846804e-01 -8.71830046e-01
-3.97197872e-01 -3.39608818e-01 -9.68501389e-01 -2.88720787e-01
-3.64368439e-01 8.98553990e-03 9.43976343e-01 6.61276400e-01
7.33947277e-01 3.74952286e-01 7.85372257e-01 -5.87616861e-01
-3.15010309e-01 -1.16140604e+00 -8.55619967e-01 -4.18643877e-02
5.65439798e-02 -3.88996661e-01 -6.86616123e-01 -1.14841379e-01] | [13.924928665161133, 3.050413131713867] |
7d4b9959-1036-4e84-a39a-1dec10ad95a1 | fusing-multimodal-signals-on-hyper-complex | 2306.13968 | null | https://arxiv.org/abs/2306.13968v1 | https://arxiv.org/pdf/2306.13968v1.pdf | Fusing Multimodal Signals on Hyper-complex Space for Extreme Abstractive Text Summarization (TL;DR) of Scientific Contents | The realm of scientific text summarization has experienced remarkable progress due to the availability of annotated brief summaries and ample data. However, the utilization of multiple input modalities, such as videos and audio, has yet to be thoroughly explored. At present, scientific multimodal-input-based text summarization systems tend to employ longer target summaries like abstracts, leading to an underwhelming performance in the task of text summarization. In this paper, we deal with a novel task of extreme abstractive text summarization (aka TL;DR generation) by leveraging multiple input modalities. To this end, we introduce mTLDR, a first-of-its-kind dataset for the aforementioned task, comprising videos, audio, and text, along with both author-composed summaries and expert-annotated summaries. The mTLDR dataset accompanies a total of 4,182 instances collected from various academic conference proceedings, such as ICLR, ACL, and CVPR. Subsequently, we present mTLDRgen, an encoder-decoder-based model that employs a novel dual-fused hyper-complex Transformer combined with a Wasserstein Riemannian Encoder Transformer, to dexterously capture the intricacies between different modalities in a hyper-complex latent geometric space. The hyper-complex Transformer captures the intrinsic properties between the modalities, while the Wasserstein Riemannian Encoder Transformer captures the latent structure of the modalities in the latent space geometry, thereby enabling the model to produce diverse sentences. mTLDRgen outperforms 20 baselines on mTLDR as well as another non-scientific dataset (How2) across three Rouge-based evaluation measures. Furthermore, based on the qualitative metrics, BERTScore and FEQA, and human evaluations, we demonstrate that the summaries generated by mTLDRgen are fluent and congruent to the original source material. | ['Tanmoy Chakraborty', 'Vikram Goyal', 'Yash Kumar Atri'] | 2023-06-24 | null | null | null | null | ['abstractive-text-summarization', 'text-summarization'] | ['natural-language-processing', 'natural-language-processing'] | [ 2.23623663e-01 6.71175122e-02 7.29071274e-02 -1.30896941e-01
-1.41755593e+00 -6.41889334e-01 8.15450490e-01 1.33068994e-01
-1.98195204e-02 6.92460954e-01 1.02875757e+00 1.76993594e-01
-3.94529104e-02 -2.07228824e-01 -6.15056932e-01 -5.74512601e-01
8.37254003e-02 2.60794401e-01 -3.60871494e-01 -1.51543155e-01
3.80105078e-01 2.97884922e-02 -1.36298549e+00 4.90208596e-01
1.25402761e+00 6.56984985e-01 1.40555486e-01 1.01832879e+00
-1.36378212e-02 5.54987788e-01 -9.16053534e-01 -7.83373535e-01
-2.49945477e-01 -7.07908869e-01 -6.30379915e-01 8.91302228e-02
7.67751396e-01 -2.41125330e-01 -6.83583498e-01 7.72530377e-01
8.27700913e-01 2.76219249e-01 1.04559839e+00 -9.90272105e-01
-7.91789651e-01 8.49579275e-01 -5.26141942e-01 -6.23082668e-02
9.79499161e-01 1.31100073e-01 1.37168419e+00 -1.03355455e+00
7.77994335e-01 1.39959967e+00 3.81430149e-01 4.81000811e-01
-1.01776850e+00 -2.70410240e-01 2.47417670e-02 6.82128817e-02
-1.10574055e+00 -5.19415259e-01 7.79133320e-01 -2.95558184e-01
7.17709899e-01 5.55788636e-01 5.66081345e-01 1.59071159e+00
1.82008952e-01 1.28784692e+00 5.73823094e-01 -5.67099117e-02
4.94517498e-02 -1.21995352e-01 3.21269548e-03 4.28391308e-01
1.78780332e-01 -4.84730691e-01 -1.00282729e+00 -1.18660651e-01
2.64528245e-01 -1.22111641e-01 -7.33205020e-01 4.46650833e-02
-1.72789907e+00 5.48984885e-01 1.03456624e-01 1.89643666e-01
-3.06012511e-01 -1.45464376e-01 7.27974474e-01 2.07437024e-01
6.05565310e-01 6.63853467e-01 6.20267959e-03 -5.58884978e-01
-1.21758080e+00 4.85113829e-01 1.04632795e+00 1.22363520e+00
2.25381926e-01 9.22212079e-02 -7.80841231e-01 8.22094738e-01
1.72291979e-01 7.42932081e-01 4.38744664e-01 -9.89356041e-01
9.66727912e-01 6.23638093e-01 -1.58317268e-01 -1.13468552e+00
-2.09172338e-01 -3.13525915e-01 -1.22672784e+00 -6.64212286e-01
-7.40863988e-03 -1.52560607e-01 -4.57061172e-01 1.61332285e+00
-5.39318770e-02 -3.29217352e-02 5.42678952e-01 6.91341698e-01
1.57435274e+00 1.10602736e+00 -3.45964700e-01 -2.62631625e-01
1.20039594e+00 -9.37041759e-01 -1.03467691e+00 1.57756791e-01
5.70355296e-01 -7.50489593e-01 1.10658097e+00 3.54792386e-01
-1.37312555e+00 -3.95156235e-01 -1.17582989e+00 -3.90204996e-01
-1.92541346e-01 4.89105046e-01 7.66469315e-02 1.09682508e-01
-1.06130695e+00 5.78597844e-01 -5.48028946e-01 -3.80488843e-01
2.19066858e-01 -1.57105476e-01 -6.00917637e-01 -2.95089334e-01
-1.06413674e+00 6.06455684e-01 3.82281810e-01 1.16384014e-01
-6.52329803e-01 -7.57150829e-01 -1.01792991e+00 1.24426357e-01
2.59813607e-01 -9.73528981e-01 1.04704762e+00 -2.77781397e-01
-1.65767789e+00 5.49188495e-01 -1.87955394e-01 -1.68760821e-01
8.05392921e-01 -4.35852468e-01 -3.88370872e-01 4.92891490e-01
1.25447407e-01 6.06991410e-01 7.38417149e-01 -1.14034581e+00
-2.82686085e-01 -2.92171985e-01 -2.35941455e-01 5.71294963e-01
-4.64100391e-01 -3.16969335e-01 -4.93142605e-01 -9.28571880e-01
-3.82421851e-01 -7.21691489e-01 1.70824394e-01 -5.93805790e-01
-9.88515496e-01 -3.68798226e-01 9.35936689e-01 -8.80462408e-01
1.37365115e+00 -2.30951977e+00 8.40619326e-01 -3.22201461e-01
4.41943765e-01 7.64578059e-02 -4.01654989e-01 8.03689122e-01
2.07600772e-01 1.84389785e-01 -3.45079213e-01 -8.52442384e-01
2.27926582e-01 -1.74303815e-01 -5.68286717e-01 3.42278391e-01
8.87156203e-02 1.02158010e+00 -1.06295931e+00 -7.21131682e-01
2.21186131e-02 4.12298769e-01 -3.76314342e-01 3.67157906e-01
-1.29433915e-01 4.06712174e-01 -5.52335262e-01 6.03512704e-01
2.39891753e-01 -1.25265941e-01 -2.71211773e-01 -4.91778433e-01
-1.41404569e-01 1.81032181e-01 -7.22325325e-01 2.16293502e+00
-2.57264286e-01 9.56869960e-01 -1.55140460e-01 -7.82542288e-01
8.97763550e-01 5.39915264e-01 4.16984528e-01 -2.57458299e-01
3.34671438e-02 3.08778226e-01 -5.47241569e-01 -5.49607933e-01
1.18123388e+00 3.13328385e-01 -5.06153643e-01 4.31389511e-01
2.72195250e-01 -5.92833042e-01 5.86618841e-01 8.36021423e-01
1.25529134e+00 9.88178104e-02 1.09632172e-01 2.45765820e-02
4.61095840e-01 -9.25320014e-02 1.75701886e-01 8.06250870e-01
1.38214424e-01 1.04071605e+00 5.69155812e-01 2.77080894e-01
-8.99039209e-01 -1.08396709e+00 -5.90461195e-02 7.74148107e-01
1.01953730e-01 -9.38059270e-01 -7.18956649e-01 -5.83142757e-01
-1.34598643e-01 8.81608605e-01 -4.03909951e-01 -4.14172262e-01
-3.40103239e-01 -3.93935919e-01 8.61392379e-01 2.68919826e-01
5.34293413e-01 -9.43022192e-01 -3.05728763e-01 -4.50681802e-03
-7.53490865e-01 -1.27139354e+00 -9.67883646e-01 -3.82409215e-01
-8.02242994e-01 -8.32538307e-01 -1.06498575e+00 -4.12405998e-01
2.74014711e-01 2.50992864e-01 1.10678637e+00 -4.55836207e-01
-2.15797380e-01 8.19872797e-01 -5.31050205e-01 -1.99772701e-01
-4.92812485e-01 2.62245983e-01 -3.12273353e-02 3.48386206e-02
-1.14819117e-01 -4.60602880e-01 -4.31419820e-01 -3.91800217e-02
-1.09216070e+00 3.20338190e-01 7.93473601e-01 8.06520224e-01
2.83344328e-01 -5.07730603e-01 8.26372802e-01 -6.07129216e-01
1.09882474e+00 -5.08565187e-01 1.28015071e-01 4.05060619e-01
4.79633622e-02 1.07647806e-01 6.62637889e-01 -5.07597983e-01
-1.10969520e+00 -4.58893150e-01 9.17946398e-02 -4.31566447e-01
9.57863405e-02 8.96642625e-01 -4.18374538e-01 6.94453418e-01
4.82485563e-01 4.74099427e-01 -1.35315046e-01 -4.53435242e-01
6.73245966e-01 9.86018777e-01 9.54868555e-01 -5.80257058e-01
5.50860822e-01 2.00352460e-01 -1.06686935e-01 -1.24030840e+00
-9.42560256e-01 -4.35368508e-01 -3.86830002e-01 -2.57061452e-01
8.81185353e-01 -1.04050255e+00 -5.54988265e-01 4.00416315e-01
-1.47801518e+00 1.02546193e-01 -5.21321595e-01 5.92451811e-01
-7.52657592e-01 7.20549226e-01 -5.77207744e-01 -5.19069314e-01
-6.22963905e-01 -1.04966986e+00 1.55563974e+00 1.48347825e-01
-4.60243374e-01 -9.50504303e-01 2.02425346e-01 5.16663790e-01
2.01636389e-01 4.93587971e-01 7.76504874e-01 -8.75374198e-01
-3.01851600e-01 -4.05321658e-01 -1.36174574e-01 3.50267291e-01
4.07572426e-02 2.24167928e-01 -7.57846951e-01 -2.65347004e-01
-1.86597526e-01 -3.94862622e-01 1.14762032e+00 3.28158438e-01
1.02772045e+00 -5.74622154e-01 -8.84429924e-03 4.76115137e-01
6.91482484e-01 -2.90052623e-01 6.28819525e-01 -1.82651818e-01
9.64587569e-01 6.33901179e-01 4.67034191e-01 5.68486750e-01
6.89950287e-01 5.16945124e-01 5.68187349e-02 1.31923378e-01
-1.82957709e-01 -4.76213038e-01 8.49754333e-01 1.58414972e+00
-1.13510840e-01 -6.84387982e-01 -4.81542617e-01 4.32041109e-01
-2.02290320e+00 -1.18059790e+00 -5.60907796e-02 1.96207309e+00
1.00806928e+00 -1.84847757e-01 -5.88441491e-02 -1.52853936e-01
6.23330593e-01 5.40138185e-01 -5.19160450e-01 -3.38015586e-01
-4.85895008e-01 -4.33476418e-01 -4.91424389e-02 2.09071070e-01
-9.01729763e-01 5.76420903e-01 5.58679295e+00 1.08492565e+00
-8.18570733e-01 -2.23345682e-01 3.31702054e-01 -2.06072852e-01
-5.38318276e-01 -2.49950051e-01 -5.99180579e-01 4.68000352e-01
1.00311244e+00 -6.43114686e-01 1.60487682e-01 4.86969501e-01
2.91107982e-01 -2.52216379e-03 -1.42714667e+00 1.16122258e+00
5.35893738e-01 -1.36752439e+00 4.64635193e-01 -3.74542773e-02
8.49134207e-01 -2.09784314e-01 1.10407643e-01 4.73467469e-01
8.02545249e-02 -1.11325824e+00 6.59610033e-01 8.02075028e-01
1.06773293e+00 -5.09990335e-01 6.83520079e-01 3.18295836e-01
-1.02759326e+00 2.79633403e-01 -1.63636446e-01 4.41687971e-01
3.07068467e-01 6.91059351e-01 -5.08033991e-01 1.16115379e+00
5.08654594e-01 1.45545661e+00 -5.42252958e-01 7.89797902e-01
-9.21059623e-02 5.33839822e-01 -3.76956873e-02 -1.10894531e-01
6.74906299e-02 -3.55547696e-01 1.25269091e+00 1.68822050e+00
5.66752076e-01 5.11185341e-02 9.54624638e-02 8.71697128e-01
-5.06151140e-01 1.41225889e-01 -8.09425652e-01 -5.20161748e-01
3.65898371e-01 1.27025032e+00 -1.10563137e-01 -5.21153390e-01
-2.01477930e-01 1.04242897e+00 4.77262735e-02 5.66882372e-01
-5.91204643e-01 -5.99824309e-01 2.37250179e-01 -2.87014693e-01
-6.15863763e-02 -2.02277869e-01 -1.84061602e-01 -1.70092559e+00
1.77070245e-01 -1.01314783e+00 2.54984349e-01 -8.38145435e-01
-1.31014788e+00 6.25997543e-01 2.77665734e-01 -1.32472301e+00
-3.61914486e-01 -7.96689987e-02 -7.97320366e-01 7.20877588e-01
-1.10390317e+00 -1.11229408e+00 -4.13557917e-01 3.78598452e-01
9.07539964e-01 -3.35512042e-01 6.72241569e-01 1.01892434e-01
-8.01270962e-01 6.04631126e-01 3.86095911e-01 -8.67005438e-02
9.92815316e-01 -1.31652629e+00 1.71593487e-01 7.09637225e-01
-1.70216709e-02 4.30167049e-01 9.12257731e-01 -6.24309182e-01
-1.73461843e+00 -1.10580885e+00 7.83516347e-01 -5.10215998e-01
5.33472955e-01 -2.37647951e-01 -9.27280545e-01 5.03394544e-01
5.23703694e-01 -4.87573147e-01 5.65672576e-01 -1.58676937e-01
-2.89815038e-01 1.04194492e-01 -7.25109041e-01 9.03886259e-01
9.60698187e-01 -4.95083481e-01 -7.86346197e-01 3.09799910e-01
9.06989813e-01 -5.58051109e-01 -1.06303883e+00 4.41479832e-01
4.94033575e-01 -6.79000914e-01 8.92752349e-01 -3.78407001e-01
1.08573091e+00 -1.45786162e-02 -2.32448012e-01 -1.70120013e+00
2.00515866e-01 -9.58522022e-01 -4.36538607e-01 1.66018903e+00
2.65869379e-01 -1.53946698e-01 1.93947896e-01 2.78498322e-01
-5.73143244e-01 -7.15043962e-01 -8.60413253e-01 -4.69930530e-01
-8.68079662e-02 -1.18602045e-01 4.24960971e-01 5.95766485e-01
3.02753776e-01 8.39884579e-01 -4.64186430e-01 -3.15835387e-01
5.43745339e-01 1.44323155e-01 9.15715098e-01 -1.03354371e+00
-4.40415181e-02 -6.74394429e-01 -2.46162191e-01 -1.24890280e+00
3.21199268e-01 -9.56499040e-01 7.74309933e-02 -1.86068702e+00
4.96447980e-01 2.20159009e-01 2.59858996e-01 8.85304362e-02
-3.17243248e-01 -9.14019346e-02 3.39058608e-01 3.63633752e-01
-1.07875943e+00 1.24657404e+00 1.38320100e+00 -3.95412713e-01
-2.32377246e-01 -9.72696021e-02 -7.91639686e-01 5.37297904e-01
3.77406389e-01 -6.37502968e-02 -2.78150856e-01 -2.99544007e-01
2.18175441e-01 4.95837629e-01 2.65058488e-01 -8.14434767e-01
2.91862994e-01 1.37033239e-01 1.76641524e-01 -9.58353579e-01
4.62820947e-01 -2.14555532e-01 2.21098028e-03 -1.44737497e-01
-7.40088701e-01 1.55670807e-01 2.31430642e-02 8.07020545e-01
-5.18072486e-01 6.26336643e-03 2.37480685e-01 1.71793252e-01
-7.84684196e-02 1.26681313e-01 -2.92070687e-01 5.50468862e-01
6.06945336e-01 -6.35830387e-02 -6.22419357e-01 -7.67006934e-01
-3.90392244e-01 4.78665501e-01 3.24590594e-01 4.89252985e-01
8.43836129e-01 -1.24418116e+00 -1.33916593e+00 -2.57808417e-01
1.76197812e-01 2.29935259e-01 5.17618001e-01 1.05883551e+00
-1.73683047e-01 4.09771323e-01 1.27601624e-01 -7.26987600e-01
-1.12022567e+00 1.40139610e-01 -1.29130960e-01 -4.78363544e-01
-9.38081443e-01 4.00340229e-01 3.29042673e-01 -3.92251074e-01
4.10790801e-01 -2.64876872e-01 -3.58693689e-01 4.01022375e-01
5.87379217e-01 7.30459630e-01 -2.83623729e-02 -6.87718630e-01
-7.87442401e-02 4.16017532e-01 -6.48451969e-02 -2.46054128e-01
1.26560152e+00 -2.82146692e-01 -2.35211793e-02 7.42093682e-01
1.37097716e+00 2.20330015e-01 -1.08345246e+00 -2.10436001e-01
-9.90449786e-02 -1.02518417e-01 -2.15050966e-01 -6.41219556e-01
-6.69781983e-01 9.19132054e-01 -2.21389413e-01 2.21363723e-01
9.78700221e-01 1.05400138e-01 9.07175839e-01 4.38857913e-01
-2.61323601e-01 -9.85302985e-01 5.11245847e-01 6.46123111e-01
1.41373599e+00 -1.06620705e+00 2.45703638e-01 -1.27626389e-01
-1.08219361e+00 1.11105788e+00 2.00809866e-01 1.42088562e-01
