File size: 19,728 Bytes
99220ed
 
 
 
6b21734
 
 
 
 
767d463
9c6fa4d
225bf42
 
99220ed
297bd17
068e84d
 
2070fbb
9dee841
 
84c3fd4
 
 
 
ccdfbe8
84c3fd4
e0e7fd6
 
5fde50b
9dee841
 
 
 
f7dcaaa
e0e7fd6
 
 
9dee841
99220ed
225bf42
 
 
 
5fde50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c3fd4
2070fbb
767d463
f7dcaaa
0ba53c8
 
 
 
84c3fd4
 
 
 
 
 
 
 
 
 
 
 
 
ccdfbe8
 
84c3fd4
 
 
ccdfbe8
e0e7fd6
 
 
 
 
 
 
 
 
84c3fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e7fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b21734
9dee841
 
 
 
 
 
 
 
 
 
6b21734
 
 
 
9dee841
6b21734
 
9dee841
6b21734
 
 
 
9dee841
 
6b21734
 
 
 
99220ed
2070fbb
 
 
 
 
 
27b0b20
2070fbb
 
 
 
27b0b20
2070fbb
068e84d
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e7fd6
 
 
 
 
 
 
 
 
 
 
2070fbb
 
068e84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e7fd6
068e84d
 
 
 
 
 
 
 
27b0b20
 
 
 
e0e7fd6
27b0b20
 
 
 
 
 
 
 
 
 
 
 
 
 
6b21734
a88e67a
225bf42
 
 
 
 
6b21734
 
a88e67a
99220ed
 
6b21734
99220ed
 
 
6b21734
 
84c3fd4
 
 
 
56c280b
6b21734
 
 
 
 
 
 
84c3fd4
 
 
 
 
 
6b21734
 
84c3fd4
6b21734
9dee841
 
 
 
 
 
 
 
 
 
 
 
 
84c3fd4
 
 
 
 
 
 
 
 
 
ccdfbe8
 
 
84c3fd4
 
 
 
ccdfbe8
 
84c3fd4
 
ccdfbe8
84c3fd4
 
 
 
5fde50b
 
84c3fd4
 
 
 
 
 
 
e0e7fd6
84c3fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e7fd6
 
 
 
 
 
 
 
 
 
84c3fd4
 
5fde50b
 
e0e7fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fde50b
 
 
 
e0e7fd6
 
5fde50b
 
84c3fd4
5fde50b
 
84c3fd4
 
 
 
068e84d
9dee841
84c3fd4
9dee841
84c3fd4
9dee841
 
84c3fd4
9dee841
 
84c3fd4
9dee841
 
84c3fd4
5fde50b
 
 
 
 
84c3fd4
 
 
 
 
 
 
 
d401faa
0ba53c8
6b21734
5fde50b
 
a88e67a
84c3fd4
 
6b21734
84c3fd4
 
3982c1e
84c3fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
nltk.download('wordnet')
from nltk.corpus import wordnet
import random
import sense2vec
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import json
import os
from sentence_transformers import SentenceTransformer, util
import textstat
from spellchecker import SpellChecker
from transformers import pipeline
import re
import pymupdf
import uuid
print("***************************************************************")

st.set_page_config(
    page_title="Question Generator",
    initial_sidebar_state="auto",
    menu_items={
        "About" : "#Hi this our project."
    }
)

# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')

def get_session_id():
    if 'session_id' not in st.session_state:
        st.session_state.session_id = str(uuid.uuid4())
    return st.session_state.session_id

def initialize_state(session_id):
    if 'session_states' not in st.session_state:
        st.session_state.session_states = {}

    if session_id not in st.session_state.session_states:
        st.session_state.session_states[session_id] = {
            'generated_questions': [],
            # add other state variables as needed
        }
    return st.session_state.session_states[session_id]

def get_state(session_id):
    return st.session_state.session_states[session_id]

def set_state(session_id, key, value):
    st.session_state.session_states[session_id][key] = value

@st.cache_resource
def load_model():
    model_name = "DevBM/t5-large-squad"
    model = T5ForConditionalGeneration.from_pretrained(model_name)
    tokenizer = T5Tokenizer.from_pretrained(model_name)
    return model, tokenizer

