|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: scenario-kd-pre-ner-full_data-univner_full44 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-kd-pre-ner-full_data-univner_full44 |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4381 |
|
- Precision: 0.8004 |
|
- Recall: 0.7801 |
|
- F1: 0.7902 |
|
- Accuracy: 0.9786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 44 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.4593 | 0.5828 | 500 | 0.8367 | 0.6935 | 0.6559 | 0.6742 | 0.9682 | |
|
| 0.7232 | 1.1655 | 1000 | 0.7569 | 0.7339 | 0.6980 | 0.7155 | 0.9724 | |
|
| 0.594 | 1.7483 | 1500 | 0.6330 | 0.7335 | 0.7451 | 0.7392 | 0.9741 | |
|
| 0.4986 | 2.3310 | 2000 | 0.6003 | 0.7291 | 0.7552 | 0.7419 | 0.9746 | |
|
| 0.446 | 2.9138 | 2500 | 0.5729 | 0.7403 | 0.7601 | 0.7501 | 0.9747 | |
|
| 0.385 | 3.4965 | 3000 | 0.5584 | 0.7441 | 0.7617 | 0.7528 | 0.9757 | |
|
| 0.3605 | 4.0793 | 3500 | 0.5602 | 0.7615 | 0.7575 | 0.7595 | 0.9758 | |
|
| 0.3172 | 4.6620 | 4000 | 0.5417 | 0.7546 | 0.7725 | 0.7634 | 0.9764 | |
|
| 0.3061 | 5.2448 | 4500 | 0.5329 | 0.7884 | 0.7485 | 0.7680 | 0.9769 | |
|
| 0.2856 | 5.8275 | 5000 | 0.5194 | 0.7837 | 0.7618 | 0.7726 | 0.9769 | |
|
| 0.2642 | 6.4103 | 5500 | 0.5154 | 0.7622 | 0.7780 | 0.7700 | 0.9765 | |
|
| 0.2592 | 6.9930 | 6000 | 0.5193 | 0.7882 | 0.7572 | 0.7724 | 0.9764 | |
|
| 0.2401 | 7.5758 | 6500 | 0.5123 | 0.7727 | 0.7599 | 0.7663 | 0.9763 | |
|
| 0.2344 | 8.1585 | 7000 | 0.4987 | 0.7742 | 0.7736 | 0.7739 | 0.9771 | |
|
| 0.2234 | 8.7413 | 7500 | 0.4914 | 0.7894 | 0.7640 | 0.7764 | 0.9777 | |
|
| 0.2131 | 9.3240 | 8000 | 0.4856 | 0.7691 | 0.7827 | 0.7758 | 0.9770 | |
|
| 0.2089 | 9.9068 | 8500 | 0.4898 | 0.7895 | 0.7655 | 0.7773 | 0.9773 | |
|
| 0.1972 | 10.4895 | 9000 | 0.4860 | 0.7828 | 0.7726 | 0.7777 | 0.9775 | |
|
| 0.1942 | 11.0723 | 9500 | 0.4787 | 0.7807 | 0.7807 | 0.7807 | 0.9776 | |
|
| 0.1854 | 11.6550 | 10000 | 0.4858 | 0.7916 | 0.7635 | 0.7773 | 0.9771 | |
|
| 0.183 | 12.2378 | 10500 | 0.4739 | 0.7924 | 0.7800 | 0.7862 | 0.9779 | |
|
| 0.1781 | 12.8205 | 11000 | 0.4741 | 0.7990 | 0.7661 | 0.7822 | 0.9779 | |
|
| 0.1704 | 13.4033 | 11500 | 0.4622 | 0.7937 | 0.7719 | 0.7826 | 0.9784 | |
|