4.86890636e-02 -1.68761745e-01 -3.65292996e-01 -1.57883048e-01
-9.22221780e-01 2.11884007e-01 7.71873355e-01 3.23365659e-01
5.08313656e-01 1.02339417e-01 -1.47057250e-01 7.92835057e-01
-4.63547558e-01 -2.43886501e-01 8.24530482e-01 6.34054661e-01
-1.21279381e-01 -6.17471635e-01 -3.09219033e-01 5.70205212e-01
-4.45663840e-01 5.11911605e-03 -6.86011672e-01 5.84799647e-01
-6.78538084e-01 9.90714669e-01 -1.23054400e-01 -3.48661155e-01
5.31573236e-01 -2.14354932e-01 3.13933432e-01 -4.97663528e-01
-4.13044930e-01 6.07289281e-03 1.62652627e-01 -2.72450089e-01
-4.35248762e-01 -8.12271476e-01 -9.70118523e-01 -4.37891752e-01
-1.10622503e-01 3.87804985e-01 6.60688698e-01 8.63731623e-01
6.00805998e-01 7.64221013e-01 6.19819522e-01 -1.29370010e+00
-7.32150316e-01 -1.23999560e+00 -5.46341836e-01 4.05666083e-01
5.02740026e-01 -3.37311238e-01 -5.34916043e-01 5.84801920e-02] | [10.656126976013184, 0.6710078716278076] |
e3d13657-7f93-4dbe-9dd4-861b9a87a323 | an-interpretable-machine-vision-approach-to | 1812.00668 | null | http://arxiv.org/abs/1812.00668v1 | http://arxiv.org/pdf/1812.00668v1.pdf | An Interpretable Machine Vision Approach to Human Activity Recognition using Photoplethysmograph Sensor Data | The current gold standard for human activity recognition (HAR) is based on
the use of cameras. However, the poor scalability of camera systems renders
them impractical in pursuit of the goal of wider adoption of HAR in mobile
computing contexts. Consequently, researchers instead rely on wearable sensors
and in particular inertial sensors. A particularly prevalent wearable is the
smart watch which due to its integrated inertial and optical sensing
capabilities holds great potential for realising better HAR in a non-obtrusive
way. This paper seeks to simplify the wearable approach to HAR through
determining if the wrist-mounted optical sensor alone typically found in a
smartwatch or similar device can be used as a useful source of data for
activity recognition. The approach has the potential to eliminate the need for
the inertial sensing element which would in turn reduce the cost of and
complexity of smartwatches and fitness trackers. This could potentially
commoditise the hardware requirements for HAR while retaining the functionality
of both heart rate monitoring and activity capture all from a single optical
sensor. Our approach relies on the adoption of machine vision for activity
recognition based on suitably scaled plots of the optical signals. We take this
approach so as to produce classifications that are easily explainable and
interpretable by non-technical users. More specifically, images of
photoplethysmography signal time series are used to retrain the penultimate
layer of a convolutional neural network which has initially been trained on the
ImageNet database. We then use the 2048 dimensional features from the
penultimate layer as input to a support vector machine. Results from the
experiment yielded an average classification accuracy of 92.3%. This result
outperforms that of an optical and inertial sensor combined (78%) and
illustrates the capability of HAR systems using... | ['José Juan Dominguez Veiga', 'Eoin Brophy', 'Zhengwei Wang', 'Tomas E. Ward', 'Alan F. Smeaton'] | 2018-12-03 | null | null | null | null | ['2048'] | ['playing-games'] | [ 4.88211691e-01 6.02531573e-03 -5.09311929e-02 -7.16938302e-02
-3.17024350e-01 -4.81970727e-01 1.75674468e-01 1.88371558e-02
-7.42270470e-01 6.69219911e-01 1.02395721e-01 -3.89156550e-01
4.30665351e-02 -5.31888366e-01 -4.21446413e-01 -6.60952330e-01
1.65536076e-01 -3.44528645e-01 -2.40183473e-01 1.79427460e-01
-4.16033762e-03 4.36337322e-01 -1.59486413e+00 -1.58943966e-01
4.80799347e-01 1.19186962e+00 -1.09486558e-01 9.09070849e-01
4.15135235e-01 3.45057964e-01 -6.89109445e-01 -5.51985428e-02
2.78011411e-01 -4.66035426e-01 -6.79715797e-02 2.12511912e-01
5.77648222e-01 -5.73338330e-01 -6.01248331e-02 4.59063530e-01
7.11988032e-01 8.66047442e-02 1.80812567e-01 -8.98578703e-01
-1.73091754e-01 -9.11343098e-02 -2.55780071e-01 4.04592782e-01
8.44677329e-01 3.50385696e-01 4.07657534e-01 -5.09563088e-01
2.10018665e-01 4.61927623e-01 1.00094497e+00 2.41184682e-01
-1.18510318e+00 -3.43521863e-01 -5.09147704e-01 -8.26336369e-02
-1.41295707e+00 -6.47034287e-01 8.14615726e-01 -2.99206734e-01
1.24050558e+00 5.83524048e-01 1.17692494e+00 1.14154136e+00
3.79191786e-01 1.88451126e-01 1.15666676e+00 -4.52454180e-01
2.88646638e-01 3.50897640e-01 -1.08157195e-01 7.48116851e-01
7.87315965e-01 -2.08637819e-01 -4.46488768e-01 -4.19941312e-03
9.14353848e-01 2.54709452e-01 -2.33936965e-01 -2.25785643e-01
-1.13834500e+00 3.45760047e-01 2.10832298e-01 4.94848877e-01
-6.15505099e-01 1.92329139e-01 2.54447699e-01 1.52272671e-01
1.12567760e-01 5.57721674e-01 -1.85530812e-01 -5.80438316e-01
-9.96199667e-01 -2.59394646e-01 8.37039292e-01 2.35970527e-01
2.08657026e-01 2.10439175e-01 3.70406359e-01 4.94245231e-01
4.38002020e-01 3.83535832e-01 7.27739453e-01 -8.85474026e-01
1.54762805e-01 9.07283485e-01 2.29963794e-01 -1.01796710e+00
-7.51490414e-01 -3.21032137e-01 -5.07022858e-01 2.27538124e-01
6.48117602e-01 -4.47778851e-01 -6.08945429e-01 1.18700039e+00
3.98384809e-01 2.69134879e-01 -1.52347609e-01 9.38904166e-01
4.19730067e-01 2.77997315e-01 1.78545237e-01 -2.51141608e-01
1.50228155e+00 -3.40127856e-01 -6.37562156e-01 -2.50134557e-01
5.27267933e-01 -5.21177173e-01 1.02074862e+00 4.62506056e-01
-8.79027367e-01 -5.92004597e-01 -1.65835965e+00 -5.14135100e-02
-4.66028035e-01 2.98645139e-01 5.96073925e-01 1.28993285e+00
-8.94959629e-01 5.12207627e-01 -1.17444491e+00 -7.47042835e-01
2.46421769e-01 6.98848605e-01 -4.58598167e-01 2.81816632e-01
-7.47097433e-01 1.05790699e+00 1.60620779e-01 3.59257072e-01
-7.70658329e-02 -3.56431663e-01 -8.79752040e-01 1.13477949e-02
7.31048509e-02 -6.39365017e-01 8.50412369e-01 -1.05048752e+00
-1.70948732e+00 6.09011769e-01 9.33825970e-02 -4.02232587e-01
5.09479821e-01 -2.89176881e-01 -5.46494186e-01 4.19628471e-01
-2.35104337e-01 1.90735772e-01 8.35045815e-01 -4.22922432e-01
-2.79889524e-01 -3.78572553e-01 -3.69090103e-02 3.28102887e-01
-5.56895554e-01 -2.64611870e-01 -6.42283633e-02 -2.20660001e-01
7.15834349e-02 -1.10790539e+00 1.76242933e-01 9.19905026e-03
-5.53270318e-02 1.82685658e-01 7.35335052e-01 -6.36147916e-01
1.20607090e+00 -2.15922356e+00 -3.90655130e-01 2.02337712e-01
2.11707279e-01 5.50064683e-01 4.45939332e-01 1.70464560e-01
-1.37390226e-01 -2.02015370e-01 1.95123613e-01 -2.61129122e-02
-3.66116047e-01 1.02637693e-01 3.02970827e-01 8.87453079e-01
-1.28855174e-02 7.75307834e-01 -6.40292346e-01 -2.85271108e-01
7.22592533e-01 8.08760047e-01 -2.31372416e-01 3.45909260e-02
5.39449513e-01 3.61968935e-01 -1.48268893e-01 7.16825843e-01
4.72378545e-02 -9.14508998e-02 3.51057857e-01 -3.00870121e-01
-1.56287149e-01 2.93203592e-01 -1.27759075e+00 1.53639746e+00
-4.77606356e-01 6.50232673e-01 -1.92122623e-01 -8.93150568e-01
9.59432840e-01 5.50782621e-01 7.63870001e-01 -6.78495765e-01
2.76770651e-01 1.92835137e-01 1.45964861e-01 -7.53480196e-01
3.19911063e-01 -1.46968916e-01 -1.67574305e-02 3.41879338e-01
-1.26357600e-01 5.39667189e-01 -7.02860504e-02 -2.91938215e-01
1.16931009e+00 5.03305614e-01 5.89473069e-01 -1.59565032e-01
4.69049513e-01 -2.47789100e-01 2.14628384e-01 5.53784490e-01
-4.18709487e-01 5.27451634e-01 -7.56277591e-02 -6.58398628e-01
-8.56573045e-01 -9.66708899e-01 -9.55965444e-02 7.48765826e-01
-1.60301402e-01 -2.62372941e-01 -6.21489108e-01 -2.71516293e-01
8.88419989e-03 2.98710167e-01 -4.55799431e-01 -1.97437689e-01
-4.45613056e-01 -6.90151870e-01 6.80574000e-01 6.67548478e-01
5.30578554e-01 -7.30773747e-01 -1.57481611e+00 4.27497178e-01
1.52391598e-01 -9.20665324e-01 -3.22036371e-02 2.56668925e-01
-9.77626204e-01 -9.82870519e-01 -5.99509537e-01 -1.05177075e-01
5.18396735e-01 3.00164670e-01 4.69127268e-01 6.44792244e-03
-4.40000445e-01 8.62870514e-01 -7.98977688e-02 -6.19277418e-01
1.49032041e-01 1.26940101e-01 4.15399969e-01 1.76016822e-01
7.42980599e-01 -7.91860282e-01 -9.37576413e-01 8.12303200e-02
-5.51549077e-01 -1.48089767e-01 4.99813944e-01 3.95629615e-01
2.27634296e-01 -4.02499586e-01 5.56532741e-01 -3.68894488e-01
6.97413325e-01 -3.02716762e-01 -4.14477587e-01 -4.34167832e-02
-8.52318406e-01 -2.74270773e-01 5.94786227e-01 -5.35974383e-01
-6.79578304e-01 4.70770776e-01 1.41831860e-01 -1.72641650e-01
-2.46024981e-01 3.83783877e-01 1.17053173e-01 -1.52222008e-01
8.11755061e-01 -6.83806511e-03 2.85264045e-01 -3.34122866e-01
-1.57463774e-01 9.65532184e-01 6.62837207e-01 -3.53918448e-02
3.90009791e-01 3.62109989e-01 1.74842089e-01 -1.26391304e+00
-2.84309834e-01 -5.67327499e-01 -5.59440136e-01 -5.83772421e-01
8.97718668e-01 -9.82483149e-01 -1.01115227e+00 2.88104683e-01
-5.79956234e-01 2.21631303e-01 -1.43751577e-01 7.79674053e-01
-3.79717708e-01 2.73606271e-01 -1.87508970e-01 -1.14411950e+00
-4.15975749e-01 -7.01843798e-01 7.84970522e-01 6.68257833e-01
-7.40271389e-01 -9.36982512e-01 -2.91535873e-02 7.22871721e-01
5.33505678e-01 7.08237112e-01 1.89116001e-01 -3.39929044e-01
-2.01635361e-01 -9.12340999e-01 1.94487199e-01 3.58171523e-01
3.22324067e-01 -2.84938544e-01 -1.36352456e+00 -2.46748075e-01
1.94388777e-01 -1.40127257e-01 2.06901222e-01 3.84570032e-01
5.38685262e-01 -2.02902481e-01 -8.58977139e-02 4.91373509e-01
1.52684152e+00 4.24148589e-01 8.04789245e-01 4.84433591e-01
6.62485242e-01 1.51860371e-01 3.00315637e-02 3.15336019e-01
3.09435070e-01 6.46564484e-01 1.00063853e-01 -2.88434505e-01
8.34641755e-02 -1.17445171e-01 5.53241253e-01 5.56698978e-01
-6.08622313e-01 1.51489571e-01 -7.50926495e-01 2.91094929e-01
-1.57301021e+00 -9.39813793e-01 -1.60033908e-02 2.56956005e+00
4.18190807e-01 5.85916415e-02 4.07136917e-01 4.98658091e-01
3.03709686e-01 -9.89347249e-02 -4.26665395e-01 -9.03736174e-01
4.29742783e-01 2.99968243e-01 7.66675055e-01 3.30112614e-02
-1.14479017e+00 -3.00083458e-02 5.97484732e+00 -2.10628092e-01
-1.24057138e+00 -1.27777115e-01 3.56498480e-01 -4.82573897e-01
5.03511190e-01 -3.22010368e-01 -4.82320458e-01 6.80159569e-01
1.54817080e+00 -3.10402513e-02 4.66717482e-01 7.83663571e-01
5.27867377e-01 -7.70602584e-01 -1.19459379e+00 1.24229670e+00
1.85874715e-01 -9.91416276e-01 -6.96362197e-01 3.13546687e-01
2.17300698e-01 -1.20445102e-01 -1.52211547e-01 -2.13119145e-02
-6.18161440e-01 -9.42003012e-01 1.99560180e-01 8.10443521e-01
7.91878283e-01 -4.23641711e-01 7.34890342e-01 1.91534519e-01
-1.01614654e+00 -1.63943142e-01 4.73250402e-03 -6.77709162e-01
-8.12357962e-02 2.23832920e-01 -9.96952772e-01 2.61059999e-01
5.46346307e-01 3.17420244e-01 -5.01320660e-01 1.10619354e+00
2.01570258e-01 5.35585225e-01 -7.72419095e-01 -1.74190193e-01
-4.64062802e-02 -7.90264830e-02 2.44187549e-01 1.11926830e+00
4.52296495e-01 -3.24329510e-02 5.48090274e-03 2.83102572e-01
1.56049207e-01 -1.49704646e-02 -8.86985064e-01 -2.30024487e-01
2.46180415e-01 1.34663713e+00 -8.02857518e-01 -1.60435557e-01
-7.87256420e-01 7.97480404e-01 -2.32010707e-01 4.20089141e-02
-6.37097418e-01 -5.27810574e-01 3.97443503e-01 4.62169468e-01
1.11438580e-01 -3.42430472e-01 -4.75920588e-01 -1.11449611e+00
2.82529861e-01 -7.74216712e-01 2.81553835e-01 -6.96798980e-01
-6.61487818e-01 2.17218190e-01 -2.17945397e-01 -1.30679560e+00
-5.13691962e-01 -6.12957895e-01 -5.24396122e-01 1.03830683e+00
-8.86234701e-01 -8.64697397e-01 -6.06676042e-01 5.15634894e-01
1.97297141e-01 2.29459211e-01 1.06925607e+00 3.53902787e-01
-7.06300557e-01 4.62735415e-01 -1.62356108e-01 9.48897675e-02
4.89566416e-01 -1.13057065e+00 -3.27853821e-02 1.02428901e+00
6.25038072e-02 8.15677762e-01 5.25587499e-01 -4.90349650e-01
-1.81942463e+00 -5.93872488e-01 8.96522284e-01 -7.05056667e-01
4.43642467e-01 -1.58066511e-01 -4.97281253e-01 5.02343774e-01
-3.70843452e-04 3.28364340e-03 9.92605507e-01 -5.73748127e-02
1.73613369e-01 -4.38763082e-01 -1.15833879e+00 4.98563200e-01
5.18315196e-01 -6.89535260e-01 -6.62606716e-01 -7.91028291e-02
-2.49819025e-01 -3.41414481e-01 -1.03413653e+00 -1.61634404e-02
1.34375882e+00 -8.44902694e-01 8.09185684e-01 -2.58795440e-01
3.67871374e-02 -3.53683531e-01 1.04945041e-01 -8.77765596e-01
-7.64243081e-02 -6.57658100e-01 -1.52826726e-01 9.21915352e-01
1.94014117e-01 -7.89966702e-01 8.41095030e-01 1.17073071e+00
1.60732105e-01 -6.08864307e-01 -1.10202074e+00 -6.31286740e-01
-8.32665861e-01 -3.94204170e-01 9.21018329e-03 7.26139724e-01
4.71597344e-01 3.60253125e-01 -4.26495761e-01 -9.16323289e-02
3.99270117e-01 -2.87488788e-01 7.48151481e-01 -1.27011716e+00
-3.48639935e-01 1.03608556e-01 -9.12083626e-01 -4.44660336e-01
-7.16359735e-01 -5.20136297e-01 -2.76920080e-01 -1.31526434e+00
-2.05809638e-01 -8.37944634e-03 -4.75988418e-01 5.81946015e-01
5.12290299e-02 8.34422767e-01 2.16565862e-01 6.23455308e-02
-2.63047665e-01 -2.36037821e-01 8.29950809e-01 2.29008988e-01
-6.64539218e-01 1.52303446e-02 -7.74589241e-01 7.11078107e-01
8.80776107e-01 -2.17428207e-01 -5.89272439e-01 -5.21194302e-02
2.65681326e-01 4.52381670e-02 5.17472088e-01 -1.52959108e+00
1.67375460e-01 3.00723314e-01 1.02584016e+00 1.69288576e-01
4.91345167e-01 -1.11640322e+00 5.40808856e-01 5.66474736e-01
5.46990298e-02 1.89741701e-01 1.95016906e-01 3.51057619e-01
2.61962682e-01 -7.64462538e-03 4.81901169e-01 -1.63786203e-01
-3.94939631e-01 -4.17544037e-01 -5.87152898e-01 -6.07557297e-01
9.47452009e-01 -1.09989715e+00 -1.82165071e-01 -2.90280730e-01
-7.66588271e-01 -2.86754757e-01 3.75370085e-01 3.29727918e-01
3.14271629e-01 -1.01236820e+00 -2.39053853e-02 4.73353893e-01
-9.97921303e-02 -5.92447579e-01 6.38073459e-02 1.27458513e+00
-5.80164194e-01 5.52027941e-01 -6.29961252e-01 -5.37180066e-01
-1.32678854e+00 2.68743962e-01 4.89938885e-01 2.41461471e-01
-8.11870754e-01 1.96049795e-01 -7.04725981e-01 4.58151877e-01
1.84615150e-01 -3.49908501e-01 -2.21578091e-01 1.26732424e-01
6.37966394e-01 5.45854747e-01 2.91077524e-01 -3.83163989e-01
-5.85270345e-01 2.78929502e-01 1.66349605e-01 -3.46590988e-02
