Spaces:
Running
Running
File size: 19,728 Bytes
99220ed 6b21734 767d463 9c6fa4d 225bf42 99220ed 297bd17 068e84d 2070fbb 9dee841 84c3fd4 ccdfbe8 84c3fd4 e0e7fd6 5fde50b 9dee841 f7dcaaa e0e7fd6 9dee841 99220ed 225bf42 5fde50b 84c3fd4 2070fbb 767d463 f7dcaaa 0ba53c8 84c3fd4 ccdfbe8 84c3fd4 ccdfbe8 e0e7fd6 84c3fd4 e0e7fd6 6b21734 9dee841 6b21734 9dee841 6b21734 9dee841 6b21734 9dee841 6b21734 99220ed 2070fbb 27b0b20 2070fbb 27b0b20 2070fbb 068e84d e0e7fd6 2070fbb 068e84d e0e7fd6 068e84d 27b0b20 e0e7fd6 27b0b20 6b21734 a88e67a 225bf42 6b21734 a88e67a 99220ed 6b21734 99220ed 6b21734 84c3fd4 56c280b 6b21734 84c3fd4 6b21734 84c3fd4 6b21734 9dee841 84c3fd4 ccdfbe8 84c3fd4 ccdfbe8 84c3fd4 ccdfbe8 84c3fd4 5fde50b 84c3fd4 e0e7fd6 84c3fd4 e0e7fd6 84c3fd4 5fde50b e0e7fd6 5fde50b e0e7fd6 5fde50b 84c3fd4 5fde50b 84c3fd4 068e84d 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 5fde50b 84c3fd4 d401faa 0ba53c8 6b21734 5fde50b a88e67a 84c3fd4 6b21734 84c3fd4 3982c1e 84c3fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
nltk.download('wordnet')
from nltk.corpus import wordnet
import random
import sense2vec
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import json
import os
from sentence_transformers import SentenceTransformer, util
import textstat
from spellchecker import SpellChecker
from transformers import pipeline
import re
import pymupdf
import uuid
print("***************************************************************")
st.set_page_config(
page_title="Question Generator",
initial_sidebar_state="auto",
menu_items={
"About" : "#Hi this our project."
}
)
# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
return st.session_state.session_id
def initialize_state(session_id):
if 'session_states' not in st.session_state:
st.session_state.session_states = {}
if session_id not in st.session_state.session_states:
st.session_state.session_states[session_id] = {
'generated_questions': [],
# add other state variables as needed
}
return st.session_state.session_states[session_id]
def get_state(session_id):
return st.session_state.session_states[session_id]
def set_state(session_id, key, value):
st.session_state.session_states[session_id][key] = value
@st.cache_resource
def load_model():
model_name = "DevBM/t5-large-squad"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
return model, tokenizer
# Load Spacy Model
@st.cache_resource
def load_nlp_models():
nlp = spacy.load("en_core_web_md")
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
return nlp, s2v
# Load Quality Assurance Models
@st.cache_resource
def load_qa_models():
# Initialize BERT model for sentence similarity
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
spell = SpellChecker()
return similarity_model, spell
nlp, s2v = load_nlp_models()
model, tokenizer = load_model()
similarity_model, spell = load_qa_models()
context_model = similarity_model
def get_pdf_text(pdf_file):
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text()
return text
def save_feedback(question, answer,rating):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
else:
feedback_data = []
tpl = {
'question' : question,
'answer' : answer,
'rating' : rating,
}
# feedback_data[question] = rating
feedback_data.append(tpl)
with open(feedback_file, 'w') as f:
json.dump(feedback_data, f)
# Function to clean text
def clean_text(text):
text = re.sub(r"[^\x00-\x7F]", " ", text)
return text
# Function to create text chunks
def segment_text(text, max_segment_length=1000):
"""Segment the text into smaller chunks."""