# Load Spacy Model
@st.cache_resource
def load_nlp_models():
    nlp = spacy.load("en_core_web_md")
    s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
    return nlp, s2v

# Load Quality Assurance Models
@st.cache_resource
def load_qa_models():
    # Initialize BERT model for sentence similarity
    similarity_model = SentenceTransformer('all-MiniLM-L6-v2')

    spell = SpellChecker()
    return similarity_model, spell

nlp, s2v = load_nlp_models()
model, tokenizer = load_model()
similarity_model, spell = load_qa_models()
context_model = similarity_model

def get_pdf_text(pdf_file):
    doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
    text = ""
    for page_num in range(doc.page_count):
        page = doc.load_page(page_num)
        text += page.get_text()
    return text
def save_feedback(question, answer,rating):
    feedback_file = 'question_feedback.json'
    if os.path.exists(feedback_file):
        with open(feedback_file, 'r') as f:
            feedback_data = json.load(f)
    else:
        feedback_data = []
    tpl = {
        'question' : question,
        'answer' : answer,
        'rating' : rating,
    }
    # feedback_data[question] = rating
    feedback_data.append(tpl)
    
    with open(feedback_file, 'w') as f:
        json.dump(feedback_data, f)


# Function to clean text
def clean_text(text):
    text = re.sub(r"[^\x00-\x7F]", " ", text)
    return text

# Function to create text chunks
def segment_text(text, max_segment_length=1000):
    """Segment the text into smaller chunks."""
    sentences = sent_tokenize(text)
    segments = []
    current_segment = ""
    
    for sentence in sentences:
        if len(current_segment) + len(sentence) <= max_segment_length:
            current_segment += sentence + " "
        else:
            segments.append(current_segment.strip())
            current_segment = sentence + " "
    
    if current_segment:
        segments.append(current_segment.strip())
    print(f"\n\nSegement Chunks: {segments}\n\n")
    return segments

# Function to extract keywords using combined techniques
def extract_keywords(text, extract_all):
    doc = nlp(text)
    spacy_keywords = set([ent.text for ent in doc.ents])
    spacy_entities = spacy_keywords
    print(f"\n\nSpacy Entities: {spacy_entities} \n\n")  

    # Use Only Spacy Entities
    if extract_all is False:
        return list(spacy_entities) 
    
    # Use RAKE
    rake = Rake()
    rake.extract_keywords_from_text(text)
    rake_keywords = set(rake.get_ranked_phrases())
    print(f"\n\nRake Keywords: {rake_keywords} \n\n")
    # Use spaCy for NER and POS tagging
    spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
    print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
    # Use TF-IDF
    vectorizer = TfidfVectorizer(stop_words='english')
    X = vectorizer.fit_transform([text])
    tfidf_keywords = set(vectorizer.get_feature_names_out())
    print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")

    # Combine all keywords
    combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
    
    return list(combined_keywords)

def get_similar_words_sense2vec(word, n=3):
    # Try to find the word with its most likely part-of-speech
    word_with_pos = word + "|NOUN"
    if word_with_pos in s2v:
        similar_words = s2v.most_similar(word_with_pos, n=n)
        return [word.split("|")[0] for word, _ in similar_words]
    
    # If not found, try without POS
    if word in s2v:
        similar_words = s2v.most_similar(word, n=n)
        return [word.split("|")[0] for word, _ in similar_words]
    
    return []

def get_synonyms(word, n=3):
    synonyms = []
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            if lemma.name() != word and lemma.name() not in synonyms:
                synonyms.append(lemma.name())
                if len(synonyms) == n:
                    return synonyms
    return synonyms

def generate_options(answer, context, n=3):
    options = [answer]
    

    # Add contextually relevant words using a pre-trained model
    context_embedding = context_model.encode(context)
    answer_embedding = context_model.encode(answer)
    context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]

    # Compute similarity scores and sort context words
    similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
    sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
    options.extend(sorted_context_words[:n])