1.14713347e+00 -2.40435451e-01 3.38482708e-01 6.38309419e-01
9.86592114e-01 -4.70998287e-02 -1.24878120e+00 3.46411258e-01
-3.44080180e-02 -3.75448585e-01 2.70524800e-01 -9.65641558e-01
-6.76472127e-01 5.92748284e-01 1.24591053e+00 3.37353796e-01
1.26415741e+00 -5.42312324e-01 5.79332352e-01 4.71618652e-01
2.48966798e-01 -1.30661976e+00 -2.81288654e-01 -3.10163975e-01
3.10179144e-01 -9.12350714e-01 2.95362562e-01 1.81284230e-02
-3.93131346e-01 1.23934305e+00 3.08487743e-01 -1.70940727e-01
3.12999338e-01 2.18945459e-01 1.56897143e-01 -9.66991708e-02
-2.69371629e-01 -7.41878375e-02 1.59220830e-01 6.50575697e-01
7.47379303e-01 1.54178113e-01 -7.15199232e-01 3.92678142e-01
-3.35906222e-02 6.47365928e-01 6.79597437e-01 1.26653624e+00
-3.14884663e-01 -7.70165801e-01 -4.28270161e-01 6.79819643e-01
-6.82328463e-01 2.85040975e-01 -1.96439788e-01 6.75749183e-01
3.50847512e-01 1.05240583e+00 -6.76490664e-02 -4.07818794e-01
4.18496251e-01 5.51436961e-01 4.85132366e-01 -2.90406346e-01
-7.62402833e-01 1.86394677e-01 3.12835127e-01 -6.93577528e-01
-6.67811334e-01 -7.80637920e-01 -7.48921037e-01 -1.34668231e-01
4.51930463e-02 -2.58542269e-01 1.07821929e+00 1.03938091e+00
4.67421651e-01 3.92676204e-01 3.77357930e-01 -9.10093665e-01
-3.58979762e-01 -8.73171031e-01 -5.34280002e-01 1.57908246e-01
3.76048565e-01 -5.71122110e-01 -2.07230598e-02 3.23289126e-01] | [13.67502212524414, 2.9760146141052246] |
1a92db05-b0b1-4f0d-9edb-285839d0659a | super-resolution-of-bvoc-emission-maps-via | 2306.12796 | null | https://arxiv.org/abs/2306.12796v1 | https://arxiv.org/pdf/2306.12796v1.pdf | Super-Resolution of BVOC Emission Maps Via Domain Adaptation | Enhancing the resolution of Biogenic Volatile Organic Compound (BVOC) emission maps is a critical task in remote sensing. Recently, some Super-Resolution (SR) methods based on Deep Learning (DL) have been proposed, leveraging data from numerical simulations for their training process. However, when dealing with data derived from satellite observations, the reconstruction is particularly challenging due to the scarcity of measurements to train SR algorithms with. In our work, we aim at super-resolving low resolution emission maps derived from satellite observations by leveraging the information of emission maps obtained through numerical simulations. To do this, we combine a SR method based on DL with Domain Adaptation (DA) techniques, harmonizing the different aggregation strategies and spatial information used in simulated and observed domains to ensure compatibility. We investigate the effectiveness of DA strategies at different stages by systematically varying the number of simulated and observed emissions used, exploring the implications of data scarcity on the adaptation strategies. To the best of our knowledge, there are no prior investigations of DA in satellite-derived BVOC maps enhancement. Our work represents a first step toward the development of robust strategies for the reconstruction of observed BVOC emissions. | ['Stefano Tubaro', 'Marco Marcon', 'Paolo Bestagini', 'Sara Mandelli', 'Antonio Giganti'] | 2023-06-22 | null | null | null | null | ['super-resolution'] | ['computer-vision'] | [ 3.77031505e-01 -4.48238820e-01 1.94402367e-01 -1.75910696e-01
-7.86698818e-01 -5.19064784e-01 8.56680095e-01 5.56149334e-02
-4.82202619e-01 1.29556429e+00 1.58246100e-01 -3.57759267e-01
-4.76603240e-01 -1.14469743e+00 -4.87092793e-01 -1.03932202e+00
-1.86490715e-01 3.65298897e-01 3.25058430e-01 -4.80047673e-01
-6.88036308e-02 9.49591815e-01 -1.63889921e+00 1.16605155e-01
1.30646694e+00 7.64458179e-01 5.92355728e-01 4.20426607e-01
-2.06732690e-01 2.32804805e-01 -5.17364860e-01 4.32157636e-01
5.64494312e-01 -5.57274222e-01 -3.94167721e-01 -3.72721739e-02
3.26920331e-01 -1.02417715e-01 1.81202844e-01 9.51683462e-01
5.52842975e-01 4.47699815e-01 6.58973038e-01 -7.04512537e-01
-1.47832245e-01 3.85886103e-01 -2.92588741e-01 4.38838512e-01
-3.51503432e-01 1.74407102e-02 5.64921737e-01 -7.16785967e-01
4.08335358e-01 1.00023806e+00 5.82992673e-01 1.71242937e-01
-1.48629892e+00 -7.73779511e-01 1.96441874e-01 -2.89569758e-02
-1.47038937e+00 -4.20276016e-01 4.65846926e-01 -6.41311884e-01
8.30491662e-01 2.41196930e-01 5.79431474e-01 9.55547512e-01
-7.54154474e-02 -7.47730955e-02 1.61299419e+00 -2.95436651e-01
3.53159726e-01 4.49500740e-01 -3.33940715e-01 -1.49806082e-01
3.55482310e-01 6.71305299e-01 -2.55147517e-01 -5.05186766e-02
6.83370471e-01 -2.62535304e-01 -1.98333293e-01 2.57897656e-02
-6.85623765e-01 1.02372694e+00 6.29692316e-01 4.08191413e-01
-6.15387678e-01 -3.06467384e-01 1.39570134e-02 3.27842802e-01
1.04914784e+00 6.43086612e-01 -4.05656368e-01 3.50569963e-01
-1.25963378e+00 4.79465693e-01 3.82018745e-01 4.85559344e-01
8.09117675e-01 4.70362306e-01 1.54307619e-01 9.47676241e-01
2.19994843e-01 7.60164797e-01 1.54527172e-01 -8.84330630e-01
2.46956870e-01 3.71714711e-01 4.80067968e-01 -7.78735697e-01
-3.57135326e-01 -6.61307096e-01 -9.30992126e-01 5.00301123e-01
5.59015684e-02 -4.51527297e-01 -8.47304225e-01 1.60040510e+00
4.05783892e-01 1.08719729e-02 3.34769309e-01 1.02919674e+00
4.87213254e-01 1.04196966e+00 3.89243633e-01 -3.15446556e-01
8.65534484e-01 -4.48951811e-01 -6.97808564e-01 -8.54832232e-02
3.44861776e-01 -3.69688928e-01 5.92597246e-01 1.64974406e-01
-4.57362473e-01 -7.64664769e-01 -9.91996109e-01 4.00946677e-01
-1.07639253e+00 -9.65542626e-03 3.78695220e-01 4.63297009e-01
-8.65614295e-01 8.28500926e-01 -9.12618279e-01 -2.96748847e-01
1.27411142e-01 1.81464568e-01 -9.33427289e-02 3.57774675e-01
-1.65929830e+00 1.10277104e+00 6.41581297e-01 4.02530611e-01
-9.77772951e-01 -7.72869468e-01 -6.19200349e-01 -2.31033806e-02
2.45522380e-01 -3.09945822e-01 6.45115137e-01 -1.08656025e+00
-1.22522652e+00 3.75137538e-01 -6.47708029e-02 -5.62674105e-01
5.91221273e-01 -1.24701522e-01 -8.14867496e-01 -1.49320334e-01
1.81308627e-01 5.55575132e-01 7.46474683e-01 -1.57211721e+00
-7.71444738e-01 -4.07592237e-01 -1.82567071e-02 2.21967399e-01
-1.06354289e-01 1.18622616e-01 4.68734145e-01 -4.94551927e-01
-1.44635201e-01 -9.45386708e-01 -4.43114579e-01 -2.31578082e-01
3.60861748e-01 1.53121784e-01 7.89797604e-01 -7.93489099e-01
1.00004268e+00 -2.16119313e+00 2.38019377e-01 2.53481656e-01
-1.35875970e-01 6.38252795e-01 -1.96991354e-01 4.95495975e-01
1.10686973e-01 2.57642657e-01 -8.58111143e-01 -8.77633914e-02
-1.50363907e-01 4.53653574e-01 -5.21591544e-01 3.60446543e-01
5.47404051e-01 3.00798327e-01 -7.12414026e-01 -2.89824069e-01
4.14444566e-01 6.78058267e-01 -3.42661105e-02 3.95137519e-01
-4.54010546e-01 1.01480174e+00 -3.30727011e-01 1.60516113e-01
1.22632825e+00 1.99930057e-01 1.29846931e-01 1.61975533e-01
-8.18129659e-01 3.74548793e-01 -1.41682744e+00 1.01402116e+00
-6.05549932e-01 5.02125800e-01 4.18522090e-01 -8.75391066e-01
1.15450299e+00 2.32808247e-01 3.09833527e-01 -9.06799972e-01
-3.83479148e-01 4.05532777e-01 1.58055082e-01 -4.06805694e-01
5.82282364e-01 -6.88787103e-01 3.96252006e-01 1.99664980e-01
-2.65757561e-01 -4.15511966e-01 4.66094762e-02 -2.44994521e-01
2.07495376e-01 3.91105711e-01 3.08377501e-02 -4.43209469e-01
7.90518284e-01 2.85752207e-01 5.40291667e-01 7.42961228e-01
1.04985662e-01 6.10137105e-01 1.38727292e-01 -3.99619818e-01
-1.37344444e+00 -9.82419610e-01 -6.76186740e-01 1.09617543e+00
-2.40503460e-01 1.70601755e-01 -3.86849046e-01 -9.30599198e-02
8.40397850e-02 7.43584335e-01 -4.65462059e-01 2.33805403e-01
-4.98618811e-01 -1.55157566e+00 6.21349812e-01 4.86404300e-01
7.18787730e-01 -1.08295858e+00 -5.68802416e-01 5.46976507e-01
3.81555781e-02 -1.21972144e+00 6.51494801e-01 3.81067008e-01
-1.08017325e+00 -6.11360073e-01 -5.62613547e-01 -3.86065878e-02
2.35241354e-01 9.32010859e-02 7.48837054e-01 -3.56665522e-01
6.93900809e-02 -2.83664137e-01 -4.39283013e-01 -5.72752357e-01
-6.79669917e-01 4.48256582e-01 5.93721047e-02 -5.12835421e-02
5.87098151e-02 -7.77320325e-01 -3.01420808e-01 2.73790747e-01
-1.36208689e+00 -4.11605723e-02 5.99522829e-01 3.59474063e-01
4.91989911e-01 3.12485993e-01 7.36348093e-01 -8.48414838e-01
5.96515775e-01 -7.55162358e-01 -1.10723293e+00 -6.10451698e-02
-6.98689163e-01 6.98012337e-02 6.46386862e-01 -3.34122144e-02
-1.57996058e+00 -1.01459868e-01 -2.46412933e-01 -7.22307339e-02
-5.23084879e-01 7.78284848e-01 1.29593208e-01 -1.84776053e-01
8.31343889e-01 4.43531722e-01 -9.23273712e-02 -6.84368491e-01
1.73848063e-01 9.61332262e-01 1.87399432e-01 -5.17418444e-01
8.57898176e-01 6.40071630e-01 1.77596584e-01 -1.16295576e+00
-9.03883159e-01 -4.18026745e-01 -7.10376501e-01 -4.07109372e-02
7.50232100e-01 -1.12829423e+00 2.64011323e-01 4.01488394e-01
-6.91773236e-01 -5.35640121e-01 -6.70441017e-02 6.29384518e-01
-1.61170736e-01 2.16355294e-01 -6.49501337e-03 -1.03660882e+00
-3.79577309e-01 -9.84237254e-01 8.86661291e-01 8.36099610e-02
2.73928702e-01 -9.62890208e-01 5.15517473e-01 3.42995077e-02
8.85718703e-01 6.62039280e-01 6.56310618e-01 -1.51013181e-01
-5.39323926e-01 3.21648031e-01 -4.54663277e-01 6.69267595e-01
4.46297377e-01 8.20094123e-02 -1.18064785e+00 -3.51537794e-01
9.80711952e-02 -3.50763947e-02 1.13721180e+00 2.65942752e-01
9.80453372e-01 -1.27503932e-01 2.19454225e-02 7.43170619e-01
1.74647355e+00 6.30545840e-02 5.08268952e-01 7.07094669e-01
4.23258096e-01 8.77881289e-01 7.22542346e-01 4.93312925e-01
-7.66505897e-02 5.22036850e-01 6.40381634e-01 -2.79395938e-01
1.89052336e-02 2.57600993e-01 1.58833191e-01 1.65740341e-01
-5.93065083e-01 3.19484547e-02 -9.63488042e-01 7.12843478e-01
-1.72108459e+00 -9.22950864e-01 -2.26204574e-01 2.17039466e+00
6.42075241e-01 -7.40640983e-02 4.94264532e-03 -1.30457565e-01
5.79777241e-01 6.64286673e-01 -4.27385539e-01 -3.05870086e-01
-3.85063767e-01 3.98068339e-01 8.89431119e-01 6.02402806e-01
-1.20615125e+00 8.77563596e-01 5.78307772e+00 4.54973727e-01
-1.39566350e+00 2.66834080e-01 3.72453481e-02 -3.19151469e-02
-3.32701415e-01 -8.21456835e-02 -1.02344859e+00 4.63748068e-01
1.33832502e+00 1.42537981e-01 6.14847541e-01 4.60097820e-01
8.10320914e-01 -1.38328061e-01 -3.91272455e-01 2.52569437e-01
-4.03033078e-01 -1.30753410e+00 6.43752664e-02 1.21345259e-01
1.00300813e+00 5.98084807e-01 5.52389771e-02 2.15497747e-01
2.01800123e-01 -9.49891150e-01 3.91401172e-01 6.91033721e-01
6.69587433e-01 -7.89526641e-01 8.13020051e-01 4.24147636e-01
-1.14991486e+00 -1.90154254e-01 -6.42854810e-01 -1.59949780e-01
-4.47320119e-02 6.74844563e-01 -6.55057847e-01 9.51641619e-01
8.41157675e-01 6.22094691e-01 -4.60932821e-01 7.84860373e-01
-2.01320261e-01 6.36711895e-01 -5.76906919e-01 4.33295995e-01
6.39367223e-01 -5.21672368e-01 6.16705775e-01 1.22374296e+00
4.10999209e-01 2.45188504e-01 -1.70091823e-01 1.25577831e+00
3.95529628e-01 8.06986541e-02 -8.16739976e-01 -2.19874252e-02
5.36397099e-01 1.03995848e+00 -2.03478307e-01 -2.04636678e-01
-3.33399832e-01 2.89394408e-01 8.33475292e-02 4.63927180e-01
-7.20493197e-01 -3.72147001e-02 9.24720526e-01 3.14882666e-01
3.75534475e-01 -5.69190860e-01 -9.15350094e-02 -8.74220908e-01
-1.52779132e-01 -9.57094014e-01 3.71077329e-01 -7.28180349e-01
-1.10340953e+00 6.40215576e-01 5.85724533e-01 -1.31117284e+00
-1.72735542e-01 -4.54516709e-01 -5.22335470e-01 1.35266352e+00
-2.17459583e+00 -8.11782181e-01 -5.51399410e-01 2.66455054e-01
1.95931107e-01 3.46864536e-02 6.80557787e-01 7.94905648e-02
-3.65561724e-01 -3.84554088e-01 9.11401391e-01 -3.63294601e-01
6.03549957e-01 -1.12147737e+00 3.52563471e-01 8.77277613e-01
-3.06104004e-01 2.79359877e-01 7.27814794e-01 -6.10996008e-01
-6.92794800e-01 -1.52012324e+00 5.93814373e-01 -3.32514569e-02
5.72043300e-01 -1.50558308e-01 -1.39496720e+00 4.91022557e-01
-9.16797668e-02 3.49706784e-02 4.93575782e-01 -1.32170439e-01
1.29796490e-01 -5.75877309e-01 -1.23259461e+00 2.50434816e-01
6.51507854e-01 -5.59726775e-01 -5.82596481e-01 2.16873854e-01
5.34175038e-01 -2.40169853e-01 -1.13478553e+00 9.05255377e-01
4.41220313e-01 -8.60214114e-01 9.03409541e-01 -5.35016119e-01
3.05281609e-01 -6.54428363e-01 -3.68144572e-01 -1.55670249e+00
-4.68025863e-01 2.29747087e-01 3.30628306e-01 1.11524868e+00
4.02245820e-01 -8.09622645e-01 3.21496844e-01 3.14991653e-01
-6.08846359e-03 4.89861295e-02 -9.29921448e-01 -9.69544351e-01
4.19468313e-01 -1.61303982e-01 8.56808901e-01 8.51446986e-01
-8.46111953e-01 -1.49207905e-01 -3.52202594e-01 8.61350238e-01
5.22168636e-01 2.29807109e-01 6.33288026e-01 -1.48323691e+00
-2.50929985e-02 -1.93436161e-01 3.24968308e-01 -1.88797206e-01
9.61659476e-02 -5.52293599e-01 1.01809934e-01 -1.38567507e+00
-2.33068839e-01 -5.47815144e-01 -4.60233361e-01 2.49233276e-01
-6.01142943e-02 9.05813724e-02 2.19982505e-01 2.72258222e-01
1.45032153e-01 7.87185311e-01 1.00793695e+00 3.47227119e-02
-4.03133720e-01 -2.46907532e-01 -2.22835243e-01 4.39937651e-01
1.08413887e+00 -7.24543989e-01 -1.73561320e-01 -5.93344092e-01
1.85802147e-01 -5.94848953e-02 3.39379042e-01 -1.10635662e+00
-2.77773947e-01 -5.21710217e-01 4.28612202e-01 -7.12621033e-01
2.18960613e-01 -8.72806013e-01 6.74763083e-01 2.79974759e-01
-2.42043450e-01 -2.28335842e-01 6.08341455e-01 2.69544512e-01
-3.32523763e-01 -2.12869376e-01 1.12412500e+00 -4.62222964e-01
-8.69110703e-01 1.38229832e-01 -6.14196658e-01 -3.02111119e-01
5.77656806e-01 5.94003201e-02 -2.10303053e-01 -9.91225243e-05
-7.13932037e-01 2.34197393e-01 3.77047837e-01 2.64045089e-01
3.00823301e-01 -9.25842166e-01 -1.12420630e+00 3.27596396e-01
8.74398276e-02 3.77943397e-01 1.72567263e-01 6.38927519e-01
-5.40724397e-01 6.65057242e-01 -4.58698481e-01 -4.83606607e-01
-8.81823838e-01 4.00777161e-01 7.93490708e-01 -3.36709201e-01
-3.39219689e-01 3.33907872e-01 4.56417501e-02 -8.44470859e-01
-3.73829812e-01 -5.96476421e-02 -4.14011270e-01 4.46418554e-01
3.16060275e-01 5.95125377e-01 2.42837623e-01 -6.46577835e-01
-2.07491860e-01 4.56916988e-01 3.37118983e-01 -3.02297562e-01
1.62942266e+00 -2.60538518e-01 -2.08559811e-01 4.40596491e-01
8.08982730e-01 -8.07712004e-02 -1.37690473e+00 -2.61706263e-01
