Spaces:
Running
Running
File size: 23,059 Bytes
96b3fb1 da89e26 96b3fb1 7d96610 96b3fb1 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 4354ec3 64bc782 96b3fb1 1c9931d 27be314 4354ec3 253feed 7d96610 253feed 0ae9725 253feed 32cfbfa 253feed dd9a968 0ae9725 dd9a968 0ae9725 7d96610 253feed 0ae9725 253feed 7d96610 253feed 0ae9725 96b3fb1 84774ff 7d96610 0ae9725 dd9a968 7d96610 0ae9725 96b3fb1 0ae9725 dd9a968 0ae9725 1c9931d 0c07dae 0ae9725 1c9931d 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 46ce1fe 0ae9725 96b3fb1 46ce1fe 591b7a6 96b3fb1 0ae9725 701868f 0ae9725 46ce1fe 0ae9725 46ce1fe 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 4c57c14 0ae9725 96b3fb1 4c57c14 591b7a6 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 4c57c14 0ae9725 4c57c14 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 46ce1fe 0ae9725 96b3fb1 46ce1fe 591b7a6 0ae9725 96b3fb1 0ae9725 701868f 0ae9725 46ce1fe 0ae9725 46ce1fe 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f 0ae9725 ef50d9e 0ae9725 4c57c14 0ae9725 96b3fb1 4c57c14 591b7a6 0ae9725 701868f 0ae9725 4c57c14 0ae9725 4c57c14 0ae9725 701868f 0ae9725 701868f 0ae9725 701868f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707
# The original license file is LICENSE.ControlNet in this repo.
from __future__ import annotations
import gc
import pathlib
import sys
import cv2
import numpy as np
import PIL.Image
import torch
from diffusers import (ControlNetModel, DiffusionPipeline,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler)
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'ControlNet'
sys.path.append(submodule_dir.as_posix())
from annotator.canny import apply_canny
from annotator.hed import apply_hed, nms
from annotator.midas import apply_midas
from annotator.mlsd import apply_mlsd
from annotator.openpose import apply_openpose
from annotator.uniformer import apply_uniformer
from annotator.util import HWC3, resize_image
CONTROLNET_MODEL_IDS = {
'canny': 'lllyasviel/sd-controlnet-canny',
'hough': 'lllyasviel/sd-controlnet-mlsd',
'hed': 'lllyasviel/sd-controlnet-hed',
'scribble': 'lllyasviel/sd-controlnet-scribble',
'pose': 'lllyasviel/sd-controlnet-openpose',
'seg': 'lllyasviel/sd-controlnet-seg',
'depth': 'lllyasviel/sd-controlnet-depth',
'normal': 'lllyasviel/sd-controlnet-normal',
}
def download_all_controlnet_weights() -> None:
for model_id in CONTROLNET_MODEL_IDS.values():
ControlNetModel.from_pretrained(model_id)
class Model:
def __init__(self,
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
task_name: str = 'canny'):
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.base_model_id = ''
self.task_name = ''
self.pipe = self.load_pipe(base_model_id, task_name)
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
if base_model_id == self.base_model_id and task_name == self.task_name and hasattr(
self, 'pipe'):
return self.pipe
model_id = CONTROLNET_MODEL_IDS[task_name]
controlnet = ControlNetModel.from_pretrained(model_id,
torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_id,
safety_checker=None,
controlnet=controlnet,
torch_dtype=torch.float16)
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.to(self.device)
torch.cuda.empty_cache()
gc.collect()
self.base_model_id = base_model_id
self.task_name = task_name
return pipe
def set_base_model(self, base_model_id: str) -> str:
if not base_model_id or base_model_id == self.base_model_id:
return self.base_model_id
del self.pipe
torch.cuda.empty_cache()
gc.collect()
try:
self.pipe = self.load_pipe(base_model_id, self.task_name)
except Exception:
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
return self.base_model_id
def load_controlnet_weight(self, task_name: str) -> None:
if task_name == self.task_name:
return
if 'controlnet' in self.pipe.__dict__:
del self.pipe.controlnet
torch.cuda.empty_cache()
gc.collect()
model_id = CONTROLNET_MODEL_IDS[task_name]
controlnet = ControlNetModel.from_pretrained(model_id,
torch_dtype=torch.float16)
controlnet.to(self.device)
torch.cuda.empty_cache()
gc.collect()
self.pipe.controlnet = controlnet
self.task_name = task_name
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
if not prompt:
prompt = additional_prompt
else:
prompt = f'{prompt}, {additional_prompt}'
return prompt
@torch.autocast('cuda')
def run_pipe(
self,
prompt: str,
negative_prompt: str,
control_image: PIL.Image.Image,
num_images: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
if seed == -1:
seed = np.random.randint(0, np.iinfo(np.int64).max)
generator = torch.Generator().manual_seed(seed)
return self.pipe(prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image).images
@staticmethod
def preprocess_canny(
input_image: np.ndarray,
image_resolution: int,
low_threshold: int,
high_threshold: int,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
image = resize_image(HWC3(input_image), image_resolution)
control_image = apply_canny(image, low_threshold, high_threshold)
control_image = HWC3(control_image)
vis_control_image = 255 - control_image
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
vis_control_image)
@torch.inference_mode()
def process_canny(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
low_threshold: int,
high_threshold: int,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_canny(
input_image=input_image,
image_resolution=image_resolution,
low_threshold=low_threshold,
high_threshold=high_threshold,
)
self.load_controlnet_weight('canny')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_hough(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
value_threshold: float,
distance_threshold: float,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
control_image = apply_mlsd(
resize_image(input_image, detect_resolution), value_threshold,
distance_threshold)
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_NEAREST)
vis_control_image = 255 - cv2.dilate(
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
vis_control_image)
@torch.inference_mode()
def process_hough(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
value_threshold: float,
distance_threshold: float,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_hough(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
value_threshold=value_threshold,
distance_threshold=distance_threshold,
)
self.load_controlnet_weight('hough')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_hed(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