    # Try to get similar words based on sense2vec
    similar_words = get_similar_words_sense2vec(answer, n)
    options.extend(similar_words)
    
    # If we don't have enough options, try synonyms
    if len(options) < n + 1:
        synonyms = get_synonyms(answer, n - len(options) + 1)
        options.extend(synonyms)
    
    # If we still don't have enough options, extract other entities from the context
    if len(options) < n + 1:
        doc = nlp(context)
        entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
        options.extend(entities[:n - len(options) + 1])
    
    # If we still need more options, add some random words from the context
    if len(options) < n + 1:
        context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
        options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
    print(f"\n\nAll Possible Options: {options}\n\n")    
    # Ensure we have the correct number of unique options
    options = list(dict.fromkeys(options))[:n+1]
    
    # Shuffle the options
    random.shuffle(options)
    
    return options

# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
    sentences = sent_tokenize(text)
    keyword_sentence_mapping = {}
    print(f"\n\nSentences: {sentences}\n\n")
    for keyword in keywords:
        for i, sentence in enumerate(sentences):
            if keyword in sentence:
                # Combine current sentence with surrounding sentences for context
                start = max(0, i - context_window_size)
                end = min(len(sentences), i + context_window_size + 1)
                context = ' '.join(sentences[start:end])
                if keyword not in keyword_sentence_mapping:
                    keyword_sentence_mapping[keyword] = context
                else:
                    keyword_sentence_mapping[keyword] += ' ' + context
    return keyword_sentence_mapping


# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
    page = wiki_wiki.page(keyword)
    if page.exists():
        return page.fullurl
    return None

# Function to generate questions using beam search
def generate_question(context, answer, num_beams):
    input_text = f"<context> {context} <answer> {answer}"
    input_ids = tokenizer.encode(input_text, return_tensors='pt')
    outputs = model.generate(input_ids, num_beams=num_beams, early_stopping=True)
    question = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return question

# Function to export questions to CSV
def export_to_csv(data):
    # df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
    df = pd.DataFrame(data)
    # csv = df.to_csv(index=False,encoding='utf-8')
    csv = df.to_csv(index=False)
    return csv

# Function to export questions to PDF
def export_to_pdf(data):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    
    for item in data:
        pdf.multi_cell(0, 10, f"Context: {item['context']}")
        pdf.multi_cell(0, 10, f"Question: {item['question']}")
        pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
        pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
        pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
        pdf.ln(10)
    
    return pdf.output(dest='S').encode('latin-1')

def display_word_cloud(generated_questions):
    word_frequency = {}
    for question in generated_questions:
        words = question.split()
        for word in words:
            word_frequency[word] = word_frequency.get(word, 0) + 1

    wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    st.pyplot()


def assess_question_quality(context, question, answer):
    # Assess relevance using cosine similarity
    context_doc = nlp(context)
    question_doc = nlp(question)
    relevance_score = context_doc.similarity(question_doc)

    # Assess complexity using token length (as a simple metric)
    complexity_score = min(len(question_doc) / 20, 1)  # Normalize to 0-1

    # Assess Spelling correctness
    misspelled = spell.unknown(question.split())
    spelling_correctness = 1 - (len(misspelled) / len(question.split()))  # Normalize to 0-1

    # Calculate overall score (you can adjust weights as needed)
    overall_score = (
        0.4 * relevance_score +
        0.4 * complexity_score +
        0.2 * spelling_correctness
    )

    return overall_score, relevance_score, complexity_score, spelling_correctness

def main():
    # Streamlit interface
    st.title(":blue[Question Generator System]")
    session_id = get_session_id()
    state = initialize_state(session_id)
    # Initialize session state
    if 'generated_questions' not in st.session_state:
        st.session_state.generated_questions = []