-4.27305847e-02 -5.78180254e-01 4.56230700e-01 -7.29612589e-01
-1.03697777e+00 8.40025783e-01 7.81525910e-01 1.41063750e-01
1.17099810e+00 -3.88156444e-01 2.69750327e-01 4.56406385e-01
9.92385074e-02 -1.13793290e+00 -5.24151742e-01 4.16917354e-01
1.02328289e+00 -1.54151893e+00 8.28048959e-02 -2.20799651e-02
-3.97155017e-01 9.41121578e-01 4.29472864e-01 -8.30947012e-02
5.82095981e-01 1.00171678e-02 1.27471805e-01 -3.12329661e-02
-4.35513139e-01 -6.31291628e-01 3.02197188e-02 5.71229339e-01
1.76412970e-01 2.49533981e-01 -3.78798842e-01 -3.40028815e-02
-5.83317271e-03 1.40527040e-01 4.20315653e-01 6.53532624e-01
-5.68592906e-01 -1.02427197e+00 -7.87615001e-01 2.10466295e-01
-3.44035268e-01 -2.83851087e-01 -2.54795253e-01 8.23672056e-01
3.13472390e-01 8.30128968e-01 5.93641885e-02 1.03192858e-01
1.30878299e-01 -2.63203727e-03 -1.58723742e-02 -5.98490655e-01
-3.14435899e-01 5.03401831e-02 2.32630610e-01 -1.24388754e-01
-9.06753957e-01 -8.11602950e-01 -7.93304682e-01 -2.32948333e-01
-2.37409562e-01 3.97875816e-01 8.52183938e-01 8.70260775e-01
1.72979802e-01 4.82535183e-01 7.56980240e-01 -1.04057717e+00
-5.43201029e-01 -1.23021567e+00 -8.96542490e-01 9.23299640e-02
7.23145604e-01 -8.28732431e-01 -6.47598803e-01 -4.77472216e-01] | [9.77794361114502, -1.6997723579406738] |
3b228ba3-faf6-477c-9e2e-7d11e39b68bf | a-simple-and-robust-convolutional-attention | 1904.01375 | null | https://arxiv.org/abs/1904.01375v5 | https://arxiv.org/pdf/1904.01375v5.pdf | A Holistic Representation Guided Attention Network for Scene Text Recognition | Reading irregular scene text of arbitrary shape in natural images is still a challenging problem, despite the progress made recently. Many existing approaches incorporate sophisticated network structures to handle various shapes, use extra annotations for stronger supervision, or employ hard-to-train recurrent neural networks for sequence modeling. In this work, we propose a simple yet strong approach for scene text recognition. With no need to convert input images to sequence representations, we directly connect two-dimensional CNN features to an attention-based sequence decoder which guided by holistic representation. The holistic representation can guide the attention-based decoder focus on more accurate area. As no recurrent module is adopted, our model can be trained in parallel. It achieves 1.5x to 9.4x acceleration to backward pass and 1.3x to 7.9x acceleration to forward pass, compared with the RNN counterparts. The proposed model is trained with only word-level annotations. With this simple design, our method achieves state-of-the-art or competitive recognition performance on the evaluated regular and irregular scene text benchmark datasets. | ['Yanning Zhang', 'Zhen Li', 'Hui Li', 'Peng Wang', 'Fan Dang', 'Lu Yang'] | 2019-04-02 | null | null | null | null | ['irregular-text-recognition'] | ['computer-vision'] | [ 8.45542669e-01 -1.88126788e-01 -2.70281043e-02 -4.34864312e-01
-7.05677986e-01 -3.12818140e-01 8.33806396e-01 4.87948023e-03
-6.26013041e-01 2.39224598e-01 2.96949565e-01 -4.99594778e-01
5.81373513e-01 -6.22553766e-01 -8.59207749e-01 -6.24803424e-01
7.04925656e-01 1.71528414e-01 2.91985512e-01 -2.24767998e-01
6.00428939e-01 2.84488261e-01 -1.28928602e+00 4.74003702e-01
6.47904873e-01 9.20952082e-01 6.53438032e-01 1.04534137e+00
-4.15435821e-01 1.25292683e+00 -4.00051028e-01 -2.83049643e-01
-1.59514081e-02 -5.91876447e-01 -7.83638775e-01 3.07133883e-01
4.01285142e-01 -4.56760287e-01 -6.43675864e-01 8.47959995e-01
5.42664945e-01 1.64896138e-02 6.72394216e-01 -3.09283942e-01
-8.94369781e-01 5.56386232e-01 -8.03914905e-01 2.34383807e-01
4.23027843e-01 2.59095222e-01 9.04360592e-01 -1.07174230e+00
2.53408045e-01 1.04923773e+00 3.79653305e-01 4.94876444e-01
-9.62481916e-01 -2.23004565e-01 4.15632993e-01 3.67330253e-01
-1.35588408e+00 -5.98298609e-01 5.73584497e-01 -3.05478483e-01
1.45820904e+00 1.56785697e-01 3.08777809e-01 1.22070980e+00
1.83102749e-02 9.99908745e-01 7.48203695e-01 -5.72931170e-01
-1.06846727e-01 -2.77673095e-01 3.08542252e-01 8.15017581e-01
5.80102876e-02 -4.94427204e-01 -3.37955713e-01 3.87144476e-01
6.09911561e-01 2.56768793e-01 -3.85963798e-01 1.10443428e-01
-1.09899449e+00 6.69973850e-01 5.08451581e-01 2.68237978e-01
-2.82258272e-01 3.21011752e-01 7.11598694e-01 1.30979940e-01
2.95176268e-01 9.32289138e-02 -1.96440130e-01 -4.36166376e-01
-9.89260018e-01 -3.04526687e-01 4.97921318e-01 9.53447223e-01
4.43884194e-01 3.63361895e-01 -2.63710052e-01 9.92983341e-01
2.52765208e-01 4.87001866e-01 8.32412302e-01 -9.16964486e-02
9.38653350e-01 6.89765811e-01 -2.84775525e-01 -9.20564294e-01
-3.33612829e-01 -4.23315048e-01 -1.12438273e+00 -3.03000510e-01
2.26130754e-01 1.57214731e-01 -1.27565038e+00 1.17585516e+00
-1.05982713e-01 -1.17961019e-02 1.07261509e-01 9.76905584e-01
6.79771125e-01 1.07953537e+00 -2.39305139e-01 1.47033438e-01
1.36602724e+00 -1.47560549e+00 -5.30768931e-01 -3.58425349e-01
8.52510273e-01 -9.64219570e-01 1.37971652e+00 3.67238641e-01
-1.16775334e+00 -5.57409465e-01 -1.24623346e+00 -5.16146123e-01
-1.46098286e-01 6.07968628e-01 2.53500957e-02 4.88856584e-01
-9.26923573e-01 2.89942861e-01 -8.70348155e-01 -5.03887415e-01
4.63969976e-01 2.69155502e-01 -7.20174164e-02 -3.22888553e-01
-6.42296493e-01 7.95268774e-01 2.35477105e-01 3.10467035e-01
-7.79177129e-01 -2.57903367e-01 -9.90435123e-01 2.92643517e-01
3.87930125e-01 -5.60463428e-01 1.31941831e+00 -1.05159676e+00
-1.89839828e+00 7.06525207e-01 -3.97407979e-01 -6.05604887e-01
4.27481145e-01 -3.63803387e-01 -1.75675705e-01 1.56646237e-01
-2.63123035e-01 4.29327041e-01 9.25207734e-01 -8.24636757e-01
-3.39198291e-01 -1.83077097e-01 -1.35699138e-01 3.42434734e-01
-4.31330204e-01 2.08396375e-01 -7.23669231e-01 -9.33689475e-01
1.55166045e-01 -8.22734177e-01 -2.56473124e-01 -2.77148187e-02
-4.85400766e-01 -1.67258829e-01 8.85773718e-01 -7.62841463e-01
1.04297352e+00 -2.07101679e+00 1.97045043e-01 -1.22004218e-01
3.21370028e-02 5.02303183e-01 -2.75965929e-01 4.48396146e-01
2.00783312e-01 6.61032423e-02 -3.87106746e-01 -4.69070017e-01
-5.23925163e-02 1.51205817e-02 -4.50230509e-01 5.43268263e-01
4.14719403e-01 1.02653766e+00 -4.62143898e-01 -2.40670726e-01
2.67023295e-01 4.81862336e-01 -4.72006083e-01 3.48941386e-01
-4.07282412e-01 2.63855428e-01 -3.14447373e-01 3.68320584e-01
6.19366944e-01 -6.73751414e-01 2.18942761e-01 -1.04912862e-01
-1.00381665e-01 6.76154554e-01 -6.58455729e-01 1.93765724e+00
-6.68100595e-01 9.45927560e-01 -3.22677016e-01 -1.28827775e+00
1.09291124e+00 8.53950605e-02 -1.34781480e-01 -9.67790306e-01
3.57760131e-01 8.81178007e-02 -3.77800083e-03 -5.19684970e-01
6.59078062e-01 2.81045824e-01 -1.11861397e-02 5.42393506e-01
-1.13952108e-01 2.84087628e-01 -5.06796651e-02 6.92578331e-02
1.15375149e+00 1.43317431e-01 2.65711904e-01 -1.82282422e-02
9.17373717e-01 -2.82387227e-01 2.20209017e-01 6.38322830e-01
3.29117686e-01 7.77211726e-01 3.78461659e-01 -4.32989001e-01
-1.33009148e+00 -5.28856218e-01 1.40959218e-01 1.35482013e+00
3.06703206e-02 -4.36362535e-01 -5.93836069e-01 -4.67893064e-01
-5.25943577e-01 5.23411036e-01 -4.63575363e-01 2.15618704e-02
-9.35095668e-01 -6.09387517e-01 8.28000367e-01 7.76331723e-01
7.93559015e-01 -9.18341577e-01 -5.33419847e-01 2.22396359e-01
-9.87386480e-02 -1.30804873e+00 -7.54103899e-01 1.28983349e-01
-7.94954479e-01 -5.91939569e-01 -1.08354568e+00 -1.02484345e+00
8.52147698e-01 3.97571504e-01 8.33592772e-01 1.87944397e-01
-2.81308949e-01 1.35542313e-02 -6.39747500e-01 -4.17099446e-02
-2.78207868e-01 4.14296567e-01 -5.16428471e-01 2.42957637e-01
1.89132690e-01 -4.26878273e-01 -5.69318593e-01 2.19833836e-01
-9.14104164e-01 4.53027666e-01 8.02315652e-01 1.02003312e+00
3.22429985e-01 -6.51742041e-01 3.69924814e-01 -7.69574702e-01
4.22536224e-01 -1.25130177e-01 -6.95149541e-01 3.66245210e-01
-3.02270681e-01 3.87772471e-01 1.07587719e+00 -3.56969088e-01
-1.12378013e+00 3.57169986e-01 -3.92543197e-01 -3.00478995e-01
-1.99588865e-01 5.08523822e-01 -1.62607152e-02 1.15574896e-02
5.77014565e-01 8.91065240e-01 -2.18321905e-01 -6.28873348e-01
4.27304745e-01 9.40939963e-01 3.93514097e-01 -3.17909122e-01
5.08397400e-01 3.67040306e-01 -3.23310554e-01 -9.70006347e-01
-9.02627468e-01 -4.30843115e-01 -7.74331450e-01 1.82439223e-01
9.16907310e-01 -1.07500994e+00 -6.46217883e-01 6.07452750e-01
-1.33286071e+00 -4.77992207e-01 1.74867600e-01 2.78854162e-01
-3.79637599e-01 7.37177730e-01 -7.84313977e-01 -6.38085365e-01
-7.93529451e-01 -1.12364471e+00 1.17985630e+00 3.75308134e-02
7.77150691e-02 -6.74755573e-01 -2.09018603e-01 4.00036842e-01
5.56370020e-01 -2.50445247e-01 7.97408581e-01 -5.32880366e-01
-7.99451232e-01 -1.14257172e-01 -6.88072443e-01 2.61879355e-01
4.70313467e-02 -9.78443623e-02 -9.21807289e-01 -3.01691502e-01
-1.77984834e-02 -5.74844778e-01 1.18721986e+00 1.51825594e-02
1.54183567e+00 -4.44753110e-01 -1.40310535e-02 7.44660795e-01
1.38800490e+00 1.71391398e-01 9.01412845e-01 2.10817695e-01
1.03223574e+00 2.07714140e-01 2.20375910e-01 6.49633646e-01
5.38814783e-01 6.31985903e-01 3.74662280e-01 -1.70724049e-01
-2.12914631e-01 -1.96317062e-01 5.93218565e-01 1.25715518e+00
5.49133085e-02 -4.86684322e-01 -1.06274700e+00 4.57219303e-01
-1.80978000e+00 -8.50474954e-01 -1.94093898e-01 1.94829082e+00
7.38102734e-01 2.22470447e-01 -5.27648665e-02 1.10489093e-01
6.94175661e-01 2.93585956e-01 -5.58786452e-01 -6.94827497e-01
-1.21083513e-01 1.30928949e-01 6.26103044e-01 4.14866686e-01
-8.01257908e-01 1.18833721e+00 5.38124466e+00 9.10263717e-01
-1.54266524e+00 -5.04143573e-02 7.34275281e-01 -9.98559967e-02
-8.41676071e-02 -1.37540102e-01 -8.07739973e-01 3.67031723e-01
9.86807048e-01 1.40718017e-02 4.19986457e-01 6.46033347e-01
1.56946048e-01 1.06259726e-01 -1.07795310e+00 1.25972986e+00
5.30331254e-01 -1.46984267e+00 3.45633209e-01 -5.05355038e-02
6.43153429e-01 3.18979561e-01 -1.77969951e-02 2.63492823e-01
-5.60333245e-02 -1.33143866e+00 6.70582354e-01 4.49711561e-01
1.03955901e+00 -6.23150349e-01 7.40614951e-01 5.13359725e-01
-1.29078567e+00 7.85658658e-02 -5.93468070e-01 -1.74022734e-01
1.34135187e-01 3.63274068e-01 -9.38640654e-01 5.19929707e-01
3.59639436e-01 9.84506428e-01 -6.99201167e-01 8.54461253e-01
-9.68299210e-02 8.40994239e-01 -2.24384651e-01 -4.56432104e-01
5.73888540e-01 -1.11684566e-02 6.54733405e-02 1.70204103e+00
3.01688969e-01 1.20760715e-02 1.76753595e-01 4.70111430e-01
-4.31000739e-01 3.25643629e-01 -5.64909458e-01 -1.90098956e-01
-5.06894253e-02 1.07382345e+00 -6.51002884e-01 -6.01148546e-01
-6.60433888e-01 1.58211446e+00 5.03292441e-01 2.72275418e-01
-9.96290863e-01 -6.31948054e-01 1.66525096e-01 -1.27073273e-01
8.86745870e-01 -3.58216196e-01 -4.36362535e-01 -1.41789758e+00
2.48705447e-01 -1.05049145e+00 1.73107162e-01 -8.23282063e-01
-1.02439284e+00 8.63747478e-01 -7.32983053e-01 -1.06859469e+00
-1.28917873e-01 -7.64806628e-01 -6.34769857e-01 8.51108432e-01
-1.58056927e+00 -1.03424466e+00 -3.70734781e-01 6.78925574e-01
1.07120633e+00 -1.76893219e-01 6.54325306e-01 3.21174204e-01
-8.44131351e-01 7.56571412e-01 2.86016613e-01 3.78338516e-01
4.19867724e-01 -8.70869756e-01 7.86487937e-01 9.59775567e-01
2.04287186e-01 3.04528177e-01 2.74973899e-01 -3.60813230e-01
-1.68556106e+00 -1.30210698e+00 9.09205377e-01 -2.18220502e-01
6.17863238e-01 -6.89652622e-01 -1.09853303e+00 6.24224663e-01
5.57808936e-01 -4.81367372e-02 4.77321416e-01 -1.00575790e-01
-6.44546449e-01 1.01073489e-01 -6.36188745e-01 7.86163449e-01
1.06776679e+00 -7.01972306e-01 -4.08336759e-01 2.86978006e-01
8.02158773e-01 -4.50096518e-01 -5.22385120e-01 1.32968530e-01
3.33355635e-01 -5.87922812e-01 5.98593593e-01 -4.34743762e-01
7.99239755e-01 -2.73240566e-01 -2.56172329e-01 -7.18729556e-01
-3.58968407e-01 -6.26653492e-01 -4.31367289e-03 9.42570746e-01
6.05308235e-01 -4.68467176e-01 7.54296362e-01 3.44017744e-02
-2.56886393e-01 -8.88043046e-01 -6.76636875e-01 -5.73262215e-01
2.10907832e-02 -3.78116369e-01 2.67760456e-01 7.28145003e-01
-1.18364841e-01 7.89626300e-01 -6.63660824e-01 3.68074887e-02
2.41213843e-01 2.98455596e-01 7.49406695e-01 -6.88752592e-01
-3.51346016e-01 -6.08757973e-01 -4.24295753e-01 -2.00846100e+00
-5.61467893e-02 -1.01765692e+00 1.57916933e-01 -1.65532005e+00
3.23789090e-01 8.55625421e-03 -1.05321757e-01 5.16073227e-01
-6.97023347e-02 2.32017234e-01 3.78911644e-01 1.65347785e-01
-8.26617122e-01 1.00198841e+00 1.10215151e+00 -3.77333552e-01
1.06780529e-01 -3.26910257e-01 -5.73754609e-01 5.91930270e-01
1.13443375e+00 -2.40952194e-01 -3.62654001e-01 -1.03266203e+00
1.84490412e-01 2.97472794e-02 1.87595814e-01 -8.66386712e-01
4.48112518e-01 1.52437806e-01 3.81424904e-01 -8.80009711e-01
4.32653815e-01 -4.92940366e-01 -4.18748647e-01 3.68208975e-01
-5.83036780e-01 1.87907696e-01 3.13882768e-01 5.43567121e-01
-2.22081736e-01 -4.71312284e-01 7.51947045e-01 3.56190428e-02
-4.92679268e-01 1.25458211e-01 -5.87793589e-01 -1.09592438e-01
6.79194629e-01 -2.72318810e-01 -3.00849795e-01 -4.95258212e-01
-4.23420608e-01 2.97290571e-02 3.80529583e-01 3.57800514e-01
8.78943861e-01 -9.61472213e-01 -8.77375424e-01 1.00657381e-01
7.78299198e-02 1.83644108e-02 2.16646269e-01 7.31169105e-01
-6.96858048e-01 8.01750839e-01 -1.95094179e-02 -7.96567976e-01
-1.30381739e+00 5.13929069e-01 2.07900524e-01 -3.94340068e-01
-8.23814332e-01 7.58155882e-01 3.68264765e-01 -2.28564531e-01
2.69694030e-01 -4.51093853e-01 -1.30730331e-01 -3.30124497e-01
5.99152267e-01 5.51314764e-02 1.01856597e-01 -6.07621372e-01
-2.23189250e-01 7.65533447e-01 -5.23261607e-01 1.00319244e-01
1.20958757e+00 -1.36441782e-01 9.33173019e-03 4.03876960e-01
1.43432391e+00 -2.29075193e-01 -1.25189424e+00 -4.57830638e-01
3.59036028e-02 -2.66367733e-01 -3.37101780e-02 -6.88221157e-01
-9.27415013e-01 1.35590625e+00 3.55655342e-01 -3.72139141e-02
1.18109965e+00 -2.00591490e-01 8.08227181e-01 7.91073203e-01
-7.55407661e-02 -8.81804526e-01 3.26916784e-01 9.88839209e-01
