File size: 3,763 Bytes
f96fdbf
 
 
704bbc9
 
 
f96fdbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704bbc9
f96fdbf
704bbc9
 
 
 
 
f96fdbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704bbc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96fdbf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
license: mit
base_model: haryoaw/scenario-TCR-NER_data-univner_en
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: scenario-kd-po-ner-full_data-univner_full66
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-po-ner-full_data-univner_full66

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5267
- Precision: 0.7744
- Recall: 0.7391
- F1: 0.7564
- Accuracy: 0.9807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.8089        | 1.2755  | 500   | 0.7185          | 0.7338    | 0.6791 | 0.7054 | 0.9767   |
| 0.4626        | 2.5510  | 1000  | 0.6447          | 0.7127    | 0.7319 | 0.7222 | 0.9787   |
| 0.3791        | 3.8265  | 1500  | 0.5975          | 0.7349    | 0.7288 | 0.7318 | 0.9794   |
| 0.3262        | 5.1020  | 2000  | 0.5889          | 0.7447    | 0.7277 | 0.7361 | 0.9797   |
| 0.2868        | 6.3776  | 2500  | 0.5714          | 0.7427    | 0.7381 | 0.7404 | 0.9799   |
| 0.2587        | 7.6531  | 3000  | 0.5688          | 0.7703    | 0.7257 | 0.7473 | 0.9807   |
| 0.2389        | 8.9286  | 3500  | 0.5610          | 0.7338    | 0.7246 | 0.7292 | 0.9791   |
| 0.2211        | 10.2041 | 4000  | 0.5571          | 0.7719    | 0.7495 | 0.7605 | 0.9800   |
| 0.2022        | 11.4796 | 4500  | 0.5692          | 0.776     | 0.7029 | 0.7376 | 0.9799   |
| 0.1903        | 12.7551 | 5000  | 0.5554          | 0.7711    | 0.7360 | 0.7532 | 0.9804   |
| 0.179         | 14.0306 | 5500  | 0.5411          | 0.7574    | 0.7371 | 0.7471 | 0.9803   |
| 0.1688        | 15.3061 | 6000  | 0.5353          | 0.7602    | 0.7516 | 0.7559 | 0.9804   |
| 0.1608        | 16.5816 | 6500  | 0.5383          | 0.7748    | 0.7267 | 0.75   | 0.9802   |
| 0.1552        | 17.8571 | 7000  | 0.5223          | 0.7716    | 0.7381 | 0.7545 | 0.9800   |
| 0.1489        | 19.1327 | 7500  | 0.5300          | 0.7721    | 0.7329 | 0.7520 | 0.9801   |
| 0.1439        | 20.4082 | 8000  | 0.5321          | 0.7634    | 0.7246 | 0.7435 | 0.9797   |
| 0.1391        | 21.6837 | 8500  | 0.5204          | 0.7798    | 0.7443 | 0.7617 | 0.9805   |
| 0.1351        | 22.9592 | 9000  | 0.5251          | 0.7489    | 0.7350 | 0.7419 | 0.9800   |
| 0.131         | 24.2347 | 9500  | 0.5164          | 0.7664    | 0.7505 | 0.7584 | 0.9808   |
| 0.1291        | 25.5102 | 10000 | 0.5216          | 0.7614    | 0.7236 | 0.7420 | 0.9798   |
| 0.1276        | 26.7857 | 10500 | 0.5257          | 0.7739    | 0.7371 | 0.7550 | 0.9804   |
| 0.1251        | 28.0612 | 11000 | 0.5156          | 0.7692    | 0.7453 | 0.7571 | 0.9808   |
| 0.1241        | 29.3367 | 11500 | 0.5267          | 0.7744    | 0.7391 | 0.7564 | 0.9807   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1