    with st.sidebar:
        st.subheader("Customization Options")
        # Customization options
        input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
        num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
        context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
        num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
        with st.expander("Choose the Additional Elements to show"):
            show_context = st.checkbox("Context",True)
            show_answer = st.checkbox("Answer",True)
            show_options = st.checkbox("Options",False)
            show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
            show_qa_scores = st.checkbox("QA Score",False)
        col1, col2 = st.columns(2)
        with col1:
            extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
        with col2:
            enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
    text = None
    if input_type == "Text Input":
        text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
    elif input_type == "Upload PDF":
        file = st.file_uploader("Upload PDF Files")
        if file is not None:
            text = get_pdf_text(file)
    if text:
        text = clean_text(text)
        segments = segment_text(text)
    generate_questions_button = st.button("Generate Questions")
    if generate_questions_button and text:
        state['generated_questions'] = []
        # st.session_state.generated_questions = []
        for text in segments:
            keywords = extract_keywords(text, extract_all_keywords)
            print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
            keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
            for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
                if i >= num_questions:
                    break
                question = generate_question(context, keyword, num_beams=num_beams)
                options = generate_options(keyword,context)
                overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
                if overall_score < 0.5:
                    continue
                tpl = {
                    "question" : question,
                    "context" : context,
                    "answer" : keyword,
                    "options" : options,
                    "overall_score" : overall_score,
                    "relevance_score" : relevance_score,
                    "complexity_score" : complexity_score,
                    "spelling_correctness" : spelling_correctness,
                }
                # st.session_state.generated_questions.append(tpl)
                state['generated_questions'].append(tpl)
     
        set_state(session_id, 'generated_questions', state['generated_questions'])
    
    # sort question based on their quality score
    # st.session_state.generated_questions = sorted(st.session_state.generated_questions,key = lambda x: x['overall_score'], reverse=True)
    state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
    # Display generated questions
    # if st.session_state.generated_questions:
    if state['generated_questions']:
        st.header("Generated Questions:",divider='blue')
        for i, q in enumerate(st.session_state.generated_questions):
            # with st.expander(f"Question {i+1}"):
            st.subheader(body=f":orange[Q{i+1}:] {q['question']}")

            if show_context is True:
                st.write(f"**Context:** {q['context']}")
            if show_answer is True:
                st.write(f"**Answer:** {q['answer']}")
            if show_options is True:
                st.write(f"**Options:**")
                for j, option in enumerate(q['options']):
                    st.write(f"{chr(65+j)}. {option}")
            if show_entity_link is True:
                linked_entity = entity_linking(q['answer'])
                if linked_entity:
                    st.write(f"**Entity Link:** {linked_entity}")
            if show_qa_scores is True:
                m1,m2,m3,m4 = st.columns([1.7,1,1,1])
                m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
                m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
                m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
                m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")

            # q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
            if enable_feedback_mode:
                q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
                q['rating'] = st.selectbox(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
                if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
                    save_feedback(q['question'], q['answer'], q['rating'])
                    st.success(f"Feedback submitted for Question {i+1}")
            st.write("---")

        # Export buttons
        # if st.session_state.generated_questions:
        if state['generated_questions']:
            with st.sidebar:
                csv_data = export_to_csv(st.session_state.generated_questions)
                st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')

                pdf_data = export_to_pdf(st.session_state.generated_questions)
                st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')

        # View Feedback Statistics
        with st.expander("View Feedback Statistics"):
            feedback_file = 'question_feedback.json'
            if os.path.exists(feedback_file):
                with open(feedback_file, 'r') as f:
                    feedback_data = json.load(f)
                
                st.subheader("Feedback Statistics")
                
                # Calculate average rating
                ratings = [feedback['rating'] for feedback in feedback_data]
                avg_rating = sum(ratings) / len(ratings) if ratings else 0
                st.write(f"Average Question Rating: {avg_rating:.2f}")
                
                # Show distribution of ratings
                rating_counts = {i: ratings.count(i) for i in range(1, 6)}
                st.bar_chart(rating_counts)
                    
                # Show some highly rated questions
                st.subheader("Highly Rated Questions")
                sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
                top_questions = sorted_feedback[:5]
                for feedback in top_questions:
                    st.write(f"Question: {feedback['question']}")
                    st.write(f"Answer: {feedback['answer']}")
                    st.write(f"Rating: {feedback['rating']}")
                    st.write("---")
            else:
                st.write("No feedback data available yet.")

        print("********************************************************************************")

if __name__ == '__main__':
    main()