1.03299248e+00 -1.25058818e+00 -8.78140107e-02 -2.94374913e-01
-7.49116242e-01 1.32572699e+00 6.71568096e-01 -2.12100163e-01
1.81491971e-01 2.24854693e-01 -1.13656215e-01 1.99064519e-02
-1.07548344e+00 -2.21023709e-01 2.42985860e-01 7.26046786e-02
7.69209385e-01 -3.46865356e-01 -1.38140485e-01 2.44730428e-01
1.62578281e-02 -2.41156533e-01 7.00083733e-01 8.30762982e-01
-4.85945731e-01 -9.88675058e-01 -9.25887153e-02 5.40159166e-01
-4.94877130e-01 -5.40732503e-01 -2.42797315e-01 3.22362512e-01
-6.10811055e-01 7.22460508e-01 2.21910536e-01 -2.19237357e-01
2.82324314e-01 2.77004596e-02 4.06678587e-01 -5.64698160e-01
-6.02128983e-01 2.19790488e-01 3.16754133e-02 -3.78264397e-01
-2.57975996e-01 -5.01900494e-01 -1.22907400e+00 -2.52245575e-01
-4.63772237e-01 -3.07410091e-01 6.99588954e-01 9.34706748e-01
5.56052566e-01 6.04431570e-01 7.10159540e-01 -7.88360655e-01
-5.19218683e-01 -1.12961996e+00 1.07738793e-01 7.18488097e-02
3.94215345e-01 1.09551456e-02 3.16919386e-02 3.29991192e-01] | [11.900084495544434, 2.2219715118408203] |
e79b9710-3f34-448c-aa6c-11ab4aa643a3 | a-new-android-malware-detection-approach | 1608.00848 | null | http://arxiv.org/abs/1608.00848v1 | http://arxiv.org/pdf/1608.00848v1.pdf | A New Android Malware Detection Approach Using Bayesian Classification | Mobile malware has been growing in scale and complexity as smartphone usage
continues to rise. Android has surpassed other mobile platforms as the most
popular whilst also witnessing a dramatic increase in malware targeting the
platform. A worrying trend that is emerging is the increasing sophistication of
Android malware to evade detection by traditional signature-based scanners. As
such, Android app marketplaces remain at risk of hosting malicious apps that
could evade detection before being downloaded by unsuspecting users. Hence, in
this paper we present an effective approach to alleviate this problem based on
Bayesian classification models obtained from static code analysis. The models
are built from a collection of code and app characteristics that provide
indicators of potential malicious activities. The models are evaluated with
real malware samples in the wild and results of experiments are presented to
demonstrate the effectiveness of the proposed approach. | ['Gavin McWilliams', 'Suleiman Y. Yerima', 'Sakir Sezer', 'Igor Muttik'] | 2016-08-02 | null | null | null | null | ['android-malware-detection'] | ['miscellaneous'] | [ 4.06961173e-01 -2.22606152e-01 -4.17803258e-01 5.70161715e-02
-5.19099832e-01 -9.45794702e-01 7.27688849e-01 2.95724291e-02
-2.07070664e-01 6.71887577e-01 -2.66447932e-01 -8.26972306e-01
1.85937330e-01 -6.02904499e-01 -5.18150985e-01 -4.08986986e-01
-2.46389642e-01 1.23249702e-01 6.17487788e-01 1.11629479e-01
5.61649919e-01 2.63864577e-01 -1.50709450e+00 1.06737316e-01
8.19490314e-01 8.90799999e-01 2.15921283e-01 8.55005205e-01
1.37061223e-01 4.89394486e-01 -8.35091770e-01 -4.20740664e-01
2.56425291e-01 -1.82289124e-01 -3.32528174e-01 -1.55928239e-01
-1.37518212e-01 -4.77850080e-01 -6.17000833e-02 1.41631174e+00
-2.42053922e-02 -4.47418302e-01 3.76636714e-01 -1.21240377e+00
-7.94275999e-02 1.94940150e-01 -8.28713596e-01 5.20854652e-01
6.47838771e-01 1.11402921e-01 4.87588078e-01 -3.39093983e-01
2.89025098e-01 8.35431218e-01 6.89536273e-01 2.96824127e-01
-9.24772501e-01 -6.94700658e-01 -4.08889204e-01 1.62509501e-01
-1.26698601e+00 -3.31615835e-01 7.58421600e-01 -6.18497074e-01
8.89684319e-01 3.80161047e-01 6.47844732e-01 1.31675804e+00
6.93706572e-01 3.22126627e-01 1.34426332e+00 -1.40219554e-01
3.20741236e-01 4.99575615e-01 2.44716629e-01 6.73832059e-01
9.89217579e-01 -1.30274128e-02 -6.59501925e-02 -9.24371004e-01
-1.52736716e-02 2.78179854e-01 -3.01473830e-02 -2.32057273e-01
-4.82375801e-01 8.37677240e-01 -2.16030806e-01 3.85680974e-01
-3.02058071e-01 -5.57328425e-02 5.95668435e-01 -2.95922786e-01
2.47997463e-01 1.38051122e-01 -4.86795783e-01 -9.22472954e-01
-9.70937252e-01 1.03120714e-01 7.57174134e-01 4.41680610e-01
4.62621063e-01 1.45117752e-02 7.74599493e-01 5.51343858e-01
7.49292374e-01 7.21368372e-01 1.04526365e+00 -4.14766103e-01
1.42508686e-01 9.92511213e-01 -2.60015042e-03 -1.37862146e+00
3.10926527e-01 -2.71805644e-01 -2.26030722e-01 1.12645537e-01
2.26059422e-01 1.77554823e-02 -8.14407349e-01 1.19084489e+00
1.37890100e-01 4.51055259e-01 -2.88489372e-01 -1.79386333e-01
-9.86143202e-02 6.59782529e-01 3.16249877e-02 -4.87119228e-01
1.46830511e+00 -2.64373958e-01 -4.91091460e-01 -1.17613085e-01
4.81532931e-01 -6.05149686e-01 9.69695866e-01 6.03586495e-01
-4.39542621e-01 -1.53439045e-01 -1.28994536e+00 6.68905139e-01
-6.05404794e-01 -1.33736774e-01 3.49977851e-01 1.59390140e+00
-6.26442373e-01 1.88323662e-01 -1.17081428e+00 -4.33438301e-01
7.02261567e-01 6.17519200e-01 -4.56638299e-02 2.05472037e-01
-6.61892295e-01 4.07187313e-01 2.50346899e-01 -3.26611787e-01
-9.63890910e-01 -2.03356385e-01 -4.44148630e-01 -1.83641240e-01
4.68643188e-01 3.29068661e-01 1.34914410e+00 -9.83747542e-01
-1.29429173e+00 5.86197615e-01 -1.67250782e-01 -5.62002420e-01
2.66469955e-01 -1.39139920e-01 -7.04299331e-01 -2.74913432e-03
7.39813671e-02 -2.50270814e-01 1.24500060e+00 -1.12748456e+00
-6.76220834e-01 -6.01940930e-01 -7.55131319e-02 -3.89854401e-01
-6.59493089e-01 2.09671974e-01 -1.31012827e-01 -2.82455772e-01
-4.15938795e-01 -1.32950759e+00 1.73353449e-01 -8.84719253e-01
-6.31589234e-01 2.44353935e-01 1.89542389e+00 -8.41734707e-01
1.50153232e+00 -2.03177691e+00 -4.37401712e-01 3.94036055e-01
1.78835779e-01 9.28935349e-01 5.70524275e-01 3.51118535e-01
2.44775027e-01 6.55751884e-01 -4.21038002e-01 6.53152168e-02
-5.34946620e-01 3.11892271e-01 -4.50811654e-01 3.76137078e-01
-2.60852247e-01 4.89514321e-01 -8.33631277e-01 -3.17756444e-01
-9.92523879e-03 5.82444429e-01 -3.54939699e-01 5.60226552e-02
-1.32713303e-01 3.25432479e-01 -6.08074069e-01 9.35692668e-01
6.20686471e-01 -1.99714214e-01 4.60175008e-01 4.34216738e-01
1.20614134e-01 4.26983297e-01 -7.25487530e-01 4.77432638e-01
-3.17719042e-01 5.93683183e-01 4.76375259e-02 -7.27487206e-01
4.98076737e-01 1.06298558e-01 2.58137792e-01 -7.38026798e-02
4.60685909e-01 3.34655017e-01 3.80595863e-01 -5.69557369e-01
4.44244862e-01 3.85346115e-01 -1.34384772e-02 4.63743418e-01
-4.79195386e-01 3.62940580e-01 -6.65230826e-02 1.89602762e-01
1.51115406e+00 -7.88073316e-02 7.58589745e-01 -1.79004267e-01
1.08832932e+00 5.07904813e-02 3.63988638e-01 4.65618074e-01
-5.64574778e-01 -2.32984081e-01 6.97467506e-01 2.79719476e-02
-5.52780747e-01 -1.07128787e+00 1.72922481e-02 7.08450317e-01
8.60510208e-03 -6.20119274e-01 -1.18734407e+00 -1.26560962e+00
-1.64812833e-01 3.99151713e-01 -4.08566743e-01 -8.47569853e-03
-5.04152060e-01 -8.74747396e-01 7.56267726e-01 5.02900127e-03
8.10763180e-01 -5.95362782e-01 -9.91595864e-01 -2.16117245e-03
4.07756492e-02 -1.09778941e+00 -8.56660008e-02 -2.47152269e-01
-1.10094059e+00 -1.44510794e+00 -2.87571013e-01 -3.52144897e-01
6.73857808e-01 5.09970963e-01 4.88305390e-01 3.99319112e-01
-4.72280502e-01 5.12528062e-01 -3.54564190e-01 -6.30505145e-01
-9.90758717e-01 2.29947358e-01 1.79353341e-01 1.84820980e-01
4.72881705e-01 -4.78285551e-01 -3.28487962e-01 4.50490415e-01
-8.78027916e-01 -7.26258278e-01 3.99373025e-01 2.94907540e-01
2.39882797e-01 6.80871367e-01 5.19835651e-01 -1.24300373e+00
7.86827326e-01 -1.00122750e+00 -7.07616329e-01 -2.35781059e-01
-8.01761568e-01 -5.46985805e-01 7.26741672e-01 -7.24966645e-01
-1.04662144e+00 2.11779192e-01 -1.23928607e-01 2.96157002e-01
-3.84823352e-01 3.04905832e-01 -3.68261874e-01 -3.17606241e-01
6.40829444e-01 3.08567643e-01 1.59338042e-01 -3.06397319e-01
-1.37272596e-01 1.06753051e+00 1.70246184e-01 -3.35666090e-02
9.46895957e-01 5.68484128e-01 -2.08138362e-01 -1.44726610e+00
-9.96521190e-02 -3.93539608e-01 -9.07080770e-02 -3.46070617e-01
7.05368817e-01 -4.20251220e-01 -6.26731932e-01 7.77150810e-01
-8.14516485e-01 2.36020625e-01 5.55682242e-01 7.54696354e-02
2.04856936e-02 8.35158348e-01 -4.18089747e-01 -1.10553706e+00
1.07550144e-01 -1.42122376e+00 7.41289794e-01 2.22088546e-01
-3.22957993e-01 -9.83147144e-01 2.78551191e-01 5.56293607e-01
6.35526478e-01 1.55830517e-01 8.57464612e-01 -9.62932229e-01
-5.36344409e-01 -8.51767004e-01 -1.20241102e-02 4.41258311e-01
6.15908206e-01 3.78044665e-01 -9.11322713e-01 -1.79414287e-01
6.97071850e-01 3.25389981e-01 1.53400525e-01 1.11188747e-01
1.05993688e+00 -6.01888478e-01 -8.40153754e-01 1.22958243e-01
1.53812826e+00 8.10589910e-01 6.86437845e-01 2.60541201e-01
6.67559266e-01 3.05345446e-01 4.73099411e-01 2.13728741e-01
-7.22274259e-02 6.12586856e-01 7.96861172e-01 6.93412483e-01
3.56550306e-01 -3.89768004e-01 6.83482647e-01 6.77862704e-01
-9.43207890e-02 -6.03949390e-02 -1.08669519e+00 1.59892797e-01
-1.38280642e+00 -8.73922944e-01 -4.16313738e-01 2.48632717e+00
2.87541628e-01 4.47963744e-01 5.57748556e-01 4.14686054e-01
7.88759649e-01 8.26597735e-02 -2.85658568e-01 -4.97331142e-01
4.95036930e-01 1.66995764e-01 7.08233297e-01 5.76682389e-01
-9.08979833e-01 6.21475935e-01 6.29683065e+00 8.11923206e-01
-1.21085429e+00 4.81679857e-01 7.73316860e-01 4.79025811e-01
1.13108113e-01 1.29874825e-01 -9.74021435e-01 1.12783146e+00
1.35278559e+00 1.34520698e-02 3.24288875e-01 1.25232434e+00
2.57706165e-01 -6.88336313e-01 -3.69888067e-01 9.18196857e-01
2.00537249e-01 -9.67277110e-01 -2.75442988e-01 8.49231362e-01
5.37955761e-01 -1.31183369e-02 2.56368607e-01 1.39069185e-01
-9.53587070e-02 -7.01999366e-01 1.04216658e-01 -1.10718198e-01
3.08134913e-01 -6.53925836e-01 7.73152292e-01 5.24373174e-01
-9.93768334e-01 -5.52157760e-01 2.09172741e-01 -2.92343229e-01
1.75726667e-01 3.94580513e-01 -1.19789279e+00 -7.46298358e-02
5.02265811e-01 4.31980014e-01 -1.03483534e+00 8.25701058e-01
-1.86766731e-03 1.21330810e+00 -2.77348489e-01 -3.54989737e-01
-4.42961939e-02 -2.03337774e-01 6.55048847e-01 9.30639327e-01
5.30932188e-01 -5.57848811e-01 -3.50342333e-01 4.35897529e-01
1.39339343e-01 -3.32752541e-02 -1.34647048e+00 -6.02954686e-01
3.89006376e-01 1.39475310e+00 -1.15316951e+00 -2.35816717e-01
-5.00781655e-01 7.84057081e-01 -3.25934738e-01 7.35906735e-02
-9.88841474e-01 -1.90754935e-01 6.23948276e-01 7.18084395e-01
1.24254704e-01 -6.28906846e-01 -4.90089431e-02 -8.09305131e-01
-1.12766691e-01 -1.23461390e+00 -3.70035209e-02 -1.12865113e-01
-8.92961204e-01 5.72155237e-01 1.37914732e-01 -1.06162047e+00
-4.79834139e-01 -8.45424533e-01 -6.27399087e-01 3.30223024e-01
-8.25311303e-01 -7.61654079e-01 -1.00164384e-01 3.69239897e-01
4.96466845e-01 -3.53780955e-01 5.09767830e-01 3.06547076e-01
-4.36965138e-01 4.09176916e-01 7.45339096e-02 -1.05331533e-01
1.93985533e-02 -8.17027152e-01 2.41119161e-01 1.10516477e+00
2.45644301e-02 1.01204073e+00 6.66399837e-01 -1.36364484e+00
-1.45974886e+00 -7.31010199e-01 4.87125963e-01 -8.39105248e-01
9.26754415e-01 -6.00054443e-01 -7.49957800e-01 6.82633519e-01
4.83629443e-02 -4.52995092e-01 7.74143755e-01 -4.66144621e-01
-3.64486694e-01 1.09425541e-02 -1.38987136e+00 4.96733814e-01
4.85080034e-01 -6.51718080e-01 -1.90597445e-01 6.79665729e-02
1.13023125e-01 2.05302477e-01 -2.40200728e-01 2.67443776e-01
6.31970406e-01 -1.32929778e+00 5.80589533e-01 -3.80221717e-02
-4.68615703e-02 -2.45789558e-01 -2.41115972e-01 -5.46798289e-01
5.37646174e-01 -9.29086804e-01 -6.01866186e-01 1.15429342e+00
3.03332984e-01 -9.14376795e-01 1.07878232e+00 2.51774400e-01
6.36150777e-01 -7.97173202e-01 -1.00608885e+00 -8.95931304e-01
-4.16893721e-01 -4.64097232e-01 2.50590324e-01 7.16823578e-01
-2.36706808e-02 1.10103585e-01 -3.31009507e-01 4.70694713e-02
7.60209739e-01 -8.41678023e-01 9.47677076e-01 -1.20549452e+00
-7.18789518e-01 -2.48073533e-01 -6.94120526e-01 -7.24084675e-01
-1.71918035e-01 -4.04304206e-01 -1.58264264e-01 -6.11194432e-01
4.69397247e-01 -2.61060763e-02 2.47419700e-01 2.50526220e-02
-4.56752116e-03 4.98424023e-01 -1.49195731e-01 3.74534816e-01
-2.16761142e-01 -2.45725617e-01 2.87977427e-01 1.56901985e-01
-3.59363794e-01 5.12519002e-01 -5.49243033e-01 1.04768002e+00
1.09629250e+00 -5.74836195e-01 -7.58568466e-01 5.45326769e-01
5.21750987e-01 -3.48519713e-01 1.23309776e-01 -1.08771622e+00
-3.57941449e-01 1.77714333e-01 -9.86180678e-02 -3.19807410e-01
2.80029327e-01 -1.03726196e+00 2.04342797e-01 1.00351787e+00
3.00321460e-01 4.26472276e-01 1.31928131e-01 1.01781273e+00
1.39936134e-01 -3.91931266e-01 7.93065310e-01 4.11423296e-02
-3.18258047e-01 -7.83495679e-02 -1.10901999e+00 -2.21264243e-01
1.45063472e+00 -6.71816409e-01 -3.42481941e-01 -4.32227880e-01
-1.70802385e-01 -6.28506601e-01 8.32229018e-01 5.09895802e-01
4.84591931e-01 -6.81519806e-01 1.59855455e-01 2.97507495e-01
-1.14878222e-01 -1.01214683e+00 -1.20467782e-01 7.26840973e-01
-6.53326631e-01 3.77848625e-01 -1.91229522e-01 -6.08285904e-01
-1.93617547e+00 6.97411180e-01 -7.36007392e-02 -3.48144323e-01
-1.55502319e-01 2.29663089e-01 -4.13470805e-01 -8.07093573e-04
-2.33059563e-02 -1.12749554e-01 -1.58842161e-01 -4.13571179e-01
7.03974903e-01 8.78123701e-01 -1.04972981e-01 -1.06047785e+00
-5.55100679e-01 2.82095939e-01 -3.01288366e-01 -6.32776842e-02
6.76105440e-01 -1.53183313e-02 -3.89690101e-01 3.73966485e-01
1.10819590e+00 7.76136458e-01 -8.19556773e-01 5.89378774e-01
4.43142086e-01 -8.05214345e-01 -3.33892673e-01 -6.74984157e-01
-6.00954354e-01 6.66993618e-01 9.46238637e-01 9.68991637e-01
7.78537691e-01 -6.46355227e-02 9.66569662e-01 2.11358160e-01
6.85186446e-01 -7.02404797e-01 1.27940476e-01 1.92139894e-01
8.86342302e-03 -1.24366963e+00 -3.58884037e-02 -6.54917717e-01
-2.30065107e-01 7.17771292e-01 3.62281412e-01 -1.95924118e-01
1.05254757e+00 3.32682639e-01 -2.08234414e-01 -1.49490267e-01
-5.64600565e-02 4.62399751e-01 -9.88406241e-02 9.21003819e-01
3.17130476e-01 2.16256663e-01 -5.84996283e-01 3.52356344e-01
1.67948321e-01 -2.09295750e-01 9.27820921e-01 1.22408366e+00
-5.58881402e-01 -1.60781634e+00 -4.49791163e-01 7.98278630e-01
-1.27342260e+00 1.62241012e-01 -8.69326830e-01 8.79714429e-01