| 0.1698 | 13.9860 | 12000 | 0.4650 | 0.8000 | 0.7657 | 0.7825 | 0.9777 | |
|
| 0.1635 | 14.5688 | 12500 | 0.4604 | 0.7913 | 0.7778 | 0.7845 | 0.9782 | |
|
| 0.1605 | 15.1515 | 13000 | 0.4656 | 0.7990 | 0.7605 | 0.7793 | 0.9774 | |
|
| 0.1559 | 15.7343 | 13500 | 0.4638 | 0.8001 | 0.7658 | 0.7826 | 0.9778 | |
|
| 0.1531 | 16.3170 | 14000 | 0.4550 | 0.7991 | 0.7735 | 0.7861 | 0.9780 | |
|
| 0.1519 | 16.8998 | 14500 | 0.4606 | 0.7949 | 0.7735 | 0.7841 | 0.9780 | |
|
| 0.1482 | 17.4825 | 15000 | 0.4483 | 0.7947 | 0.7831 | 0.7889 | 0.9787 | |
|
| 0.1449 | 18.0653 | 15500 | 0.4521 | 0.7947 | 0.7722 | 0.7833 | 0.9780 | |
|
| 0.1407 | 18.6480 | 16000 | 0.4508 | 0.7932 | 0.7728 | 0.7829 | 0.9780 | |
|
| 0.1415 | 19.2308 | 16500 | 0.4484 | 0.8031 | 0.7728 | 0.7876 | 0.9785 | |
|
| 0.1385 | 19.8135 | 17000 | 0.4461 | 0.7991 | 0.7774 | 0.7881 | 0.9785 | |
|
| 0.1358 | 20.3963 | 17500 | 0.4488 | 0.7970 | 0.7756 | 0.7862 | 0.9783 | |
|
| 0.1358 | 20.9790 | 18000 | 0.4431 | 0.8006 | 0.7772 | 0.7887 | 0.9787 | |
|
| 0.1325 | 21.5618 | 18500 | 0.4395 | 0.8053 | 0.7768 | 0.7908 | 0.9785 | |
|
| 0.1322 | 22.1445 | 19000 | 0.4461 | 0.7960 | 0.7725 | 0.7841 | 0.9780 | |
|
| 0.1296 | 22.7273 | 19500 | 0.4401 | 0.7988 | 0.7746 | 0.7866 | 0.9781 | |
|
| 0.1288 | 23.3100 | 20000 | 0.4416 | 0.7961 | 0.7690 | 0.7823 | 0.9781 | |
|
| 0.1271 | 23.8928 | 20500 | 0.4450 | 0.8024 | 0.7673 | 0.7844 | 0.9781 | |
|
| 0.1246 | 24.4755 | 21000 | 0.4403 | 0.7967 | 0.7703 | 0.7833 | 0.9782 | |
|
| 0.1254 | 25.0583 | 21500 | 0.4403 | 0.7976 | 0.7742 | 0.7857 | 0.9782 | |
|
| 0.1231 | 25.6410 | 22000 | 0.4438 | 0.8057 | 0.7694 | 0.7872 | 0.9783 | |
|
| 0.1228 | 26.2238 | 22500 | 0.4365 | 0.8058 | 0.7741 | 0.7896 | 0.9785 | |
|
| 0.1224 | 26.8065 | 23000 | 0.4325 | 0.7995 | 0.7806 | 0.7899 | 0.9787 | |
|
| 0.1211 | 27.3893 | 23500 | 0.4402 | 0.8058 | 0.7676 | 0.7862 | 0.9782 | |
|
| 0.1202 | 27.9720 | 24000 | 0.4378 | 0.8017 | 0.7689 | 0.7849 | 0.9784 | |
|
| 0.1201 | 28.5548 | 24500 | 0.4331 | 0.8000 | 0.7784 | 0.7890 | 0.9786 | |
|
| 0.12 | 29.1375 | 25000 | 0.4317 | 0.7999 | 0.7794 | 0.7895 | 0.9787 | |
|
| 0.1194 | 29.7203 | 25500 | 0.4381 | 0.8004 | 0.7801 | 0.7902 | 0.9786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.19.1 |
|
|