3v324v23's picture
Add files
c9019cd
|
raw
history blame
2.65 kB

DeepFashion

MMFashion develops "fashion parsing and segmentation" module based on the dataset DeepFashion-Inshop. Its annotation follows COCO style. To use it, you need to first download the data. Note that we only use "img_highres" in this task. The file tree should be like this:

mmdetection
β”œβ”€β”€ mmdet
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ DeepFashion
β”‚   β”‚   β”œβ”€β”€ In-shop
β”‚   β”‚   β”œβ”€β”€ Anno
β”‚   β”‚   β”‚   β”œβ”€β”€ segmentation
β”‚   β”‚   β”‚   |   β”œβ”€β”€ DeepFashion_segmentation_train.json
β”‚   β”‚   β”‚   |   β”œβ”€β”€ DeepFashion_segmentation_query.json
β”‚   β”‚   β”‚   |   β”œβ”€β”€ DeepFashion_segmentation_gallery.json
β”‚   β”‚   β”‚   β”œβ”€β”€ list_bbox_inshop.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ list_description_inshop.json
β”‚   β”‚   β”‚   β”œβ”€β”€ list_item_inshop.txt
β”‚   β”‚   β”‚   └── list_landmarks_inshop.txt
β”‚   β”‚   β”œβ”€β”€ Eval
β”‚   β”‚   β”‚   └── list_eval_partition.txt
β”‚   β”‚   β”œβ”€β”€ Img
β”‚   β”‚   β”‚   β”œβ”€β”€ img
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€XXX.jpg
β”‚   β”‚   β”‚   β”œβ”€β”€ img_highres
β”‚   β”‚   β”‚   └── β”œβ”€β”€XXX.jpg

After that you can train the Mask RCNN r50 on DeepFashion-In-shop dataset by launching training with the mask_rcnn_r50_fpn_1x.py config or creating your own config file.

@inproceedings{liuLQWTcvpr16DeepFashion,
   author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
   title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
   booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2016}
}

Model Zoo

Backbone Model type Dataset bbox detection Average Precision segmentation Average Precision Config Download (Google)
ResNet50 Mask RCNN DeepFashion-In-shop 0.599 0.584 config model | log