1.87573969e-01 1.23942304e+00 -4.75044072e-01 -7.29900599e-01
-3.39298785e-01 1.02025129e-01 1.11086950e-01 -6.77307069e-01
-3.97677422e-01 -1.83021963e-01 5.23041748e-02 -3.87534261e-01
-8.27794522e-02 -6.60280168e-01 -9.61383998e-01 -1.53605700e-01
-4.10596669e-01 8.23653638e-02 1.12725532e+00 7.59122610e-01
5.13071120e-01 7.72409588e-02 5.80047846e-01 -6.66901946e-01
-4.96860355e-01 -7.91258633e-01 -3.52073908e-01 4.82960865e-02
1.57958522e-01 -7.77698815e-01 -5.35926580e-01 -1.20173758e-02] | [14.422342300415039, 9.679590225219727] |
cf181fae-34f3-4b8d-ad2b-f6527f97c0c3 | wasserstein-gaussianization-and-efficient | 2305.14746 | null | https://arxiv.org/abs/2305.14746v1 | https://arxiv.org/pdf/2305.14746v1.pdf | Wasserstein Gaussianization and Efficient Variational Bayes for Robust Bayesian Synthetic Likelihood | The Bayesian Synthetic Likelihood (BSL) method is a widely-used tool for likelihood-free Bayesian inference. This method assumes that some summary statistics are normally distributed, which can be incorrect in many applications. We propose a transformation, called the Wasserstein Gaussianization transformation, that uses a Wasserstein gradient flow to approximately transform the distribution of the summary statistics into a Gaussian distribution. BSL also implicitly requires compatibility between simulated summary statistics under the working model and the observed summary statistics. A robust BSL variant which achieves this has been developed in the recent literature. We combine the Wasserstein Gaussianization transformation with robust BSL, and an efficient Variational Bayes procedure for posterior approximation, to develop a highly efficient and reliable approximate Bayesian inference method for likelihood-free problems. | ['David Nott', 'Christopher Drovandi', 'Minh-Ngoc Tran', 'Nhat-Minh Nguyen'] | 2023-05-24 | null | null | null | null | ['bayesian-inference'] | ['methodology'] | [-6.30290955e-02 -1.49750367e-01 3.80322337e-02 -6.88088059e-01
-1.22358000e+00 -2.90859550e-01 7.15882361e-01 -9.56215113e-02
-2.62943834e-01 1.18402958e+00 9.04242173e-02 -2.15215564e-01
-1.73232064e-01 -7.29437411e-01 -5.41082978e-01 -8.06437671e-01
2.59317696e-01 4.98408794e-01 2.80373603e-01 3.93194169e-01
3.74401003e-01 5.35604417e-01 -1.18427193e+00 -5.73818624e-01
1.23275137e+00 4.73162025e-01 2.09243551e-01 8.50693047e-01
-8.91019851e-02 3.38420749e-01 -5.88090181e-01 -4.61632013e-01
-8.45969990e-02 -6.30118787e-01 -2.42750362e-01 -7.86070600e-02
2.66815603e-01 -5.06767452e-01 -1.88991129e-01 1.45559156e+00
3.94505411e-01 4.23723608e-01 1.35336030e+00 -1.37004054e+00
-3.72324884e-01 4.84821409e-01 -7.38813937e-01 -1.52387559e-01
2.75445908e-01 -2.38649353e-01 6.62933648e-01 -1.04010534e+00
4.34701711e-01 1.76942778e+00 6.65147126e-01 1.24883614e-01
-1.30939102e+00 -5.65493047e-01 -2.78345406e-01 -3.30261774e-02
-1.68701291e+00 -3.11434120e-01 5.20125866e-01 -4.41600889e-01
3.30125093e-01 2.77344495e-01 6.22692168e-01 1.05656922e+00
4.66327637e-01 9.12493348e-01 1.26494205e+00 -3.98415804e-01
6.17564678e-01 1.43176764e-01 4.26054120e-01 6.23516023e-01
8.56420398e-01 5.41402772e-02 -4.47742194e-01 -6.88717484e-01
8.83949459e-01 -1.30333692e-01 -1.99601144e-01 -3.55599135e-01
-1.03144932e+00 9.93520916e-01 -3.83328944e-01 -1.69456452e-01
-3.40984255e-01 5.08402050e-01 8.22072029e-02 -2.39831537e-01
7.65813112e-01 -1.74341187e-01 -5.02588637e-02 -1.15998760e-01
-1.21093953e+00 1.00350070e+00 9.55371141e-01 1.09337342e+00
8.02516758e-01 2.23470181e-01 -7.03115225e-01 6.42609835e-01
1.12136447e+00 1.24789810e+00 -1.44844115e-01 -1.26509225e+00
5.58640659e-02 -1.63761482e-01 8.16905797e-01 -7.86956608e-01
1.28487432e-02 -2.86667079e-01 -8.12104344e-01 1.01740383e-01
4.62402254e-01 -2.65823156e-01 -7.55547285e-01 1.72017634e+00
6.86558187e-01 4.93958831e-01 -4.54453472e-03 6.42911315e-01
4.40102816e-01 8.88719022e-01 -1.94563419e-01 -5.84935486e-01
9.11378324e-01 -3.23439986e-01 -1.22789967e+00 8.44489112e-02
-3.21392007e-02 -7.09742308e-01 9.79253650e-01 4.09771085e-01
-1.03730083e+00 -3.12485278e-01 -1.12966418e+00 2.20340252e-01
1.14095554e-01 -8.74107182e-02 4.51910466e-01 1.01700759e+00
-8.93282294e-01 6.48532987e-01 -1.09004021e+00 -1.58317119e-01
1.44619197e-01 -2.36174867e-01 -2.84326896e-02 -5.53099737e-02
-1.07440770e+00 8.94340277e-01 4.60411429e-01 1.61506087e-01
-1.13601708e+00 -6.45394266e-01 -9.12332058e-01 2.14005813e-01
4.23929542e-01 -5.85964203e-01 1.52062201e+00 1.16654374e-02
-1.72447097e+00 1.57263026e-01 -6.04512274e-01 -5.66642247e-02
7.37541914e-01 -3.59297872e-01 -1.00776397e-01 -1.23348907e-01
1.96294516e-01 2.98966542e-02 1.14945352e+00 -1.12944937e+00
-3.45558107e-01 -3.41555119e-01 -7.40003228e-01 -1.15558259e-01
2.51774669e-01 2.56643537e-02 -3.82783681e-01 -7.55695701e-01
4.34430778e-01 -5.53953767e-01 -2.31183350e-01 -1.61883682e-01
-5.48130035e-01 -4.43719715e-01 5.70937991e-01 -7.67831504e-01
1.16855991e+00 -1.95779157e+00 -6.86301813e-02 5.12064934e-01
-1.49386868e-01 -1.00373179e-01 1.00329556e-01 4.02862906e-01
4.14276272e-01 4.26389538e-02 -7.55837977e-01 -6.90499485e-01
3.21647108e-01 1.90477043e-01 -4.33770061e-01 7.94639587e-01
7.29225725e-02 6.54683053e-01 -1.22223926e+00 -6.98715627e-01
2.35468745e-01 3.89254808e-01 -4.45648283e-01 5.97936690e-01
-2.43463501e-01 4.23100680e-01 -5.75696528e-01 3.90066266e-01
1.24667859e+00 7.90083110e-02 4.00496572e-02 -8.86248276e-02
-2.45164305e-01 -1.48041576e-01 -1.58697593e+00 1.31133926e+00
5.16075548e-03 3.75166506e-01 -2.30896361e-02 -9.21685100e-01
1.17555237e+00 3.04577857e-01 9.33509246e-02 2.99839407e-01
1.33199885e-01 3.28476757e-01 -6.44729733e-01 -4.47450429e-01
4.66231048e-01 -5.12258708e-01 -6.66222870e-02 3.72247547e-01
1.46978572e-01 -7.94149578e-01 2.06489399e-01 2.87126034e-01
6.18820906e-01 5.64034581e-01 5.38281202e-01 -4.98591214e-01
2.63454109e-01 -2.75463194e-01 8.64189386e-01 1.42286146e+00
-1.12764768e-01 8.03739488e-01 5.52288175e-01 8.39590132e-02
-1.04093385e+00 -1.83466077e+00 -4.51431960e-01 4.48610187e-01
1.91253498e-02 -3.83054554e-01 -8.59843552e-01 -4.86215532e-01
9.98502970e-03 1.22137761e+00 -2.28338674e-01 -1.64932504e-01
-3.91963683e-02 -1.00984895e+00 4.67923224e-01 2.73411274e-01
6.09152675e-01 -5.12212396e-01 -5.26431203e-02 4.76887137e-01
-2.48939440e-01 -8.68727326e-01 -3.71972889e-01 -1.45657882e-01
-7.92358875e-01 -8.15088391e-01 -1.03777993e+00 1.26551166e-01
3.87165278e-01 -2.81478819e-02 5.91911614e-01 -6.26887679e-01
2.11064607e-01 3.52814257e-01 -2.24088758e-01 -5.19355416e-01
-6.78263426e-01 -5.74230015e-01 1.94071457e-01 1.29537791e-01
3.82618397e-01 -2.59131998e-01 -9.72820744e-02 1.27413914e-01
-9.23048317e-01 -1.20003842e-01 2.51546890e-01 8.15655351e-01
6.39412582e-01 -5.10410219e-02 6.06042385e-01 -8.37051988e-01
6.54528022e-01 -4.54886883e-01 -1.00876927e+00 3.74902517e-01
-4.39447552e-01 4.27784503e-01 2.23000064e-01 -2.22825736e-01
-1.62376785e+00 -2.74530649e-01 -1.78781018e-01 -3.56079340e-01
-2.94562541e-02 7.49582231e-01 -2.85637289e-01 2.00376779e-01
4.79668498e-01 2.12986112e-01 -7.32194353e-03 -6.83624566e-01
2.78515100e-01 8.94964576e-01 6.99220896e-01 -8.05065513e-01
6.31639302e-01 6.16820514e-01 2.64635831e-01 -1.01238894e+00
-1.23204815e+00 -3.30819428e-01 -3.96381259e-01 -1.51774287e-01
8.38703454e-01 -5.78057408e-01 -5.68712473e-01 6.26478791e-01
-1.41379893e+00 -2.50609845e-01 -1.88780993e-01 1.11971748e+00
-8.59790266e-01 7.49591529e-01 -9.06984806e-02 -1.49218249e+00
4.79657464e-02 -1.08973908e+00 9.79149342e-01 1.75662264e-01
-2.36054316e-01 -1.01899755e+00 5.14637291e-01 -1.53542370e-01
2.01827407e-01 2.15835720e-01 6.41503751e-01 -3.66447538e-01
-3.88727844e-01 -2.35069573e-01 -4.28626925e-01 5.23513496e-01
6.34098575e-02 5.50337255e-01 -8.69743168e-01 -3.23174655e-01
3.34778011e-01 1.38295189e-01 8.55196178e-01 9.44967210e-01
9.44562018e-01 -1.46508679e-01 -2.80825526e-01 6.59040987e-01
1.28749585e+00 4.05741681e-04 5.08722723e-01 -2.75561631e-01
5.12014747e-01 3.79914224e-01 8.88037980e-01 8.46671283e-01
1.65201828e-01 4.17641491e-01 -1.49767175e-01 5.27985692e-01
2.36716330e-01 -4.07946676e-01 4.34199810e-01 7.66781271e-01
1.72113508e-01 -3.23602676e-01 -6.84736729e-01 3.71771902e-01
-2.14062119e+00 -9.92900968e-01 -4.47773457e-01 2.45068264e+00
8.14178765e-01 -9.12360549e-02 -6.54192194e-02 -9.98631865e-02
1.11421335e+00 7.75785893e-02 -5.66780865e-01 -3.54806989e-01
4.11998965e-02 9.75245684e-02 5.01023829e-01 9.25671339e-01
-7.93807685e-01 7.46103287e-01 8.09985924e+00 1.27713513e+00
-4.16197777e-01 3.65795702e-01 1.65973932e-01 5.30809700e-01
-6.80741727e-01 2.80813515e-01 -1.00671756e+00 5.48581302e-01
9.94275272e-01 -4.35353249e-01 -1.50843011e-02 7.25738227e-01
6.54901743e-01 -5.54714799e-01 -8.59161794e-01 9.11139786e-01
-1.77368462e-01 -9.98522997e-01 8.22991282e-02 -6.93252981e-02
8.48947942e-01 -3.24376911e-01 -1.53889433e-01 2.36492410e-01
7.30315089e-01 -8.07599247e-01 7.88208306e-01 1.09604776e+00
7.10477650e-01 -7.81907022e-01 8.20842028e-01 4.78600591e-01
-9.53665853e-01 4.98341590e-01 -7.35414684e-01 1.20577671e-01
6.60048366e-01 1.17406344e+00 -7.18864858e-01 4.53200191e-01
5.58984220e-01 6.01358175e-01 8.20073858e-03 1.25295341e+00
-5.55188894e-01 9.26700175e-01 -5.88643014e-01 -3.07291299e-01
9.86735299e-02 -7.90852666e-01 1.10186327e+00 1.16549039e+00
8.26740742e-01 -1.34770498e-01 -5.21771982e-02 1.43259478e+00
4.13616091e-01 -1.19605422e-01 -4.88034517e-01 -4.63698767e-02
7.89719403e-01 8.06433082e-01 -6.05469644e-01 -6.67730272e-01
-2.24411964e-01 5.79649687e-01 4.85766958e-03 8.27386260e-01
-7.85238922e-01 -4.46665138e-01 4.14386570e-01 -2.58930683e-01
2.13474169e-01 -4.54285026e-01 -3.12547714e-01 -1.36106122e+00
-1.91220820e-01 -3.24330598e-01 2.37937272e-01 -1.01847613e+00
-1.28754985e+00 -1.40876815e-01 8.29987884e-01 -8.72450769e-01
-4.61444527e-01 -4.18929160e-01 -7.71241844e-01 1.18535638e+00
-1.19111288e+00 -8.52401257e-01 -2.03493431e-01 2.23737299e-01
2.59027511e-01 -1.73225075e-01 5.54281712e-01 -2.82526970e-01
-5.41000783e-01 3.26280177e-01 7.49016345e-01 -4.62318510e-01
7.44938374e-01 -1.49443281e+00 4.53429341e-01 9.55187440e-01
-3.58162969e-01 7.37097442e-01 1.35331333e+00 -1.13770509e+00
-1.22197592e+00 -9.44302797e-01 7.74101138e-01 -1.69364527e-01
6.21023417e-01 -2.24249348e-01 -9.81598914e-01 7.41701007e-01
-1.31989077e-01 -3.26692075e-01 3.88313413e-01 -3.51902023e-02
-2.32234687e-01 6.72613550e-03 -1.38154674e+00 8.12094569e-01
5.55804253e-01 -2.77560622e-01 -8.20421934e-01 3.42391074e-01
5.11943638e-01 4.03526500e-02 -8.44579756e-01 4.95829076e-01
6.85141623e-01 -9.10069287e-01 7.75495827e-01 -3.67636293e-01
-1.15800694e-01 -5.49777746e-01 -4.20085043e-01 -1.42127776e+00
-2.02846497e-01 -9.84067619e-01 -2.30175436e-01 1.28987324e+00
7.76615292e-02 -8.36718380e-01 5.24004161e-01 5.62931061e-01
-1.56000173e-02 -2.51088858e-01 -1.04950607e+00 -9.94929075e-01
7.74643198e-02 -8.45422804e-01 5.92408955e-01 3.85044008e-01
-2.58580863e-01 -4.11442854e-02 -5.40978611e-01 2.16619849e-01
1.46336806e+00 -2.66422272e-01 8.75989914e-01 -1.27538359e+00
-2.86252916e-01 -1.42098188e-01 -2.02589095e-01 -1.19025588e+00
3.44402790e-01 -5.11360109e-01 4.90357041e-01 -1.57492757e+00
5.84969938e-01 -8.02464336e-02 1.52823910e-01 -1.47054464e-01
-4.80160594e-01 -3.95896770e-02 -3.68217438e-01 -4.75773215e-02
-2.54076630e-01 9.44907188e-01 1.27579057e+00 1.62347496e-01
-1.02769304e-02 2.83578187e-01 -3.46784413e-01 9.07805026e-01
5.52739382e-01 -8.05753708e-01 -2.88025737e-01 1.50084034e-01
3.77904385e-01 2.26154551e-01 3.79700691e-01 -6.37155771e-01
9.00331885e-02 -4.25121188e-01 1.26349121e-01 -1.15927792e+00
3.13778311e-01 -4.73497272e-01 3.26323271e-01 2.42867440e-01
-1.54683337e-01 -4.15421665e-01 -2.16281638e-01 8.21380734e-01
-1.96637899e-01 -8.86574626e-01 9.77259099e-01 8.35111141e-02
-1.61637038e-01 2.50685096e-01 -7.07102954e-01 3.69961075e-02
5.90102255e-01 4.63463739e-03 4.17642519e-02 -7.27910876e-01
-7.17196286e-01 1.29724145e-01 3.36542159e-01 -4.15215671e-01
8.07469964e-01 -1.46429014e+00 -1.13699734e+00 6.42690212e-02
-1.75875098e-01 7.35429395e-03 2.47113124e-01 8.76021028e-01
-5.94674706e-01 1.08223289e-01 3.08981329e-01 -7.81326473e-01
-6.58363044e-01 1.83894575e-01 1.55242041e-01 8.32763612e-02
-4.08991933e-01 5.09107888e-01 6.94579184e-02 -5.79091072e-01
-1.31312162e-02 -3.25976342e-01 1.80052042e-01 -2.46218264e-01
7.05668807e-01 1.11543739e+00 -3.65924060e-01 -3.02269936e-01
-1.07684270e-01 4.42680717e-01 1.66173846e-01 -9.49651599e-01
1.03584456e+00 -3.81572992e-01 -2.40565851e-01 1.01948977e+00
1.18199241e+00 4.10889909e-02 -1.37517536e+00 -1.98213711e-01
7.53642395e-02 -6.64445341e-01 1.60158306e-01 -2.20380068e-01
-2.93491960e-01 7.89016604e-01 1.81662634e-01 2.74321884e-01
4.29446101e-01 -1.41395420e-01 3.49369824e-01 3.43469977e-01
2.37875789e-01 -9.86508012e-01 -2.49689639e-01 5.29288411e-01
9.31704164e-01 -1.25760806e+00 2.15431660e-01 -4.67804492e-01
-2.70165801e-01 9.70820904e-01 5.58806770e-02 -2.98957288e-01
9.59243178e-01 2.41267934e-01 -1.80489212e-01 1.89899746e-02
-3.29217613e-01 6.52731955e-02 3.56794357e-01 7.98868597e-01
2.61489749e-01 9.26564783e-02 -6.91519320e-01 7.37295389e-01
-6.24369346e-02 -5.89444712e-02 5.96526325e-01 6.20442390e-01
-6.70460343e-01 -7.39564955e-01 -7.30418563e-01 4.99415874e-01
-2.79976517e-01 2.08418611e-02 4.63523790e-02 5.90222597e-01
-4.33766872e-01 1.07472932e+00 1.51251376e-01 2.12083027e-01
-4.62910235e-02 1.11714318e-01 5.57207823e-01 -5.49051583e-01
3.95954609e-01 6.24139845e-01 -1.43920392e-01 -3.51724416e-01
-4.51825708e-01 -1.02321720e+00 -8.92126858e-01 -4.34453517e-01
-5.43100893e-01 4.94773120e-01 7.45413482e-01 1.16164732e+00
-2.28950843e-01 2.68820465e-01 5.08628070e-01 -8.72346282e-01
-1.18524873e+00 -1.28294086e+00 -1.22784102e+00 6.69600889e-02
