File size: 9,199 Bytes
729f93e
 
 
 
 
99220ed
9dee841
729f93e
9dee841
a563a42
9dee841
f7dcaaa
e0e7fd6
366078f
e0e7fd6
9dee841
9e75c6e
84c3fd4
03f344d
 
 
 
 
 
 
 
 
 
84c3fd4
03f344d
84c3fd4
a563a42
 
 
 
 
 
84c3fd4
 
 
5fde50b
 
3b56429
 
a563a42
84c3fd4
03f344d
9e75c6e
 
84c3fd4
 
e0e7fd6
84c3fd4
03f344d
84c3fd4
03f344d
84c3fd4
03f344d
90f21b4
a563a42
 
 
84c3fd4
 
 
 
 
a563a42
e0e7fd6
 
366078f
e0e7fd6
 
 
366078f
 
 
 
 
e0e7fd6
 
baeb5c6
 
03f344d
60121a2
 
366078f
a563a42
 
 
366078f
03f344d
366078f
 
 
 
 
 
 
 
 
74406b7
 
 
a563a42
 
5fde50b
e0e7fd6
 
5fde50b
84c3fd4
5fde50b
84c3fd4
74406b7
84c3fd4
068e84d
90f21b4
 
9dee841
84c3fd4
9dee841
84c3fd4
9dee841
 
84c3fd4
9dee841
 
84c3fd4
9dee841
 
84c3fd4
5fde50b
 
 
 
 
84c3fd4
74406b7
84c3fd4
3b56429
 
 
 
 
 
 
d401faa
472f4fa
 
6b21734
5fde50b
 
03f344d
 
 
 
 
 
 
 
 
 
9e75c6e
74406b7
 
 
 
 
 
 
 
 
 
 
3b56429
 
 
 
 
 
 
 
 
 
 
 
 
74406b7
84c3fd4
 
366078f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
nltk.download('wordnet')
import streamlit as st


st.set_page_config(
    page_icon='cyclone',
    page_title="Question Generator",
    initial_sidebar_state="auto",
    menu_items={
        "About" : "Hi this our project."
    }
)


from text_processing import clean_text, get_pdf_text
from question_generation import generate_questions_async
from visualization import display_word_cloud
from data_export import export_to_csv, export_to_pdf
from feedback import collect_feedback, analyze_feedback, export_feedback_data
from utils import get_session_id, initialize_state, get_state, set_state, display_info, QuestionGenerationError, entity_linking
import asyncio
import time
import pandas as pd
from data_export import send_email_with_attachment

st.set_option('deprecation.showPyplotGlobalUse',False)

with st.sidebar:
    select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
if select_model == "T5-large":
    modelname = "DevBM/t5-large-squad"
elif select_model == "T5-small":
    modelname = "AneriThakkar/flan-t5-small-finetuned"

def main():
    st.title(":blue[Question Generator System]")
    session_id = get_session_id()
    state = initialize_state(session_id)
    if 'feedback_data' not in st.session_state:
        st.session_state.feedback_data = []

    with st.sidebar:
        show_info = st.toggle('Show Info',False)
        if show_info:
            display_info()
        st.subheader("Customization Options")
        # Customization options
        input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
        with st.expander("Choose the Additional Elements to show"):
            show_context = st.checkbox("Context",False)
            show_answer = st.checkbox("Answer",True)
            show_options = st.checkbox("Options",True)
            show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
            show_qa_scores = st.checkbox("QA Score",True)
            show_blank_question = st.checkbox("Fill in the Blank Questions",True)
        num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
        context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
        num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
        col1, col2 = st.columns(2)
        with col1:
            extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
        with col2:
            enable_feedback_mode = st.toggle("Enable Feedback Mode",False)

    text = None
    if input_type == "Text Input":
        text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here")
    elif input_type == "Upload PDF":
        file = st.file_uploader("Upload PDF Files")
        if file is not None:
            try:
                text = get_pdf_text(file)
            except Exception as e:
                st.error(f"Error reading PDF file: {str(e)}")
                text = None
    if text:
        text = clean_text(text)
    with st.expander("Show text"):
        st.write(text)
        # st.text(text)
    generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
    # st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)

    if generate_questions_button and text:
        start_time = time.time()
        with st.spinner("Generating questions..."):
            try:
                state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords,modelname))
                if not state['generated_questions']:
                    st.warning("No questions were generated. The text might be too short or lack suitable content.")
                else:
                    st.success(f"Successfully generated {len(state['generated_questions'])} questions!")
            except QuestionGenerationError as e:
                st.error(f"An error occurred during question generation: {str(e)}")
            except Exception as e:
                st.error(f"An unexpected error occurred: {str(e)}")

        print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
        data = get_state(session_id)
        print(data)
        end_time = time.time()
        print(f"Time Taken to generate: {end_time-start_time}")
        set_state(session_id, 'generated_questions', state['generated_questions'])
    
    # sort question based on their quality score
    state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
    # Display generated questions
    if state['generated_questions']:
        st.header("Generated Questions:",divider='blue')
        for i, q in enumerate(state['generated_questions']):
            st.subheader(body=f":orange[Q{i+1}:] {q['question']}")

            if show_blank_question is True:
                st.write(f"**Fill in the Blank Question:** {q['blank_question']}")
            if show_context is True:
                st.write(f"**Context:** {q['context']}")
            if show_answer is True:
                st.write(f"**Answer:** {q['answer']}")
            if show_options is True:
                st.write(f"**Options:**")
                for j, option in enumerate(q['options']):
                    st.write(f"{chr(65+j)}. {option}")
            if show_entity_link is True:
                linked_entity = entity_linking(q['answer'])
                if linked_entity:
                    st.write(f"**Entity Link:** {linked_entity}")
            if show_qa_scores is True:
                m1,m2,m3,m4 = st.columns([1.7,1,1,1])
                m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
                m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
                m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
                m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")

                # q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
            if enable_feedback_mode:
                collect_feedback(
                    i,
                    question = q['question'],
                    answer = q['answer'],
                    context = q['context'],
                    options = q['options'],
                )
            st.write("---")
        
            
        # Export buttons
        # if st.session_state.generated_questions:
        if state['generated_questions']:
            with st.sidebar:   
                # Adding error handling while exporting the files 
                # --------------------------------------------------------------------- 
                try:
                    csv_data = export_to_csv(state['generated_questions'])
                    st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
                    pdf_data = export_to_pdf(state['generated_questions'])
                    st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
                except Exception as e:
                    st.error(f"Error exporting CSV: {e}")

            with st.expander("View Visualizations"):
                questions = [tpl['question'] for tpl in state['generated_questions']]
                overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']]
                st.subheader('WordCloud of Questions',divider='rainbow')
                display_word_cloud(questions)
                st.subheader('Overall Scores',divider='violet')
                overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
                st.line_chart(overall_scores)

    # View Feedback Statistics
    with st.expander("View Feedback Statistics"):
        analyze_feedback()
        if st.button("Export Feedback"):
            feedback_data = export_feedback_data()
            pswd = st.secrets['EMAIL_PASSWORD']
            send_email_with_attachment(
                email_subject='feedback from QGen',
                email_body='Please find the attached feedback JSON file.',
                recipient_emails=['apjc01unique@gmail.com', 'channingfisher7@gmail.com'],
                sender_email='apjc01unique@gmail.com',
                sender_password=pswd,
                attachment=feedback_data
            ) 

    print("********************************************************************************")

if __name__ == '__main__':
    try:
        main()
    except Exception as e:
        st.error(f"An unexpected error occurred: {str(e)}")
        st.error("Please try refreshing the page. If the problem persists, contact support.")