haryoaw's picture
Initial Commit
7bcac92 verified
|
raw
history blame
6.39 kB
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: scenario-kd-pre-ner-full_data-univner_full44
    results: []

scenario-kd-pre-ner-full_data-univner_full44

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4381
  • Precision: 0.8004
  • Recall: 0.7801
  • F1: 0.7902
  • Accuracy: 0.9786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.4593 0.5828 500 0.8367 0.6935 0.6559 0.6742 0.9682
0.7232 1.1655 1000 0.7569 0.7339 0.6980 0.7155 0.9724
0.594 1.7483 1500 0.6330 0.7335 0.7451 0.7392 0.9741
0.4986 2.3310 2000 0.6003 0.7291 0.7552 0.7419 0.9746
0.446 2.9138 2500 0.5729 0.7403 0.7601 0.7501 0.9747
0.385 3.4965 3000 0.5584 0.7441 0.7617 0.7528 0.9757
0.3605 4.0793 3500 0.5602 0.7615 0.7575 0.7595 0.9758
0.3172 4.6620 4000 0.5417 0.7546 0.7725 0.7634 0.9764
0.3061 5.2448 4500 0.5329 0.7884 0.7485 0.7680 0.9769
0.2856 5.8275 5000 0.5194 0.7837 0.7618 0.7726 0.9769
0.2642 6.4103 5500 0.5154 0.7622 0.7780 0.7700 0.9765
0.2592 6.9930 6000 0.5193 0.7882 0.7572 0.7724 0.9764
0.2401 7.5758 6500 0.5123 0.7727 0.7599 0.7663 0.9763
0.2344 8.1585 7000 0.4987 0.7742 0.7736 0.7739 0.9771
0.2234 8.7413 7500 0.4914 0.7894 0.7640 0.7764 0.9777
0.2131 9.3240 8000 0.4856 0.7691 0.7827 0.7758 0.9770
0.2089 9.9068 8500 0.4898 0.7895 0.7655 0.7773 0.9773
0.1972 10.4895 9000 0.4860 0.7828 0.7726 0.7777 0.9775
0.1942 11.0723 9500 0.4787 0.7807 0.7807 0.7807 0.9776
0.1854 11.6550 10000 0.4858 0.7916 0.7635 0.7773 0.9771
0.183 12.2378 10500 0.4739 0.7924 0.7800 0.7862 0.9779
0.1781 12.8205 11000 0.4741 0.7990 0.7661 0.7822 0.9779
0.1704 13.4033 11500 0.4622 0.7937 0.7719 0.7826 0.9784
0.1698 13.9860 12000 0.4650 0.8000 0.7657 0.7825 0.9777
0.1635 14.5688 12500 0.4604 0.7913 0.7778 0.7845 0.9782
0.1605 15.1515 13000 0.4656 0.7990 0.7605 0.7793 0.9774
0.1559 15.7343 13500 0.4638 0.8001 0.7658 0.7826 0.9778
0.1531 16.3170 14000 0.4550 0.7991 0.7735 0.7861 0.9780
0.1519 16.8998 14500 0.4606 0.7949 0.7735 0.7841 0.9780
0.1482 17.4825 15000 0.4483 0.7947 0.7831 0.7889 0.9787
0.1449 18.0653 15500 0.4521 0.7947 0.7722 0.7833 0.9780
0.1407 18.6480 16000 0.4508 0.7932 0.7728 0.7829 0.9780
0.1415 19.2308 16500 0.4484 0.8031 0.7728 0.7876 0.9785
0.1385 19.8135 17000 0.4461 0.7991 0.7774 0.7881 0.9785
0.1358 20.3963 17500 0.4488 0.7970 0.7756 0.7862 0.9783
0.1358 20.9790 18000 0.4431 0.8006 0.7772 0.7887 0.9787
0.1325 21.5618 18500 0.4395 0.8053 0.7768 0.7908 0.9785
0.1322 22.1445 19000 0.4461 0.7960 0.7725 0.7841 0.9780
0.1296 22.7273 19500 0.4401 0.7988 0.7746 0.7866 0.9781
0.1288 23.3100 20000 0.4416 0.7961 0.7690 0.7823 0.9781
0.1271 23.8928 20500 0.4450 0.8024 0.7673 0.7844 0.9781
0.1246 24.4755 21000 0.4403 0.7967 0.7703 0.7833 0.9782
0.1254 25.0583 21500 0.4403 0.7976 0.7742 0.7857 0.9782
0.1231 25.6410 22000 0.4438 0.8057 0.7694 0.7872 0.9783
0.1228 26.2238 22500 0.4365 0.8058 0.7741 0.7896 0.9785
0.1224 26.8065 23000 0.4325 0.7995 0.7806 0.7899 0.9787
0.1211 27.3893 23500 0.4402 0.8058 0.7676 0.7862 0.9782
0.1202 27.9720 24000 0.4378 0.8017 0.7689 0.7849 0.9784
0.1201 28.5548 24500 0.4331 0.8000 0.7784 0.7890 0.9786
0.12 29.1375 25000 0.4317 0.7999 0.7794 0.7895 0.9787
0.1194 29.7203 25500 0.4381 0.8004 0.7801 0.7902 0.9786

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1