2.30340898e-01 -8.86299968e-01 -7.55053580e-01 -2.48859301e-01] | [7.0150933265686035, 3.9851067066192627] |
bb677445-8c6f-4f7e-875d-8c19068e560c | a-robust-predictive-model-for-stock-price | 1912.077 | null | https://arxiv.org/abs/1912.07700v1 | https://arxiv.org/pdf/1912.07700v1.pdf | A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing | Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy remains the single most challenge in this area of research. We propose a hybrid approach for stock price movement prediction using machine learning, deep learning, and natural language processing. We select the NIFTY 50 index values of the National Stock Exchange of India, and collect its daily price movement over a period of three years (2015 to 2017). Based on the data of 2015 to 2017, we build various predictive models using machine learning, and then use those models to predict the closing value of NIFTY 50 for the period January 2018 till June 2019 with a prediction horizon of one week. For predicting the price movement patterns, we use a number of classification techniques, while for predicting the actual closing price of the stock, various regression models have been used. We also build a Long and Short-Term Memory - based deep learning network for predicting the closing price of the stocks and compare the prediction accuracies of the machine learning models with the LSTM model. We further augment the predictive model by integrating a sentiment analysis module on twitter data to correlate the public sentiment of stock prices with the market sentiment. This has been done using twitter sentiment and previous week closing values to predict stock price movement for the next week. We tested our proposed scheme using a cross validation method based on Self Organizing Fuzzy Neural Networks and found extremely interesting results. | ['Sidra Mehtab', 'Jaydip Sen'] | 2019-12-09 | null | null | null | null | ['stock-price-prediction'] | ['time-series'] | [-7.47520924e-01 -5.11615515e-01 -3.17637205e-01 -3.12229156e-01
-2.17029184e-01 -6.40425801e-01 5.88811696e-01 8.83250684e-02
-5.94534934e-01 9.28519547e-01 3.14036340e-01 -5.90870976e-01
-1.10389784e-01 -1.57814205e+00 -5.59016466e-01 -4.97572303e-01
-2.82727808e-01 2.81727970e-01 7.59491250e-02 -8.25577676e-01
8.52201641e-01 4.33192939e-01 -1.48330450e+00 3.18600178e-01
3.33463788e-01 1.67182875e+00 -5.91500811e-02 2.28506848e-01
-5.23109376e-01 1.16820514e+00 -5.41961193e-01 -2.37778589e-01
9.07221913e-01 1.24587603e-01 -4.88956243e-01 -3.95247638e-01
-3.24665666e-01 -4.49336052e-01 7.89813846e-02 9.90539134e-01
8.10186937e-02 -2.91434936e-02 2.52781153e-01 -1.11682987e+00
-7.61715710e-01 1.04433978e+00 -4.76532370e-01 8.17637265e-01
-1.93793595e-01 -2.83388525e-01 1.14111304e+00 -8.08335900e-01
3.62161368e-01 6.90362990e-01 8.13231587e-01 -1.67269319e-01
-6.66832149e-01 -1.07448816e+00 -6.59064651e-02 1.04795590e-01
-9.87541258e-01 9.16749015e-02 7.36976683e-01 -7.22077608e-01
1.13570249e+00 3.49411070e-02 1.11439645e+00 3.21549326e-01
7.22956717e-01 4.29818749e-01 1.40807974e+00 -2.65711486e-01
2.82284051e-01 4.87081289e-01 2.91583061e-01 8.90010074e-02
2.24839419e-01 2.29791895e-01 -1.78345650e-01 -1.66003704e-01
3.33303273e-01 5.33209622e-01 2.21235380e-01 7.87739456e-01
-9.40895915e-01 1.14113235e+00 5.65126359e-01 7.75172651e-01
-8.28003824e-01 -2.11469010e-01 3.59427243e-01 8.73049021e-01
9.77285206e-01 5.64400733e-01 -1.05670190e+00 -1.59734502e-01
-1.46811748e+00 6.69879079e-01 9.95611370e-01 1.78647593e-01
7.28629172e-01 4.76652801e-01 3.86328548e-01 3.70518416e-01
2.97443002e-01 5.14676809e-01 1.20892668e+00 -1.78884640e-01
2.84500837e-01 7.59337902e-01 3.46031785e-01 -1.25169659e+00
-4.80964035e-01 -4.25348461e-01 -4.76936936e-01 5.26018858e-01
1.63239226e-01 -6.80967689e-01 -6.24992907e-01 9.99221623e-01
-3.25356036e-01 3.96838099e-01 4.61836219e-01 4.43299502e-01
4.16401088e-01 1.24200380e+00 -3.23133320e-02 -3.29419196e-01
1.00068378e+00 -5.48961818e-01 -7.42074966e-01 1.48709565e-01
5.31689227e-01 -6.13306344e-01 2.98141718e-01 2.49008030e-01
-9.86105561e-01 -4.70492810e-01 -1.07674861e+00 5.12868285e-01
-1.29196048e+00 -1.33816585e-01 3.91155362e-01 2.86151648e-01
-1.06625652e+00 1.14344227e+00 -6.60286903e-01 1.79454699e-01
6.13965914e-02 6.51430488e-01 2.87024051e-01 1.06216621e+00
-1.75347042e+00 1.18491626e+00 7.61944890e-01 4.34192605e-02
3.05862248e-01 -7.34747052e-01 -4.84830767e-01 9.86800995e-03
-2.78837174e-01 -4.52789431e-03 1.02211130e+00 -1.29750884e+00
-1.39853919e+00 5.38362622e-01 3.00070256e-01 -1.37178123e+00
3.86294067e-01 6.48313612e-02 -9.32100058e-01 -4.37589228e-01
8.55139866e-02 2.71948010e-01 4.85381842e-01 -5.06638944e-01
-1.21167767e+00 -3.08941007e-01 -2.39273254e-02 -1.39117941e-01
-5.46542525e-01 7.38070011e-02 5.34345567e-01 -1.02805758e+00
-2.81426888e-02 -8.60636353e-01 -5.93957119e-02 -9.11361992e-01
7.96478465e-02 -3.92788500e-01 9.36834812e-01 -8.45290661e-01
1.39322138e+00 -1.96138108e+00 -7.24995017e-01 6.06343865e-01
-3.27559561e-01 1.96371481e-01 4.39732969e-01 4.28733885e-01
-3.90179038e-01 2.94753432e-01 2.65911706e-02 2.02845961e-01
2.28843298e-02 -2.85207778e-02 -1.17771566e+00 1.66684881e-01
1.75629660e-01 1.09607863e+00 -2.15025052e-01 1.65563330e-01
1.82578877e-01 1.09202623e-01 -7.13560805e-02 -9.39421058e-02
-3.85628074e-01 -2.55346715e-01 -2.76238203e-01 5.31212151e-01
7.85052061e-01 -2.74374962e-01 -3.17144156e-01 -6.42847046e-02
-8.59346747e-01 4.89198923e-01 -1.01187539e+00 6.28073454e-01
-2.57016718e-01 5.70886135e-01 -6.23800278e-01 -8.97876740e-01
1.32372344e+00 3.23973447e-01 6.28912687e-01 -7.75653958e-01
4.03049231e-01 6.47974014e-01 1.67218626e-01 -1.88388526e-01
6.85955942e-01 -7.64296293e-01 -7.01065511e-02 7.93277144e-01
-3.69100451e-01 2.58705556e-01 2.22486466e-01 -5.10098517e-01
4.58555818e-01 -6.54273927e-02 2.12069035e-01 -5.19115269e-01
5.30726492e-01 2.70349860e-01 3.31132144e-01 1.69925645e-01
-1.19957469e-01 3.17770503e-02 2.47952580e-01 -1.21908629e+00
-9.38206196e-01 -5.10246396e-01 -3.25839967e-01 9.23429668e-01
-3.15317541e-01 3.47888887e-01 -2.71455884e-01 -5.13685122e-02
4.28620845e-01 9.40833807e-01 -8.47320557e-01 3.34825784e-01
-3.54116857e-01 -1.29124594e+00 2.76081026e-01 3.49742860e-01
7.31724381e-01 -1.51836872e+00 -6.97135627e-01 4.63268787e-01
4.49422359e-01 -7.57563829e-01 2.24041790e-01 4.26515698e-01
-8.87280405e-01 -6.90928280e-01 -6.50920093e-01 -8.15129399e-01
3.88808139e-02 -3.15196723e-01 9.46227074e-01 -2.19374020e-02
5.68125129e-01 -2.93719113e-01 -1.51301175e-01 -1.23525941e+00
-1.13408133e-01 1.70661300e-01 1.64385334e-01 1.28989726e-01
7.75342882e-01 -4.55054611e-01 -4.04063761e-01 -9.67310891e-02
-8.92509401e-01 -2.57910937e-01 4.29935902e-01 3.05945635e-01
3.65005344e-01 5.86741447e-01 1.12233961e+00 -7.23286748e-01
8.60074401e-01 -1.01660550e+00 -1.13560200e+00 -1.67662874e-01
-1.06414282e+00 7.03756977e-03 5.91568053e-01 -2.71334928e-02
-8.03503513e-01 -2.94251740e-01 -2.47302786e-01 -2.29233563e-01
3.46304476e-01 1.15530276e+00 7.43226945e-01 1.69222161e-01
3.99255529e-02 5.15784562e-01 1.66622862e-01 -3.50914210e-01
-2.66717553e-01 6.82460845e-01 2.13035166e-01 1.58942610e-01
8.99612546e-01 4.64799911e-01 -3.41048837e-01 -4.24484640e-01
-8.86553347e-01 -2.11435542e-01 -6.39398694e-01 -1.74480513e-01
6.37978137e-01 -1.12828481e+00 -6.92242861e-01 8.25970590e-01
-7.18364537e-01 6.82437345e-02 -2.94538081e-01 4.67620850e-01
-3.61679308e-02 -4.65502888e-01 -8.13227773e-01 -9.91530120e-01
-8.83200407e-01 -8.56921911e-01 2.99321562e-01 2.63637424e-01
-2.88765997e-01 -1.47985601e+00 4.09037948e-01 -7.24716187e-02
8.32163632e-01 5.06195903e-01 7.49879122e-01 -1.29933834e+00
-2.72367001e-01 -6.28316998e-01 -3.03993858e-02 5.18879831e-01
3.03288281e-01 7.57115260e-02 -7.20404148e-01 2.24940218e-02
4.65459555e-01 -7.82070756e-02 9.21225667e-01 6.30368948e-01
6.27104938e-01 -5.52317262e-01 2.29228705e-01 3.92310828e-01
1.79812169e+00 8.30151379e-01 5.38799107e-01 1.36404085e+00
2.21812502e-01 4.57627118e-01 5.25240541e-01 6.05743527e-01
5.35957217e-01 -9.49635208e-02 1.51600182e-01 2.09374741e-01
9.17135656e-01 3.26411612e-02 6.53980792e-01 1.05436659e+00
-2.56202310e-01 2.65497088e-01 -9.69520032e-01 4.36743051e-01
-1.53178203e+00 -1.33352554e+00 1.28550977e-01 1.85507417e+00
5.70403874e-01 7.10160494e-01 3.76194268e-01 5.38480163e-01
5.46516538e-01 4.56999868e-01 -4.88347352e-01 -5.80861926e-01
-2.47796461e-01 3.76046240e-01 1.08392358e+00 2.22610280e-01
-1.30963373e+00 7.84834623e-01 6.03360128e+00 4.38057035e-01
-1.89917612e+00 -3.88888985e-01 1.01626825e+00 -7.85624236e-02
-2.94080883e-01 -3.25999647e-01 -9.88530755e-01 9.31812465e-01
1.52814150e+00 -6.33863568e-01 1.76656753e-01 7.97879338e-01
5.87002754e-01 1.22239068e-02 -3.52771699e-01 5.74732184e-01
-1.94469601e-01 -2.00821996e+00 1.04964055e-01 1.92849725e-01
8.97250414e-01 3.95987988e-01 3.36049646e-01 3.85546118e-01
8.24084580e-02 -7.99373925e-01 8.97059143e-01 9.31883991e-01
-3.48616764e-02 -1.03168797e+00 1.24561536e+00 4.53916013e-01
-1.13847685e+00 -4.14758086e-01 -2.25293681e-01 -8.54101121e-01
-9.14130658e-02 5.30147552e-01 -6.73270464e-01 2.69045502e-01
9.90353942e-01 1.00004923e+00 -2.12381005e-01 5.48167944e-01
4.25903112e-01 5.52565098e-01 -3.90826464e-01 -4.52298790e-01
7.31498182e-01 -5.28057396e-01 8.75274539e-02 7.14373529e-01
6.76757932e-01 1.09168828e-01 -8.97323415e-02 8.00529838e-01
-1.13180570e-01 3.23494941e-01 -6.96250975e-01 -1.47196487e-01
2.53576398e-01 8.53537798e-01 -7.28716135e-01 -6.03708684e-01
-7.37718940e-01 1.57128096e-01 -2.13576779e-01 -6.98678643e-02
-4.88956869e-01 -4.21288908e-01 5.61769009e-01 3.63148421e-01
3.89857113e-01 5.38441911e-02 -8.02642703e-01 -1.06325376e+00
-1.12265401e-01 -3.58268201e-01 3.11334491e-01 -5.35783470e-01
-1.44088781e+00 6.69137239e-01 -1.88537896e-01 -1.63673663e+00
-4.83650446e-01 -6.39877796e-01 -1.12560821e+00 1.12787557e+00
-1.97527897e+00 -4.58032876e-01 4.87776250e-01 4.77000833e-01
4.30907279e-01 -9.14674997e-01 6.27619147e-01 4.52695563e-02
-3.76862347e-01 -1.40977174e-01 5.07043242e-01 6.62656784e-01
6.86861053e-02 -1.26677680e+00 7.23012328e-01 5.41096270e-01
-1.11902028e-01 4.60130543e-01 6.09179974e-01 -9.64601338e-01
-8.81399751e-01 -1.24626851e+00 1.15084219e+00 2.53467709e-02
1.54990602e+00 2.30689123e-01 -9.08690453e-01 8.88092220e-01
5.05833209e-01 -1.54342458e-01 8.06168973e-01 -5.10632098e-01
1.37982041e-01 -2.93606520e-01 -1.24497974e+00 1.18718699e-01
-3.13696086e-01 -2.18388453e-01 -1.09723175e+00 3.81836891e-02
4.43078637e-01 -4.81190383e-02 -1.13367093e+00 2.49735042e-01
7.80925095e-01 -1.10771406e+00 6.96126580e-01 -3.05237979e-01
3.42304736e-01 -1.77662715e-01 -2.92880647e-02 -1.41441047e+00
-2.46355489e-01 -1.78238809e-01 2.68191785e-01 9.96565044e-01
8.87554407e-01 -1.19568300e+00 9.30240333e-01 9.34493721e-01
3.27657461e-01 -9.17940080e-01 -6.45595193e-01 -4.65596974e-01
5.35947204e-01 -3.93408149e-01 1.12333536e+00 1.10088825e+00
-9.77333542e-03 -1.29974812e-01 -2.42583722e-01 4.27694954e-02
2.13213071e-01 7.25903153e-01 2.63691008e-01 -1.45665860e+00
1.51615351e-01 -6.04820490e-01 -3.25336099e-01 -2.47978792e-01
2.78013200e-01 -8.00583661e-01 -6.54828131e-01 -1.22388935e+00
-4.85822052e-01 -2.20831946e-01 -8.50360155e-01 4.38727885e-01
4.21493590e-01 1.41206414e-01 2.93720961e-01 6.70270026e-01
2.65499562e-01 2.72377729e-01 8.39906156e-01 -1.02628097e-01
-4.76719856e-01 3.41891527e-01 -5.66099882e-01 9.93697226e-01
1.20820653e+00 -1.75425708e-01 5.07160537e-02 -4.89499932e-03
6.62340522e-01 3.72038223e-03 -9.66988280e-02 -1.03596270e+00
9.73171219e-02 -2.34288454e-01 8.02372456e-01 -1.15359437e+00
-3.43760885e-02 -9.24164414e-01 2.10546464e-01 7.51309335e-01
-3.09633493e-01 7.53929496e-01 3.28574061e-01 6.77729473e-02
-8.76245558e-01 -1.39107749e-01 5.30603170e-01 -4.34072703e-01
-9.07310903e-01 3.27191770e-01 -5.83190501e-01 -3.25988501e-01
1.30617869e+00 -3.59288573e-01 -2.97235996e-02 -2.54797131e-01
-7.29277790e-01 2.74091244e-01 -8.47951416e-03 5.74316323e-01
4.38267618e-01 -1.38190842e+00 -6.92613006e-01 3.44361722e-01
-4.43003744e-01 -5.76880693e-01 -1.97983727e-01 4.51340199e-01
-9.53194022e-01 6.37353480e-01 -5.68779409e-01 1.09175012e-01
-5.19703448e-01 3.77680093e-01 4.90643829e-01 -3.99765044e-01
-3.47430736e-01 4.98849660e-01 -5.63674390e-01 -4.14842330e-02
-1.64854035e-01 -7.89194465e-01 -1.04119074e+00 1.01288331e+00
7.57875025e-01 3.29431385e-01 2.39756003e-01 -8.67725134e-01
-1.33788899e-01 6.86222553e-01 -6.04601689e-02 -8.87938067e-02
2.13381934e+00 5.68140969e-02 -4.09507513e-01 1.08619320e+00
1.32516456e+00 -2.30840057e-01 -7.50148118e-01 1.82687882e-02
7.62513101e-01 -2.40616258e-02 2.97598660e-01 -6.63494706e-01
-1.55010378e+00 3.41827303e-01 7.14114070e-01 8.89995039e-01
1.05818701e+00 -6.39166415e-01 1.36685956e+00 3.54691476e-01
2.44388387e-01 -1.30948234e+00 -7.43406832e-01 7.96332896e-01
7.25013077e-01 -1.39258242e+00 -7.79964551e-02 3.92921716e-01
-5.49015105e-01 1.41359973e+00 -4.37056646e-02 -9.10802007e-01
1.63923669e+00 5.68242192e-01 4.75529820e-01 -1.10826820e-01
-8.67077112e-01 4.74020429e-02 1.23550437e-01 -2.20565572e-01
4.22230273e-01 1.72654748e-01 -2.65568644e-01 9.21845257e-01
-9.32914674e-01 4.38799560e-01 7.00594306e-01 9.68056619e-01
-6.20920777e-01 -8.73197198e-01 -5.63411951e-01 9.74600434e-01
-1.23234177e+00 -3.62857789e-01 -1.18271679e-01 7.64239132e-01
-3.69897159e-03 6.67698741e-01 7.36561596e-01 -5.98171294e-01
1.27237797e-01 3.76848549e-01 -6.03880644e-01 -2.75566041e-01
-1.13931918e+00 -4.99082077e-03 -2.62508482e-01 7.89728835e-02
-6.86026931e-01 -8.67761910e-01 -1.46638966e+00 -7.38298059e-01
1.74695533e-02 2.70469993e-01 6.80368245e-01 1.33649874e+00
3.33461985e-02 1.22544602e-01 1.07336974e+00 -9.40238416e-01
-6.32953048e-01 -9.61320400e-01 -1.10110176e+00 2.50842124e-01