control_image = apply_hed(resize_image(input_image, detect_resolution))
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_LINEAR)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
control_image)
@torch.inference_mode()
def process_hed(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_hed(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
)
self.load_controlnet_weight('hed')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_scribble(
input_image: np.ndarray,
image_resolution: int,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
image = resize_image(HWC3(input_image), image_resolution)
control_image = np.zeros_like(image, dtype=np.uint8)
control_image[np.min(image, axis=2) < 127] = 255
vis_control_image = 255 - control_image
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
vis_control_image)
@torch.inference_mode()
def process_scribble(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_scribble(
input_image=input_image,
image_resolution=image_resolution,
)
self.load_controlnet_weight('scribble')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_scribble_interactive(
input_image: np.ndarray,
image_resolution: int,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
image_resolution)
control_image = np.zeros_like(image, dtype=np.uint8)
control_image[np.min(image, axis=2) > 127] = 255
vis_control_image = 255 - control_image
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
vis_control_image)
@torch.inference_mode()
def process_scribble_interactive(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_scribble_interactive(
input_image=input_image,
image_resolution=image_resolution,
)
self.load_controlnet_weight('scribble')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_fake_scribble(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
control_image = apply_hed(resize_image(input_image, detect_resolution))
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_LINEAR)
control_image = nms(control_image, 127, 3.0)
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
control_image[control_image > 4] = 255
control_image[control_image < 255] = 0
vis_control_image = 255 - control_image
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
vis_control_image)
@torch.inference_mode()
def process_fake_scribble(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_fake_scribble(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
)
self.load_controlnet_weight('scribble')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_pose(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
is_pose_image: bool,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
if not is_pose_image:
control_image, _ = apply_openpose(
resize_image(input_image, detect_resolution))
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_NEAREST)
else:
control_image = resize_image(input_image, image_resolution)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
control_image)
@torch.inference_mode()
def process_pose(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
is_pose_image: bool,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_pose(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
is_pose_image=is_pose_image,
)
self.load_controlnet_weight('pose')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_seg(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
is_segmentation_map: bool,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
if not is_segmentation_map:
control_image = apply_uniformer(
resize_image(input_image, detect_resolution))
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_NEAREST)
else:
control_image = resize_image(input_image, image_resolution)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
control_image)
@torch.inference_mode()
def process_seg(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
is_segmentation_map: bool,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_seg(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
is_segmentation_map=is_segmentation_map,
)
self.load_controlnet_weight('seg')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_depth(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
is_depth_image: bool,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
if not is_depth_image:
control_image, _ = apply_midas(
resize_image(input_image, detect_resolution))
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_LINEAR)
else:
control_image = resize_image(input_image, image_resolution)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
control_image)
@torch.inference_mode()
def process_depth(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
is_depth_image: bool,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_depth(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
is_depth_image=is_depth_image,
)
self.load_controlnet_weight('depth')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
@staticmethod
def preprocess_normal(
input_image: np.ndarray,
image_resolution: int,
detect_resolution: int,
bg_threshold: float,
is_normal_image: bool,
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
input_image = HWC3(input_image)
if not is_normal_image:
_, control_image = apply_midas(resize_image(
input_image, detect_resolution),
bg_th=bg_threshold)
control_image = HWC3(control_image)
image = resize_image(input_image, image_resolution)
H, W = image.shape[:2]
control_image = cv2.resize(control_image, (W, H),
interpolation=cv2.INTER_LINEAR)
else:
control_image = resize_image(input_image, image_resolution)
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
control_image)
@torch.inference_mode()
def process_normal(
self,
input_image: np.ndarray,
prompt: str,
additional_prompt: str,
negative_prompt: str,
num_images: int,
image_resolution: int,
detect_resolution: int,
num_steps: int,
guidance_scale: float,
seed: int,
bg_threshold: float,
is_normal_image: bool,
) -> list[PIL.Image.Image]:
control_image, vis_control_image = self.preprocess_normal(
input_image=input_image,
image_resolution=image_resolution,
detect_resolution=detect_resolution,
bg_threshold=bg_threshold,
is_normal_image=is_normal_image,
)
self.load_controlnet_weight('normal')
results = self.run_pipe(
prompt=self.get_prompt(prompt, additional_prompt),
negative_prompt=negative_prompt,
control_image=control_image,
num_images=num_images,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
)
return [vis_control_image] + results
|