|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: xls-r-fleurs_nl-run3 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.42659804983748645 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-fleurs_nl-run3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5523 |
|
- Wer: 0.4266 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 3 |
|
- total_train_batch_size: 12 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 7.768 | 0.41 | 100 | 3.9649 | 1.0 | |
|
| 3.2646 | 0.82 | 200 | 2.9551 | 1.0 | |
|
| 2.9217 | 1.23 | 300 | 2.9128 | 1.0 | |
|
| 2.9064 | 1.64 | 400 | 2.9067 | 1.0 | |
|
| 2.6775 | 2.05 | 500 | 1.5774 | 0.9177 | |
|
| 1.1026 | 2.47 | 600 | 0.8813 | 0.7216 | |
|
| 0.6905 | 2.88 | 700 | 0.7287 | 0.6138 | |
|
| 0.4936 | 3.29 | 800 | 0.6156 | 0.5439 | |
|
| 0.3837 | 3.7 | 900 | 0.5608 | 0.4992 | |
|
| 0.3176 | 4.11 | 1000 | 0.5326 | 0.4542 | |
|
| 0.2391 | 4.52 | 1100 | 0.5221 | 0.4466 | |
|
| 0.2426 | 4.93 | 1200 | 0.5127 | 0.4328 | |
|
| 0.1882 | 5.34 | 1300 | 0.5311 | 0.4247 | |
|
| 0.1718 | 5.75 | 1400 | 0.5523 | 0.4266 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|