Spaces:
Sleeping
Sleeping
File size: 8,798 Bytes
e82dff2 b0c2018 3b61cce 45a5416 7617596 3b61cce ad3ee60 3b61cce a8797f1 53b7b42 a8797f1 53b7b42 ef365f5 bd0d673 3b61cce 0312353 3b61cce 359b3f0 19327c9 359b3f0 3b61cce 0312353 3b61cce 0312353 3b61cce b0c2018 45a5416 3b61cce 0312353 45a5416 0312353 45a5416 359b3f0 45a5416 359b3f0 45a5416 7617596 fb94f78 7617596 6eaf487 7617596 fb94f78 7617596 0312353 fb14311 fb94f78 073a46b 6eaf487 fb94f78 6eaf487 53b7b42 6eaf487 fb94f78 ef365f5 073a46b 6eaf487 fb94f78 6eaf487 539688d 6eaf487 53b7b42 fb94f78 ef365f5 6eaf487 7617596 45a5416 7617596 45a5416 0312353 7617596 fb94f78 3b61cce 7617596 45a5416 ef365f5 45a5416 7617596 0312353 7617596 45a5416 0312353 7617596 3b61cce ef365f5 45a5416 19327c9 45a5416 ef365f5 45a5416 53b7b42 19327c9 45a5416 53b7b42 a8208b6 53b7b42 ef365f5 45a5416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from __future__ import annotations
import concurrent.futures
import os
import pathlib
import shlex
import shutil
import subprocess
import sys
import hashlib
from typing import Tuple
try:
import ruamel_yaml as yaml
except ModuleNotFoundError:
import ruamel.yaml as yaml
import cv2
import torch
from label_prettify import label_prettify
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'prismer'
sys.path.insert(0, submodule_dir.as_posix())
from dataset import create_dataset, create_loader
from dataset.utils import pre_question
from model.prismer_caption import PrismerCaption
from model.prismer_vqa import PrismerVQA
from model.modules.utils import interpolate_pos_embed
def download_models() -> None:
if not pathlib.Path('prismer/experts/expert_weights/').exists():
subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer')
model_names = [
# 'vqa_prismer_base',
# 'vqa_prismer_large',
'pretrain_prismer_base',
# 'pretrain_prismer_large',
]
for model_name in model_names:
if pathlib.Path(f'prismer/logging/{model_name}').exists():
continue
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')
def build_deformable_conv() -> None:
subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
def run_expert(expert_name: str):
env = os.environ.copy()
if 'PYTHONPATH' in env:
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
else:
env['PYTHONPATH'] = submodule_dir.as_posix()
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'),
cwd='prismer',
env=env,
check=True)
def compute_md5(image_path: str) -> str:
with open(image_path, 'rb') as f:
s = f.read()
return hashlib.md5(s).hexdigest()
def run_experts(image_path: str) -> Tuple[str, Tuple[str, ...]]:
im_name = compute_md5(image_path)
out_path = submodule_dir / 'helpers' / 'images' / f'{im_name}.jpg'
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
results = [pathlib.Path('prismer/helpers/labels') / key / f'helpers/images/{im_name}.png' for key in keys]
results_pretty = [pathlib.Path('prismer/helpers/labels') / key / f'helpers/images/{im_name}_p.png' for key in keys]
out_paths = tuple(path.as_posix() for path in results)
pretty_paths = tuple(path.as_posix() for path in results_pretty)
config = yaml.load(open('prismer/configs/experts.yaml', 'r'), Loader=yaml.Loader)
config['im_name'] = im_name
print(im_name)
with open('prismer/configs/experts.yaml', 'w') as yaml_file:
yaml.dump(config, yaml_file, default_flow_style=False)
if not os.path.exists(out_paths[0]):
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
# paralleled inference
expert_names = ['edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
run_expert('depth')
with concurrent.futures.ProcessPoolExecutor() as executor:
executor.map(run_expert, expert_names)
executor.shutdown(wait=True)
# no parallelization just to be safe
# expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
# for exp in expert_names:
# run_expert(exp)
label_prettify(image_path, out_paths)