sentences = sent_tokenize(text)
segments = []
current_segment = ""
for sentence in sentences:
if len(current_segment) + len(sentence) <= max_segment_length:
current_segment += sentence + " "
else:
segments.append(current_segment.strip())
current_segment = sentence + " "
if current_segment:
segments.append(current_segment.strip())
print(f"\n\nSegement Chunks: {segments}\n\n")
return segments
# Function to extract keywords using combined techniques
def extract_keywords(text, extract_all):
doc = nlp(text)
spacy_keywords = set([ent.text for ent in doc.ents])
spacy_entities = spacy_keywords
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
# Use Only Spacy Entities
if extract_all is False:
return list(spacy_entities)
# Use RAKE
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(rake.get_ranked_phrases())
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
# Use spaCy for NER and POS tagging
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
# Use TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(vectorizer.get_feature_names_out())
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
# Combine all keywords
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
return list(combined_keywords)
def get_similar_words_sense2vec(word, n=3):
# Try to find the word with its most likely part-of-speech
word_with_pos = word + "|NOUN"
if word_with_pos in s2v:
similar_words = s2v.most_similar(word_with_pos, n=n)
return [word.split("|")[0] for word, _ in similar_words]
# If not found, try without POS
if word in s2v:
similar_words = s2v.most_similar(word, n=n)
return [word.split("|")[0] for word, _ in similar_words]
return []
def get_synonyms(word, n=3):
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and lemma.name() not in synonyms:
synonyms.append(lemma.name())
if len(synonyms) == n:
return synonyms
return synonyms
def generate_options(answer, context, n=3):
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = context_model.encode(context)
answer_embedding = context_model.encode(answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = get_similar_words_sense2vec(answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = get_synonyms(answer, n - len(options) + 1)
options.extend(synonyms)
# If we still don't have enough options, extract other entities from the context
if len(options) < n + 1:
doc = nlp(context)
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
options.extend(entities[:n - len(options) + 1])
# If we still need more options, add some random words from the context
if len(options) < n + 1:
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
print(f"\n\nAll Possible Options: {options}\n\n")
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
sentences = sent_tokenize(text)
keyword_sentence_mapping = {}
print(f"\n\nSentences: {sentences}\n\n")
for keyword in keywords:
for i, sentence in enumerate(sentences):
if keyword in sentence:
# Combine current sentence with surrounding sentences for context
start = max(0, i - context_window_size)
end = min(len(sentences), i + context_window_size + 1)
context = ' '.join(sentences[start:end])
if keyword not in keyword_sentence_mapping:
keyword_sentence_mapping[keyword] = context
else:
keyword_sentence_mapping[keyword] += ' ' + context
return keyword_sentence_mapping
# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
page = wiki_wiki.page(keyword)
if page.exists():
return page.fullurl
return None
# Function to generate questions using beam search
def generate_question(context, answer, num_beams):
input_text = f"<context> {context} <answer> {answer}"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(input_ids, num_beams=num_beams, early_stopping=True)
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
return question
# Function to export questions to CSV
def export_to_csv(data):
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
df = pd.DataFrame(data)
# csv = df.to_csv(index=False,encoding='utf-8')
csv = df.to_csv(index=False)
return csv
# Function to export questions to PDF
def export_to_pdf(data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for item in data:
pdf.multi_cell(0, 10, f"Context: {item['context']}")
pdf.multi_cell(0, 10, f"Question: {item['question']}")
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
pdf.ln(10)
return pdf.output(dest='S').encode('latin-1')
def display_word_cloud(generated_questions):
word_frequency = {}
for question in generated_questions:
words = question.split()
for word in words:
word_frequency[word] = word_frequency.get(word, 0) + 1
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
st.pyplot()
def assess_question_quality(context, question, answer):
# Assess relevance using cosine similarity
context_doc = nlp(context)
question_doc = nlp(question)
relevance_score = context_doc.similarity(question_doc)
# Assess complexity using token length (as a simple metric)
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
# Assess Spelling correctness
misspelled = spell.unknown(question.split())