6.10912561e-01 -3.83547008e-01 -5.71950316e-01 4.35813628e-02] | [4.449123382568359, 4.246147632598877] |
9fca886b-a416-4718-abf0-1af63ae2903c | quantifying-the-intrinsic-usefulness-of | 2305.15961 | null | https://arxiv.org/abs/2305.15961v1 | https://arxiv.org/pdf/2305.15961v1.pdf | Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies | Despite the increasing relevance of explainable AI, assessing the quality of explanations remains a challenging issue. Due to the high costs associated with human-subject experiments, various proxy metrics are often used to approximately quantify explanation quality. Generally, one possible interpretation of the quality of an explanation is its inherent value for teaching a related concept to a student. In this work, we extend artificial simulatability studies to the domain of graph neural networks. Instead of costly human trials, we use explanation-supervisable graph neural networks to perform simulatability studies to quantify the inherent usefulness of attributional graph explanations. We perform an extensive ablation study to investigate the conditions under which the proposed analyses are most meaningful. We additionally validate our methods applicability on real-world graph classification and regression datasets. We find that relevant explanations can significantly boost the sample efficiency of graph neural networks and analyze the robustness towards noise and bias in the explanations. We believe that the notion of usefulness obtained from our proposed simulatability analysis provides a dimension of explanation quality that is largely orthogonal to the common practice of faithfulness and has great potential to expand the toolbox of explanation quality assessments, specifically for graph explanations. | ['Pascal Friederich', 'Luca Torresi', 'Jonas Teufel'] | 2023-05-25 | null | null | null | null | ['graph-classification'] | ['graphs'] | [ 3.81714165e-01 8.70394349e-01 -3.69264692e-01 -4.20788884e-01
4.42615300e-02 -5.26804745e-01 8.02109480e-01 6.38631344e-01
-1.52618244e-01 5.67451358e-01 7.41030350e-02 -8.11092913e-01
-7.22542942e-01 -8.71349573e-01 -7.34611213e-01 -3.02872568e-01
-5.57828322e-02 2.39672884e-01 -1.54273286e-01 -1.61288515e-01
4.55700666e-01 5.67503452e-01 -1.57034433e+00 -2.21863285e-01
1.35021544e+00 7.70583510e-01 -3.38936806e-01 4.89964426e-01
-2.48255823e-02 8.53601933e-01 -7.30547607e-01 -7.25193322e-01
-6.54468089e-02 -7.16562748e-01 -9.25505161e-01 6.93965778e-02
6.06039166e-01 -7.08120316e-02 -1.74132697e-02 1.18770576e+00
5.02558500e-02 2.59986758e-01 7.54984736e-01 -1.74371552e+00
-1.10738385e+00 1.16103733e+00 1.39329672e-01 3.19965094e-01
4.76050705e-01 1.56160966e-01 1.28714216e+00 -4.51195776e-01
3.48124206e-01 1.19160903e+00 6.61457896e-01 3.59297186e-01
-1.26479959e+00 -5.67212522e-01 2.61940241e-01 3.12539369e-01
-7.78910160e-01 -1.51679173e-01 9.55706537e-01 -3.94273549e-01
4.98391986e-01 3.73735279e-01 8.58613372e-01 1.16201234e+00
1.40783340e-01 3.55765849e-01 1.31753683e+00 -6.65357351e-01
5.04134655e-01 4.25669461e-01 8.08149099e-01 8.32030058e-01
8.94308507e-01 2.99742281e-01 -5.61778903e-01 -1.96911488e-02
7.90647805e-01 -4.09807898e-02 -4.24880236e-01 -5.21904707e-01
-9.97679591e-01 1.14156842e+00 7.50906467e-01 2.05998480e-01
-2.80860007e-01 3.71386796e-01 8.45810920e-02 4.36591566e-01
3.31780195e-01 1.05071187e+00 -1.33484244e-01 -5.89526184e-02
-5.61965168e-01 1.10771947e-01 8.35667551e-01 6.25564039e-01
6.99609578e-01 4.55497116e-01 -2.89452933e-02 4.47580040e-01
3.68023604e-01 4.30215672e-02 4.23253030e-01 -1.02919459e+00
5.43567091e-02 9.69177842e-01 -1.91198960e-01 -1.31069815e+00
-3.91432017e-01 -8.34303677e-01 -6.29291654e-01 3.15275252e-01
6.71414554e-01 7.86529034e-02 -5.27963638e-01 1.83263218e+00
1.22312613e-01 1.25389956e-02 7.73294047e-02 9.59638119e-01
9.58235264e-01 2.38620453e-02 2.28090182e-01 5.39185889e-02
1.20641792e+00 -8.98271382e-01 -7.01213062e-01 -4.18613374e-01
5.76310039e-01 -4.02389139e-01 1.58692431e+00 2.25797430e-01
-9.11061227e-01 -4.63550061e-01 -1.15859032e+00 8.28502998e-02
-4.49078023e-01 -2.18057662e-01 1.23665404e+00 9.66893792e-01
-9.03265715e-01 9.04164791e-01 -4.55298632e-01 -4.19771880e-01
2.56021738e-01 4.47901905e-01 -3.44003439e-01 5.50065227e-02
-1.25144732e+00 1.10421932e+00 2.33956024e-01 -5.04198112e-03
-5.65544307e-01 -5.82266808e-01 -9.32380497e-01 5.89639962e-01
3.78020853e-01 -7.66518593e-01 9.03086901e-01 -1.29477024e+00
-1.28850091e+00 4.19120878e-01 1.49367571e-01 -5.43419063e-01
2.43122995e-01 7.00320080e-02 -3.41336429e-02 3.88267376e-02
-7.86382481e-02 4.07731205e-01 5.77718556e-01 -1.24396694e+00
1.52275681e-01 -2.18136787e-01 5.22484124e-01 -7.34575242e-02
-5.85087180e-01 -5.49082696e-01 1.82022408e-01 -6.85017228e-01
2.01906398e-01 -1.09393811e+00 -1.70910031e-01 -8.66646841e-02
-3.88445675e-01 -2.34073982e-01 1.88726231e-01 -8.25610533e-02
1.04237115e+00 -1.83856332e+00 1.30453959e-01 3.32842052e-01
6.24688208e-01 -1.16361424e-01 -1.28010303e-01 2.99742311e-01
-4.15881038e-01 3.74909461e-01 -9.11270902e-02 -4.22586352e-02
3.24047804e-01 1.11935467e-01 -2.83089340e-01 3.80062521e-01
1.16477631e-01 1.09863269e+00 -8.35541487e-01 -2.22717285e-01
2.84896553e-01 5.02328694e-01 -6.06736422e-01 1.73803240e-01
2.18591671e-02 1.41606005e-02 -4.89703685e-01 3.20816427e-01
1.70845643e-01 -5.32646477e-01 9.95838046e-02 -4.73808907e-02
3.41044664e-01 4.92838204e-01 -9.99394476e-01 9.80815828e-01
-3.49505484e-01 9.61064696e-01 -4.79001850e-01 -1.01730335e+00
9.55073297e-01 1.32761136e-01 -2.22878337e-01 -5.69950640e-01
3.54370058e-01 2.59511340e-02 5.64876020e-01 -1.97998807e-01
6.52513146e-01 -3.49358976e-01 1.72161117e-01 7.47132659e-01
1.06392682e-01 -3.39239895e-01 -9.66313947e-03 2.95177996e-01
9.83280897e-01 -8.39228630e-02 7.88765848e-01 -5.59662819e-01
3.46831322e-01 -3.78633663e-03 8.96804035e-02 8.33256125e-01
-3.12380373e-01 2.55159229e-01 8.81790221e-01 -4.94538665e-01
-6.91715598e-01 -9.14597690e-01 5.27760871e-02 7.99314380e-01
1.87247675e-02 -2.94426829e-01 -8.37154150e-01 -8.41348112e-01
4.14142683e-02 1.21491587e+00 -1.08641613e+00 -5.68991482e-01
-1.43111032e-02 -4.06432778e-01 5.03494561e-01 4.98105675e-01
1.74788907e-01 -1.15518963e+00 -6.94773734e-01 -1.30682439e-01
5.23201451e-02 -9.07597125e-01 -2.45169494e-02 3.54359388e-01
-1.14872110e+00 -1.23146117e+00 -2.91074008e-01 -2.28298247e-01
9.03643548e-01 5.38740754e-01 1.32563365e+00 8.89547884e-01
2.52286971e-01 6.56708002e-01 -3.63437504e-01 -4.09656614e-01
-6.18208110e-01 -3.89959551e-02 2.07046438e-02 -5.31226993e-01
3.44225645e-01 -7.65367806e-01 -3.57042819e-01 1.93601698e-01
-8.76053274e-01 -9.21252370e-02 6.32216632e-01 8.32037747e-01
1.22550584e-01 9.71013457e-02 6.72552645e-01 -1.16257238e+00
1.26588368e+00 -4.53817159e-01 -5.33001304e-01 1.82752803e-01
-1.48050952e+00 4.08053100e-01 7.42889881e-01 -6.10583603e-01
-6.88033342e-01 -4.52825665e-01 3.06432128e-01 -1.70040131e-01
-2.60982484e-01 7.86163032e-01 1.46943673e-01 -4.49723989e-01
1.11220336e+00 -1.55317321e-01 1.27977028e-01 2.01113015e-01
6.07104003e-01 1.59596521e-02 1.59832403e-01 -6.65695488e-01
1.08113933e+00 -1.00756846e-01 3.07916939e-01 -6.18558586e-01
-8.37308824e-01 2.42027953e-01 -2.92197108e-01 -5.42353272e-01
6.35655999e-01 -3.73291820e-01 -1.06884205e+00 -2.80283511e-01
-9.86909688e-01 -3.74280274e-01 -3.81080985e-01 5.01470804e-01
-4.07102913e-01 5.12432158e-01 -4.03520912e-01 -7.84003079e-01
-5.94892688e-02 -1.41812241e+00 4.39112782e-01 3.46791476e-01
-7.50341594e-01 -1.48496354e+00 -1.59142569e-01 4.69617516e-01
4.84969884e-01 2.96041369e-01 1.25661922e+00 -9.45486188e-01
-7.34032571e-01 -2.85974383e-01 -2.13218138e-01 6.45083338e-02
6.54548481e-02 -5.43965921e-02 -9.84094739e-01 1.03256881e-01
-1.49557889e-01 -4.15016025e-01 7.05649197e-01 3.70648146e-01
9.75910962e-01 -5.27177989e-01 8.52892026e-02 9.60465670e-02
1.25064087e+00 -1.80380210e-01 4.13334936e-01 5.59199750e-01
6.75045252e-01 1.02613473e+00 4.35135603e-01 7.48907924e-02
3.64242613e-01 5.28429627e-01 7.50721872e-01 -2.76730582e-02
-1.59878805e-01 -4.09962147e-01 2.54211783e-01 5.64060450e-01
-1.54572785e-01 -5.22132814e-01 -9.11678195e-01 3.50465804e-01
-1.58944273e+00 -8.38763177e-01 -3.98181677e-01 2.19288683e+00
3.21229666e-01 4.10519719e-01 1.52038904e-02 4.10671443e-01
4.48434204e-01 1.61159895e-02 -2.43835330e-01 -5.93685687e-01
2.10168049e-01 -7.13069439e-02 2.80343890e-01 7.80796587e-01
-3.76380682e-01 7.07354486e-01 6.91597795e+00 3.78339678e-01
-8.23831201e-01 -3.30527306e-01 5.82438350e-01 4.35612619e-01
-8.48838568e-01 2.15552166e-01 -1.19200416e-01 -1.30994925e-02
1.09051692e+00 -3.56436729e-01 5.33965111e-01 1.07075620e+00
1.34703279e-01 6.27193004e-02 -1.42184830e+00 3.68029356e-01
-2.46716440e-02 -1.26579261e+00 2.15297207e-01 2.66409189e-01
4.91416931e-01 -5.93352079e-01 2.72223711e-01 2.26569206e-01
3.27007234e-01 -1.32676136e+00 7.31353164e-01 2.55721658e-01
2.09865719e-01 -5.65813661e-01 8.48865390e-01 2.20574826e-01
-6.65883839e-01 5.65871634e-02 -3.16414893e-01 -6.78397238e-01
-4.66056287e-01 5.22506058e-01 -1.17004049e+00 3.30260277e-01
1.81078643e-01 5.09694219e-01 -1.09693813e+00 6.44470632e-01
-7.61031151e-01 9.30968523e-01 3.75386775e-02 -4.30362463e-01
5.28113842e-02 -2.30995789e-01 3.76269609e-01 7.92659879e-01
2.48500273e-01 1.16253927e-01 -3.54783863e-01 1.33439410e+00
4.10030829e-04 1.12020299e-01 -9.48051691e-01 -4.10620362e-01
5.54879189e-01 1.25528133e+00 -1.14237905e+00 -2.34466851e-01
-1.79677591e-01 6.49710655e-01 5.98504066e-01 3.66027743e-01
-8.28390241e-01 -8.98323804e-02 3.48966479e-01 -7.33925328e-02
-1.66288912e-01 -8.10585991e-02 -7.43350267e-01 -9.24750090e-01
-2.28336543e-01 -1.13772428e+00 3.09324533e-01 -8.97462487e-01
-1.14567184e+00 7.02029824e-01 6.11382090e-02 -1.06017160e+00
-3.39904130e-01 -6.17596328e-01 -9.03920650e-01 7.05407381e-01
-1.30453014e+00 -8.75146985e-01 -7.42487550e-01 1.53680176e-01
3.16419333e-01 -4.70462181e-02 8.57037902e-01 -3.04125994e-01
-6.03579283e-01 6.61995292e-01 -6.93338037e-01 -2.43972957e-01
2.79225171e-01 -1.58334315e+00 3.68397593e-01 9.26944971e-01
3.80204231e-01 1.17631745e+00 1.32698643e+00 -5.09300828e-01
-1.11803019e+00 -6.02117717e-01 7.58897126e-01 -5.18909216e-01
7.16558993e-01 -8.11884478e-02 -1.15427566e+00 8.17409754e-01
2.83594161e-01 -2.66681582e-01 7.46772885e-01 5.97702503e-01
-3.53386611e-01 3.35298806e-01 -9.22696233e-01 8.35621774e-01
9.66543019e-01 -4.01992172e-01 -8.48757744e-01 1.42784998e-01
9.23139572e-01 -3.45496647e-02 -9.81380045e-01 8.48011076e-02
4.61280674e-01 -1.32130611e+00 8.84642899e-01 -6.53924406e-01
8.12116265e-01 2.79857777e-02 7.22500607e-02 -1.59856021e+00
-4.21193331e-01 -3.00297499e-01 1.56841606e-01 1.24012828e+00
6.57615840e-01 -8.36081684e-01 1.00061703e+00 1.10184884e+00
-5.76581135e-02 -4.88702089e-01 -5.89038789e-01 -6.84930265e-01
1.08157776e-01 -5.46892405e-01 7.38327205e-01 1.30925286e+00
2.35994682e-01 5.15562415e-01 -9.83346924e-02 2.51111329e-01
8.01761329e-01 9.80266184e-02 8.60302687e-01 -1.64937925e+00
-3.88969064e-01 -7.32968330e-01 -4.22212660e-01 -6.22878432e-01
6.32635176e-01 -1.06576490e+00 -2.31244683e-01 -1.45777690e+00
1.10632218e-01 -2.54689902e-01 -1.43072739e-01 4.61077124e-01
-4.53882366e-01 -1.56340224e-03 2.32234761e-01 -1.90323312e-02
-2.83564717e-01 6.68619990e-01 1.15847862e+00 5.86201362e-02
3.64937298e-02 -1.08735271e-01 -1.06034541e+00 7.78982520e-01
7.99580693e-01 -6.57680988e-01 -8.83543193e-01 -1.40580386e-01
4.98478442e-01 4.52079736e-02 7.38388538e-01 -7.73448229e-01
4.72556651e-02 -3.68445009e-01 1.72662005e-01 2.27448002e-01
4.22289446e-02 -9.77166414e-01 1.47775918e-01 6.07597172e-01
-8.06583524e-01 2.57508993e-01 1.43547088e-01 6.01105690e-01
-4.68986481e-02 -4.47458029e-01 4.38019574e-01 1.02098905e-01
-4.09644485e-01 -1.02777317e-01 -3.05066109e-01 -1.29079044e-01
7.01469362e-01 -4.01652336e-01 -6.15483701e-01 -8.35416079e-01
-4.09850866e-01 -1.68620214e-01 5.95994830e-01 2.94580936e-01
6.81354165e-01 -1.24282169e+00 -2.37423182e-01 -3.53797600e-02
2.29562581e-01 -6.57060087e-01 -8.75128880e-02 6.64723277e-01
-2.88998842e-01 4.24423337e-01 -3.90064150e-01 -3.40109646e-01
-1.09155393e+00 6.61728740e-01 4.09887463e-01 -5.18885590e-02
-4.72422004e-01 4.89967495e-01 2.08817512e-01 -4.78714526e-01
2.21578717e-01 -5.56415975e-01 -4.41570699e-01 -1.48025289e-01
1.17118508e-01 5.32483935e-01 -7.89094046e-02 -2.23617986e-01
-2.52040118e-01 1.91792294e-01 3.29863876e-01 -4.15501148e-02
1.19148934e+00 7.81618878e-02 6.42330870e-02 5.12051940e-01
5.49333751e-01 7.48362839e-02 -9.07244086e-01 3.51036608e-01
1.15595147e-01 -3.81423414e-01 1.50035083e-01 -8.41763198e-01
-1.00368631e+00 9.10887361e-01 2.32090935e-01 8.03900003e-01
8.38850439e-01 -2.43932694e-01 -6.94190040e-02 5.55599511e-01
8.96246433e-02 -4.70957190e-01 2.97301710e-01 5.93586527e-02
9.24306214e-01 -1.33486140e+00 3.34627271e-01 -6.18553460e-01
-5.58693171e-01 1.33405590e+00 6.02072239e-01 -1.14348739e-01
2.29737282e-01 -2.73080766e-01 5.70127070e-02 -5.90523005e-01
-6.97504938e-01 4.56549693e-03 6.45184338e-01 6.21885478e-01
9.08441126e-01 1.30167469e-01 -4.50366557e-01 7.19964564e-01
-6.77775979e-01 -1.82494745e-01 1.13669038e+00 2.21587151e-01
-3.12602729e-01 -8.89252365e-01 -3.54870856e-01 3.45850050e-01
-1.21073708e-01 -1.55311033e-01 -9.04322624e-01 1.25359273e+00
-4.11372721e-01 1.24937844e+00 -3.75487059e-01 -4.40655828e-01
3.49600047e-01 1.28337562e-01 3.13522369e-01 -4.60473806e-01
-7.41267145e-01 -6.60426915e-01 2.50045359e-01 -5.82149327e-01
-4.95170444e-01 -3.53798062e-01 -1.25324404e+00 -5.79168439e-01
-6.40984714e-01 4.03237283e-01 5.47409713e-01 1.12428045e+00
1.80676311e-01 7.70848155e-01 1.56654462e-01 -3.71530414e-01
-5.45179009e-01 -9.53937292e-01 -3.18722248e-01 4.69737232e-01
2.00732186e-01 -1.05818820e+00 -9.00173426e-01 -4.22230512e-01] | [8.611167907714844, 5.94423246383667] |