ritutweets46's picture
End of training
e0bffe9 verified
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - doc_lay_net-small
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Layoutlmv3-finetuned-DocLayNet-test
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: doc_lay_net-small
          type: doc_lay_net-small
          config: DocLayNet_2022.08_processed_on_2023.01
          split: test
          args: DocLayNet_2022.08_processed_on_2023.01
        metrics:
          - name: Precision
            type: precision
            value: 0.6647646219686163
          - name: Recall
            type: recall
            value: 0.6763425253991292
          - name: F1
            type: f1
            value: 0.6705035971223021
          - name: Accuracy
            type: accuracy
            value: 0.8582839474362278

Layoutlmv3-finetuned-DocLayNet-test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the doc_lay_net-small dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8293
  • Precision: 0.6648
  • Recall: 0.6763
  • F1: 0.6705
  • Accuracy: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.5039 0.3660 250 1.1856 0.1597 0.2785 0.2030 0.5852
0.8176 0.7321 500 0.6027 0.4143 0.5506 0.4728 0.8651
0.5533 1.0981 750 0.6755 0.5946 0.6266 0.6102 0.8649
0.4021 1.4641 1000 0.6233 0.6017 0.6646 0.6316 0.8804

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1