|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- doc_lay_net-small |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Layoutlmv3-finetuned-DocLayNet-test |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: doc_lay_net-small |
|
type: doc_lay_net-small |
|
config: DocLayNet_2022.08_processed_on_2023.01 |
|
split: test |
|
args: DocLayNet_2022.08_processed_on_2023.01 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6647646219686163 |
|
- name: Recall |
|
type: recall |
|
value: 0.6763425253991292 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6705035971223021 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8582839474362278 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Layoutlmv3-finetuned-DocLayNet-test |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8293 |
|
- Precision: 0.6648 |
|
- Recall: 0.6763 |
|
- F1: 0.6705 |
|
- Accuracy: 0.8583 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.5039 | 0.3660 | 250 | 1.1856 | 0.1597 | 0.2785 | 0.2030 | 0.5852 | |
|
| 0.8176 | 0.7321 | 500 | 0.6027 | 0.4143 | 0.5506 | 0.4728 | 0.8651 | |
|
| 0.5533 | 1.0981 | 750 | 0.6755 | 0.5946 | 0.6266 | 0.6102 | 0.8649 | |
|
| 0.4021 | 1.4641 | 1000 | 0.6233 | 0.6017 | 0.6646 | 0.6316 | 0.8804 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|