return im_name, pretty_paths
class Model:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.model_name = ''
self.exp_name = ''
self.mode = ''
def set_model(self, exp_name: str, mode: str) -> None:
if exp_name == self.exp_name and mode == self.mode:
return
# load checkpoints
model_name = exp_name.lower().replace('-', '_')
if mode == 'caption':
config = {
'dataset': 'demo',
'data_path': 'prismer/helpers',
'label_path': 'prismer/helpers/labels',
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
'image_resolution': 480,
'prismer_model': model_name,
'freeze': 'freeze_vision',
'prefix': '',
}
model = PrismerCaption(config)
state_dict = torch.load(f'prismer/logging/pretrain_{model_name}/pytorch_model.bin', map_location='cuda:0')
state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'],
len(model.expert_encoder.positional_embedding))
elif mode == 'vqa':
config = {
'dataset': 'demo',
'data_path': 'prismer/helpers',
'label_path': 'prismer/helpers/labels',
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
'image_resolution': 480,
'prismer_model': model_name,
'freeze': 'freeze_vision',
'prefix': '',
}
model = PrismerVQA(config)
state_dict = torch.load(f'prismer/logging/vqa_{model_name}/pytorch_model.bin', map_location='cuda:0')
state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'],
len(model.expert_encoder.positional_embedding))
model.load_state_dict(state_dict)
model = model.half()
model.eval()
self.config = config
self.model = model.to('cuda:0')
self.tokenizer = model.tokenizer
self.exp_name = exp_name
self.mode = mode
@torch.inference_mode()
def run_caption_model(self, exp_name: str, im_name: str) -> str:
self.set_model(exp_name, 'caption')
self.config['im_name'] = im_name
_, test_dataset = create_dataset('caption', self.config)
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
experts, _ = next(iter(test_loader))
for exp in experts:
if exp == 'obj_detection':
experts[exp]['label'] = experts['obj_detection']['label'].to('cuda:0')
experts[exp]['instance'] = experts['obj_detection']['instance'].to('cuda:0')
else:
experts[exp] = experts[exp].to('cuda:0')
captions = self.model(experts, train=False, prefix=self.config['prefix'])
captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
caption = captions.to(experts['rgb'].device)[0]
caption = self.tokenizer.decode(caption, skip_special_tokens=True)
caption = caption.capitalize() + '.'
return caption
def run_caption(self, image_path: str, model_name: str) -> tuple[str | None, ...]:
im_name, pretty_paths = run_experts(image_path)
caption = self.run_caption_model(model_name, im_name)
return caption, *pretty_paths
@torch.inference_mode()
def run_vqa_model(self, exp_name: str, im_name: str, question: str) -> str:
self.set_model(exp_name, 'vqa')
self.config['im_name'] = im_name
_, test_dataset = create_dataset('caption', self.config)
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
experts, _ = next(iter(test_loader))
for exp in experts:
if exp == 'obj_detection':
experts[exp]['label'] = experts['obj_detection']['label'].to('cuda:0')
experts[exp]['instance'] = experts['obj_detection']['instance'].to('cuda:0')
else:
experts[exp] = experts[exp].to('cuda:0')
question = pre_question(question)
answer = self.model(experts, [question], train=False, inference='generate')
answer = self.tokenizer(answer, max_length=30, padding='max_length', return_tensors='pt').input_ids
answer = answer.to(experts['rgb'].device)[0]
answer = self.tokenizer.decode(answer, skip_special_tokens=True)
answer = answer.capitalize() + '.'
return answer
def run_vqa(self, image_path: str, model_name: str, question: str) -> tuple[str | None, ...]:
im_name, pretty_paths = run_experts(image_path)
answer = self.run_vqa_model(model_name, im_name, question)
return answer, *pretty_paths
|