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
# Calculate overall score (you can adjust weights as needed)
overall_score = (
0.4 * relevance_score +
0.4 * complexity_score +
0.2 * spelling_correctness
)
return overall_score, relevance_score, complexity_score, spelling_correctness
def main():
# Streamlit interface
st.title(":blue[Question Generator System]")
session_id = get_session_id()
state = initialize_state(session_id)
# Initialize session state
if 'generated_questions' not in st.session_state:
st.session_state.generated_questions = []
with st.sidebar:
st.subheader("Customization Options")
# Customization options
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
with st.expander("Choose the Additional Elements to show"):
show_context = st.checkbox("Context",True)
show_answer = st.checkbox("Answer",True)
show_options = st.checkbox("Options",False)
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
show_qa_scores = st.checkbox("QA Score",False)
col1, col2 = st.columns(2)
with col1:
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
with col2:
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
text = None
if input_type == "Text Input":
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
elif input_type == "Upload PDF":
file = st.file_uploader("Upload PDF Files")
if file is not None:
text = get_pdf_text(file)
if text:
text = clean_text(text)
segments = segment_text(text)
generate_questions_button = st.button("Generate Questions")
if generate_questions_button and text:
state['generated_questions'] = []
# st.session_state.generated_questions = []
for text in segments:
keywords = extract_keywords(text, extract_all_keywords)
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
if i >= num_questions:
break
question = generate_question(context, keyword, num_beams=num_beams)
options = generate_options(keyword,context)
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
if overall_score < 0.5:
continue
tpl = {
"question" : question,
"context" : context,
"answer" : keyword,
"options" : options,
"overall_score" : overall_score,
"relevance_score" : relevance_score,
"complexity_score" : complexity_score,
"spelling_correctness" : spelling_correctness,
}
# st.session_state.generated_questions.append(tpl)
state['generated_questions'].append(tpl)
set_state(session_id, 'generated_questions', state['generated_questions'])
# sort question based on their quality score
# st.session_state.generated_questions = sorted(st.session_state.generated_questions,key = lambda x: x['overall_score'], reverse=True)
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
# Display generated questions
# if st.session_state.generated_questions:
if state['generated_questions']:
st.header("Generated Questions:",divider='blue')
for i, q in enumerate(st.session_state.generated_questions):
# with st.expander(f"Question {i+1}"):
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
if show_context is True:
st.write(f"**Context:** {q['context']}")
if show_answer is True:
st.write(f"**Answer:** {q['answer']}")
if show_options is True:
st.write(f"**Options:**")
for j, option in enumerate(q['options']):
st.write(f"{chr(65+j)}. {option}")
if show_entity_link is True:
linked_entity = entity_linking(q['answer'])
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
if show_qa_scores is True:
m1,m2,m3,m4 = st.columns([1.7,1,1,1])
m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
if enable_feedback_mode:
q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
q['rating'] = st.selectbox(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
save_feedback(q['question'], q['answer'], q['rating'])
st.success(f"Feedback submitted for Question {i+1}")
st.write("---")
# Export buttons
# if st.session_state.generated_questions:
if state['generated_questions']:
with st.sidebar:
csv_data = export_to_csv(st.session_state.generated_questions)
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
pdf_data = export_to_pdf(st.session_state.generated_questions)
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
# View Feedback Statistics
with st.expander("View Feedback Statistics"):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
st.subheader("Feedback Statistics")
# Calculate average rating
ratings = [feedback['rating'] for feedback in feedback_data]
avg_rating = sum(ratings) / len(ratings) if ratings else 0
st.write(f"Average Question Rating: {avg_rating:.2f}")
# Show distribution of ratings
rating_counts = {i: ratings.count(i) for i in range(1, 6)}
st.bar_chart(rating_counts)
# Show some highly rated questions
st.subheader("Highly Rated Questions")
sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
top_questions = sorted_feedback[:5]
for feedback in top_questions:
st.write(f"Question: {feedback['question']}")
st.write(f"Answer: {feedback['answer']}")
st.write(f"Rating: {feedback['rating']}")
st.write("---")
else:
st.write("No feedback data available yet.")
print("********************************************************************************")
if __name__ == '__main__':
main() |