|
--- |
|
language: |
|
- lb |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper tiny LB - AKABI |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: lb_lu |
|
split: test |
|
args: lb_lu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 60.18671593892832 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper tiny LB - AKABI |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the google/fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4215 |
|
- Wer Ortho: 62.8649 |
|
- Wer: 60.1867 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 4000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.9979 | 1.37 | 250 | 1.5394 | 73.1448 | 73.3298 | |
|
| 0.6784 | 2.75 | 500 | 1.2998 | 66.9095 | 64.8060 | |
|
| 0.3773 | 4.12 | 750 | 1.2317 | 63.9250 | 61.5385 | |
|
| 0.2906 | 5.49 | 1000 | 1.2117 | 63.0759 | 60.3958 | |
|
| 0.2052 | 6.87 | 1250 | 1.2157 | 64.1913 | 62.0685 | |
|
| 0.1155 | 8.24 | 1500 | 1.2432 | 61.6791 | 59.6130 | |
|
| 0.0912 | 9.62 | 1750 | 1.2684 | 63.0056 | 60.3229 | |
|
| 0.0698 | 10.99 | 2000 | 1.2937 | 63.6788 | 60.9598 | |
|
| 0.0396 | 12.36 | 2250 | 1.3224 | 62.7996 | 60.2451 | |
|
| 0.0309 | 13.74 | 2500 | 1.3480 | 62.1514 | 59.4622 | |
|
| 0.0205 | 15.11 | 2750 | 1.3696 | 62.1715 | 59.5303 | |
|
| 0.017 | 16.48 | 3000 | 1.3895 | 62.0761 | 59.8074 | |
|
| 0.0151 | 17.86 | 3250 | 1.4016 | 62.7745 | 60.0360 | |
|
| 0.0125 | 19.23 | 3500 | 1.4126 | 62.8900 | 60.5952 | |
|
| 0.012 | 20.6 | 3750 | 1.4202 | 63.0709 | 60.3909 | |
|
| 0.0115 | 21.98 | 4000 | 1.4215 | 62.8649 | 60.1867 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|